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ABSTRACT As one of post-translational modifications (PTMs), protein citrullination is crucial in a
diverse array of cellular processes and implicated in a slew of human pathology. Therefore, accurate
identification of protein citrullination sites (PCSs) is urgently needed to illuminate the reaction details and
the complex pathogenesis related to the protein citrullination. In view of the limitations of the existing PCS
predictors, this study proposes a novel and powerful sequence-based combined method named PCSPred_SC
to further enhance the prediction performance. Various feature extraction methods are developed to mine
sequence-derived biological information. Under the feature space, the predictive capabilities of different
prediction algorithms, over-sampling methods, and feature selection methods are respectively explored.
Experimental results indicate that the over-sampling methods are effective to solve the imbalanced dataset
problem and the feature selection methods are significant in removing irrelevant and redundant features.
On the same dataset using 10-fold cross validation, PCSPred_SC constructed by the combination of support
vector machine (SVM), Adasyn, and t-distributed stochastic neighbor embedding (t-SNE) achieves much
more outstanding performance than the competing methods, while reducing the number of features used
for this task remarkably. It is anticipated that the proposed method will provide significant information to
broaden our knowledge of citrullination-related biological processes.

INDEX TERMS Citrullination, prediction algorithm, over-sampling, feature selection.

I. INTRODUCTION
Post-translational modifications (PTMs) can increase the
diversity of protein functions to maintain physiological
homeostasis [1]. As one of critical PTMs, protein citrulli-
nation illustrated in Figure 1 is a hydrolytic reaction con-
verting positively charged arginine into neutrally charged
citrulline [2]. Mediated by the calcium-dependent peptidyl
arginine deiminases (PADs) [3], citrullination can alter total
charge and hydrogen bonding with consequent effects on
the target protein’s molecular conformation, biochemical
activities, immunogenicity, and interactions with proteins or
nucleic acids [4].

The existing PAD isozymes (PAD 1-4 and 6) exhibit a
tissue specific expression [5]. Under normal circumstances,
PAD1 and PAD3 are mainly expressed in the skin and
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FIGURE 1. The process of protein citrullination mediated by the
calcium-dependent PADs.

hair follicles. They participate in the terminal differenti-
ation of keratinocytes by catalyzing the citrullination of
pro-filaggrin [6]. PAD2 that may function within the epi-
dermal growth factor signaling pathway to regulate cell
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TABLE 1. Known substrates that are targeted by the individual isozymes
of the PAD family of isozymes [10].

migration is principally distributed in skeletal muscle, brain,
pancreas and spleen [7]. PAD4 involved in gene expression
and protein localization can be primarily detected in neu-
trophils and other myeloid derived cells [8]. PAD6 closely
relatedwith embryo development is largely located in oocytes
and embryonic stem cells [9]. As listed in Table 1, the PAD
isozymes also show specificity for their targeted substrates.

At physiological concentrations of calcium, protein cit-
rullination is crucial in a diverse array of cellular processes
including proliferation, differentiation, apoptosis, myeliniza-
tion, neutrophil extracellular trap (NET) formation, gene
expression regulation, and skin homeostasis [5], [11]–[13].
For instance, citrullinated keratin and histones have impor-
tant effects on skin protection and gene regulation [14];
Citrullinated fibronectin can regulate the function of syn-
ovial fibroblasts [15]; Citrullinated vimentin and its antibody
can induce osteoclast differentiation and subsequent bone
resorption [16]; Citrullinated calreticulin on the cell surface
can enhance its role in signaling pathways [17]. Although T.
Goulas et al. shed light on a general regulatory mechanism of
citrullination [18], the exact factors that lead to citrullination
in vivo remain largely elusive [13]. To illuminate the reaction
details of citrullination, development of novel strategies to
comprehensively identify protein citrullination sites (PCSs)
is urgently needed.

Recently, accumulating evidence has indicated that dysreg-
ulations of PADs in citrullination are involved in a slew of
human pathology [10], [13], [19]–[21]. As reported, abnor-
mally elevated protein citrullination followed by the pro-
duction of anti-citrullinated protein antibodies (ACPAs) was
detected in patients with rheumatoid arthritis (RA) [22].
Citrullinated histone H3, a biomarker of NET formation,
is independently associated with the occurrence of venous
thromboembolism in cancer patients [23]. PAD1-mediated
citrullination is positively correlated with human triple neg-
ative breast cancer [24]. Overexpressing PAD2 has been
implicated in the onset and progression of human malignant
cancers [12], [20], [25], [26], whereas downregulation of
PAD2 is observed in the pathogenesis of colorectal can-
cer [27]. Additionally, PAD4 has been linked to a wide range
of inflammatory autoimmune diseases including arthritis,
colitis and multiple sclerosis [28], [29]. Given the strong evi-
dence linking dysregulated citrullination to human diseases,
autoantibodies targeting citrullinated proteins have been used
as promising diagnostic markers [5], [12], [28]. However,
the pathological roles that PAD-mediated citrullination play

in these diseases are still to be discerned [10]. Given this back-
ground, accurate identification of PCSs is required to broaden
our knowledge of PAD’s substrate specificity and clarify the
critical effect of citrullination on substrate’s functions, which
will ultimately have diagnostic or prognostic value in diverse
citrullination related diseases [30].

At present, a series of experimental methods have been
developed to detect PCSs [31]. S.M. Hensen et al. pro-
posed a robust and sensitive antibody-independent strategy
to visualize the modified citrullines through western blot
analysis [32]. Using the ionization characteristics of citrulline
residues, detection of citrulline by mass spectrometry (MS)
is a widely adopted technique. However, the abundance of
citrulline peptides is too low to produce high-quality MS/MS
fingerprints, and related non-citrulline fragments are easily
deleted [33]. Furthermore, as citrullination results in only 1
dalton change in mass, ion signals of a citrullinated peptide
in a MS are always difficult to detect [34]. Therefore, only
a handful of PAD substrates are known due to the technical
challenges associated with experimental methods [22].

With the advances in sequencing technologies, cost-
effective computational methods have been proposed to
accelerate the discovery of PCSs. By incorporating multiple
sequence information such as amino acid composition,
position-specific scoring matrix (PSSM) conservation scores,
amino acid factors and disorder scores, Q. Zhang et al.
employed a random forest classifier together with the
maximum Relevance Minimum Redundancy (mRMR)-
incremental feature selection (IFS) method to predict
PCSs [35]. However, the sensitivity achieved by the predic-
tor is as low as 0.603 due to the unsolved class imbalance
problem in the dataset. Stimulated by the pseudo amino
acid composition (PseAAC) approach [36], a sequence-based
predictor called CKSAAP_CitrSite was proposed to improve
the prediction performance by coupling support vector
machine (SVM) with the composition of k-spaced amino
acid pairs (CKSAAP) selected by F-score [37]. Likewise,
CKSAAP_CitrSite did not give a solution to the class imbal-
ance problem. In addition, as the feature extraction strategy is
based on a single technique, the intrinsic biological properties
of protein citrullination are not fully considered, which may
limit the prediction performance of CKSAAP_CitrSite.

The aforementioned methods have made certain contribu-
tions to stimulating the development of PCS detection. But
there is still room for improvement, particularly in terms of
sensitivity. In view of the limitations of the above-mentioned
methods, this study proposes a novel and powerful method
named PCSPred_SC for identifying PCSs using an effective
sequence-based combined method. Firstly, different feature
extraction methods including binary encoding (BE), position
specific amino acid propensity (PSAAP), pseudo amino acid
composition (PseAAC) [36] and physicochemical properties
(PP) [38], [39] are adopted to convert peptides into numeric
feature vectors. Secondly, under the complete feature space,
the PCS predictors are respectively constructed by various
prediction algorithms, including naïve bayes (NB), logistic
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FIGURE 2. The overall workflow of the proposed method.

regression (LR), artificial neural network (ANN), decision
tree (DT), random forest (RF), and support vector machine
(SVM). Thirdly, the effects of the over-sampling methods
including random over-sampling (ROS), synthetic minor-
ity over-sampling technique (SMOTE) [40], Border-line
SMOTE [41], SVM-SMOTE [42] and Adasyn [43] are sys-
tematically explored using the top 2 prediction algorithms
that achieve the best performance. Finally, to determine the
best prediction model, different feature selection methods
including mutual information (MI) [44], autoencoder
(AE) [45], and t-distributed stochastic neighbor embedding
(t-SNE) [46] are respectively incorporated into the top 2mod-
els constructed by a combination of the prediction algo-
rithm and over-sampling methods. Compared with exiting
methods, experimental results demonstrate that the proposed
method achieves a superior performance in terms of various
performance measures. A summary of the computational
framework of our method is displayed in Figure 2.

II. MATERIALS AND METHODS
A. DATASET
To make fair comparisons with previous studies, we use the
same trainning dataset introduced by Q. Zhang et al. [35].
The dataset was generated by scanning across the protein
sequence within a window of size 21 centered at citrullination
or non-citrullination sites. If less than 10 upstream or down-
stream residues flanked the central site, the missing positions
would be filled with a dummy residue ‘X’. As a result,
the dataset included 116 experimentally annotated PCSs and
232 non-annotated PCSs.

To further reliably estimate the predictive ability of
the proposed method, we construct an independent test
dataset as follows. The citrullinated proteins are collected
from Universal Resource of Protein (UniProt, available
at https://www.uniprot.org/) by searching the keyword of
‘citrulline’ in the field of ‘Modified residue’. If the number
of flanking amino acids is less than 10, the missing positions
are expanded with a special residue ‘X’. Then, the peptides
within a window of size 21 centered at the citrullination site
are extracted. Among all the retrieved sequences, only exper-
imentally identified and reviewed citrullination sites are kept.
Furthermore, all duplicate samples and the samples included
in the training dataset are removed. As a result, a posi-
tive dataset including 138 samples with citrullination sites
is obtained. We then randomly select 150 non-citrullination
sites from the citrullinated proteins to construct a repre-
sentative negative dataset. The same strict filtering criteria,
as mentioned above, are applied to the negative dataset. Thus,
the independent test dataset has a total of 138 + 150 = 288
peptide samples.

B. FEATURE EXTRACTION
For constructing a robust and reliable predictor, it is a
crucial step to transform the input sequence into a set of
numerical attributes that could really reflect the intrinsic
correlation with the desired target [47]. To avoid the bias
of using single descriptor, integrating complementary infor-
mation from different types of protein feature representa-
tions has become a new trend of feature design [48], [49].
In this study, we explore four types of quantitative feature
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descriptors, including binary encoding (BE), position specific
amino acid propensity (PSAAP), pseudo amino acid compo-
sition (PseAAC), and physicochemical properties (PP). The
detailed feature extraction processes are explained in the
following subsections.

1) BINARY ENCODING
20 amino acids plus the aforementioned gap-filling residue
‘‘X’’ are ordered as ACDEFGHIKLMNPQRSTVWYX.
According to the alphabetical order, the values of j = 1,
2, · · · , 21 denote different kinds of amino acids. We encode
amino acid j at each position using a 21-dimensional binary
vector {a1, a2, · · · , a21}, where aj = 1 and ai(i 6= j) = 0.

2) POSITION SPECIFIC AMINO ACID PROPENSITY
The position specific amino acid propensity (PSAAP) would
be employed to measure the amino acid preferences in differ-
ent positions flanking the known PCSs. Given a peptide P in
the dataset, its most straightforward expression is

P = R1,R2, · · · ,R21, (1)

where Ri represents the i-th residue of the peptide P. The
detailed procedure of PSAAP is as follows. Firstly, the amino
acid compositions of the j-th position for the positive dataset
and the negative dataset are respectively calculated and
denoted as

(A+1,j,A
+

2,j, · · · ,A
+

21,j) j = 1, 2, · · · , 21, (2)

(A−1,j,A
−

2,j, · · · ,A
−

21,j) j = 1, 2, · · · , 21. (3)

Then, a score zi,j = A+i,j − A−i,j is computed to indicate the
propensity of the i-th amino acid in the j-th position of the
peptide centered at PCSs. Finally, a 21 dimensional vector for
every peptide can be easily read out from the PSAAP matrix
Z = (zi,j), where the vector’s i-th element µi is denoted as

µi =


z1,i Ri = A
z2,i Ri = C
...

...

z21,i Ri = X

i = 1, 2, · · · , 21. (4)

3) PSEUDO AMINO ACID COMPOSITION
To avoid losing sequence order information hidden in protein
sequences, the pseudo amino acid composition (PseAAC)
proposed by KC Chou [36] is introduced to comprehensively
incorporate the occurrences and physicochemical properties
of amino acids. Ever since then, the concept of PseAAC
has been penetrated into various areas of computational pro-
teomics [47], [50], [51].

Considering the peptide given in Equation (1), the
sequence-order correlation factor is defined as

θ =
1

L − 1

L−1∑
i=1

[M (Ri+1)−M (Ri)]2, (5)

whereM (Ri) indicates the normalized side-chain mass of the
amino acid Ri and can be subjected to a standard conversion
as described by the following equation:

M (i) =
M0(i)−

∑20
i=1

M0(i)
20√∑20

i=1[M0(i)−
∑20

i=1
M0(i)
20 ]2

20

, (6)

whereM0(i) is the original side-chain mass of the i-th amino
acid in alphabetical order.

Then, the peptide given in Equation (1) is represented as

V = {v1, v2, · · · , v21}, (7)

where the components are given by

vu =



fu
20∑
i=1

fi + ωθ

1 ≤ u ≤ 20

ωθ

20∑
i=1

fi + ωθ

u = 21,
(8)

and fu(u = 1, 2, · · · , 20) is the normalized occurrence fre-
quency of the 20 amino acids in the peptide sequence P;
Without loss of generality, the weight factor ω is set to be
0.05. In this representation, the first 20 descriptors depict the
components of its basic amino acid composition and the last
descriptor reflects sequence order information.

4) PHYSICOCHEMICAL PROPERTIES
Several studies have indicated that the physicochemical prop-
erties (PP) of residues determine its interactions with the
others [38], [39]. In this study, 13 physicochemical proper-
ties closely related to the behavior of the protein interfaces,
including positively charged, negatively charged, neutral
charged, polarity, non polarity, hydrophobicity, hydrophilic-
ity, secondary structure (helix), secondary structure (strands),
secondary structure (coil), solvent accessibility (buried),
solvent accessibility (exposed), and solvent accessibility
(intermediate), are extracted from the web server named
Pfeature (https://webs.iiitd.edu.in/raghava/pfeature/). Then,
the average values of the amino acid’s each physicochemical
property along peptide samples are calculated.

C. OVER-SAMPLING METHODS
As the dataset indicated in Section II.A, the number of
peptide chains without PCSs is twice that of peptide chains
with PCSs. In other words, the imbalanced dataset prob-
lem exists in the benchmark dataset, which would lead to
most of the incoming data labeled as the majority class by
traditional machine learning algorithms [59]. In this study,
over-sampling methods including random over-sampling
(ROS), synthetic minority over-sampling technique
(SMOTE), Border-line SMOTE, SVM-SMOTE, and Adasyn
are respectively employed to balance the positive and neg-
ative training samples. The ROS method replicates ran-
domly selected samples within the minority set; The SMOTE
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method generates novel synthetic samples through perform-
ing the interpolation algorithm between each minority class
sample and its k minority class nearest neighbors [40]; The
Border-line SMOTEmethod only over-samples or focuses on
the borderlineminority samples by identifying noise samples,
danger samples, and safe samples [41]; The SVM-SMOTE
method generates artificial minority instances at the boundary
of majority class and minority class with SVM trained to
predict future instances [42]; The Adasyn method generates
more minority class samples that are harder to learn [43].

D. FEATURE SELECTION
Evidently, there always exist noisy, irrelevant, and redundant
features in the integrated feature space, which can poten-
tially cause the curse of dimensionality, over fitting, and
the increase of the computation complexity [60]. That is to
say, not all of these candidate features facilitate the predic-
tion of PCSs. Therefore, mutual information, autoencoder,
and t-distributed stochastic neighbor embedding described in
detail below are respectively employed to select the informa-
tive features.

1) MUTUAL INFORMATION
In a nonlinear context, the mutual information (MI) is widely
used as the criterion to measure the amount of information
shared between different variables [44]. Suppose the set of
the values of the i-th feature Fi and the set of the class labels
are respectively denoted as Vi and C , the MI of Vi and C is
defined as

MI (Vi,C) =
∑
c∈C

∑
v∈Vi

p (v, c) log
p (v, c)
p (v) p (c)

. (9)

From the perspective of information gain, MI represents the
amount by which the uncertainty of C is reduced due to the
introduction of Fi. Greater MI means that the feature Fi is
more beneficial to distinguish the elements in C .

2) AUTOENCODER
Implemented with unsupervised learning, autoencoder (AE)
is a derivative of ANNs to reconstruct the input data at its
output layer [45]. If the number of the neurons in the hidden
layer is fewer than that of the input layer, dimensionality
reduction of the original input patterns can be achieved by
deriving features from the hidden layer. The AE learns the
optimal weights connecting neurons through the backpropa-
gation algorithm.

3) t-Distributed STOCHASTIC NEIGHBOR EMBEDDING
By matching distances between high-dimensional and
low-dimensional spaces, t-distributed stochastic neighbor
embedding (t-SNE) is a dimensionality reduction algorithm
retaining the original clustering [46]. The whole procedure
of the t-SNE is given in the following steps. (i) Calculate
‘‘unscaled’’ similarity scores between the high-dimensional
points using a ‘‘t-distribution’’ and then scale them.

(ii) Construct the similarity matrix with each element
representing the similarity score. (iii) Create an initial
set of low-dimensional points. (iv) Iteratively update the
low-dimensional points to minimize the Kullback-Leibler
divergence.

E. PERFORMANCE MEASURES
To evaluate the prediction performance of PCS predictors,
the widely used performance measures including sensitivity
(Sn), specificity (Sp), accuracy (Acc), Matthew’s correlation
coefficient (MCC), and area under the receiver operating
characteristic curve (AUC), are calculated. The first 4 per-
formance measures are defined as follows:

Sn =
TP

TP+ FN
, (10)

Sp =
TN

TN + FP
, (11)

Acc =
TP+ TN

TP+ FP+ TN + FN
, (12)

MCC =
TP ∗ TN − FP ∗ FN

√
(TP+FN )(TP+FP)(TN+FP)(TN+FN )

, (13)

where TP, FP, TN and FN represent the numbers of true
positives, false positives, true negatives, and false negatives,
respectively. For the imbalanced dataset problem, there is
a preference for a low Sn and a high Sp. A high Sp often
means a high Acc [38]. Therefore, Acc is not an appropri-
ate measure for the performance evaluation. To achieve a
comprehensive and stable performance, the MCC reflecting a
trade-off between Sn and Sp is employed as the main measure
to construct the PCS predictor and compare it with existing
methods.

To further evaluate the performance of our method,
the receiver operating characteristics (ROC) curve is plotted
with the true positive rate (i.e. Sn) as a function of the false
positive rate (i.e. 1-Sp) for varying decision thresholds [61].
The AUC, a reliable measure for the prediction performance,
is also calculated.

10-fold cross validation [62] is adopted in this study to cal-
culate the above-mentioned performance evaluation indexes.
That is, the benchmark dataset is randomly partitioned into
10 data subsets with approximately equal size. One subset is
retained for testing and all others form the training dataset.
This process is repeated 10 times to test each subset. Finally,
the average performance measures over the 10 folds are
calculated as the final result of evaluation.

III. RESULTS AND DISCUSSIONS
A. COMPARISON OF DIFFERENT
PREDICTION ALGORITHMS
The classification performance is data sensitive and algo-
rithm dependent. Hence, the effect of different algorithms
given in the Section II.C for identifying PCSs is exam-
ined using the complete feature space without over-sampling
methods. In these experiments, we tune the ideal parame-
ters for each algorithm under the 10-fold cross validation.
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TABLE 2. Performance of different prediction algorithms using the
complete feature space without over-sampling methods.

As listed in Tables 2, the Acc achieved by RF is 0.805, which
is 0.009-0.225 higher than those achieved by the other five
algorithms. The closest competitor of RF in terms of Acc
and MCC is the SVM. The Sp obtained by SVM has the
largest Sp of 0.987, which is 0.461, 0.146, 0.134, 0.203, and
0.034 higher than that obtained by NB, LR, ANN, DT and
RF, respectively. Among these algorithms, RF achieves the
best MCC of 0.542, and SVM achieves the second best MCC
of 0.534. These results indicate that SVM and RF attain much
more outstanding performance for PCS prediction. It’s also
worth noting that most of the algorithms yields much higher
Sp than Sn due to the imbalanced dataset problem. Therefore,
SVM and RF are respectively selected as the prediction algo-
rithm to balance the dataset using the over-samplingmethods.

B. THE CHOICE OF OVER-SAMPLING METHODS
In previous experiments, the PCS predictors are constructed
by the imbalanced dataset given in Section II.A. To alleviate
the class imbalance problem, different over-sampling meth-
ods to balance the dataset are adopted in this study. The results
in Table 3 summarizes the performance of the combinations
of RF or SVM with each of the over-sampling method.
Specifically, a combination of SVM and ROS (SVM+ ROS)
achieves the highest Sn; A combination of SVM and Adasyn
(SVM+Adasyn) outperforms the other predictors in terms of
two critical measures, Acc andMCCwith values of 0.934 and
0.850, respectively. These values are 0.02 and 0.046 higher
than those obtained by the closest competitor, a combina-
tion of SVM and SVM-SMOTE (SVM + SVM-SMOTE).
Additionally, the second best prediction performance is
achieved by SVM + SVM-SMOTE with a Sn of 0.793, a Sp
of 0.974, a Acc of 0.914, and a MCC of 0.804. Therefore,
SVM + Adasyn and SVM + SVM-SMOTE as respectively
chosen as the basic predictor to conduct the feature selection
processes.

TABLE 3. Performance of the combinations of RF or SVM with different
over-sampling methods.

C. ADDED VALUE OF OVER-SAMPLING METHODS
To provide insights in the added value of over-sampling
methods, the prediction results without and with over-
sampling methods respectively given in Table 2 and Table 3
are compared. Obviously, no matter what the prediction algo-
rithm is, the predictors with over-sampling methods perform
significantly better than the variants without over-sampling
methods. As listed in Table 3, all the 5 MCCs achieved
by SVM combined with over-sampling methods are higher
than 0.69 and 4 of them are higher than 0.76, while the
MCC achieved by SVM without over-sampling methods is
only 0.534. Similar comparison results can be obtained for
the RF. In addition, the Sns achieved by RF and SVMwithout
over-sampling methods are less than 0.52, and there is a
relatively large gap between Sn and Sp. On the contrary,
the Sns achieved by RF and SVM with over-sampling meth-
ods are higher than 0.62, while keeping the comparable Sp
and Acc. These results highlights the incremental value of
the over-sampling methods on enhancing the PCS predictors’
reliability and performance.

FIGURE 3. The statistical significance test results between the actual
peptide chains and the generated peptide chains on the complete feature
space.

To further validate the effectiveness of the over-sampling
methods, the statistical significance between the actual pep-
tide chains and the generated peptide chains on the complete
feature space is assessed by the paired t-test with α = 0.05.
As shown in Figure 3, for the majority of features, there is no
significant difference between the actual peptide chains and
the generated peptide chains.

D. PERFORMANCE COMPARISONS OF
FEATURE SELECTION METHODS
The feature selection methods employed in this study can
be categorized into the filter algorithm (MI) and the pro-
jection algorithms (AE and t-SNE). For the filter algorithm,
features are ranked according to their weights given by MI.
Then, to select the optimal feature subset, MCCs correspond-
ing to varying top-ranking features are calculated. For the
projection algorithms, the prediction results of the feature
spaces with different dimensions mapped by AE or t-SNE are
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FIGURE 4. The values of MCC against feature subsets selected by
different feature selection methods with Adasyn or SVM-SMOTE.

evaluated to determine the optimal dimension of feature
vector. Taking SVM as the prediction algorithm, Figure 4
illustrates the relations between the MCCs and the feature
subsets selected by different feature selection methods with
Adasyn or SVM-SMOTE. From the curves in Figure 4,
the increasing number of features does not guarantee the
better prediction performances for each feature selection
method, as they may have a higher possibility of being corre-
lated or redundancy.

Table 4 provides the prediction performance of the models
built with the optimal feature set for each feature selection
method. The feature dimensions of the optimal feature sets
in Table 4 are respectively the values of the x-coordinate when
the corresponding curves in Figure 4 reach their maximums.
As shown in Figure 4, the model trained with a combination
of AE and Adasyn yields the highest MCC with the feature
dimension being 90. As given in Table 4, the model trained
with a combination of t-SNE and Adasyn yields the highest
Sn and AUC with the feature dimension being 3. According
to the results of Figure 4, the feature dimension will be set
up to 90. In the case of the comparable performance achieved
by different models, we tend to select the t-SNE + Adasyn
with 3 features to significantly reduce the computational
cost and the risk of overfitting. The 3 potentially important
features incorporate the combinatorial information of all the
features. Therefore, we should analyze the correlations of
all the features and protein citrullination sites. In this study,
we explore four types of quantitative feature descriptors,
including binary encoding (BE), position specific amino

FIGURE 5. ROC curves of different feature selection methods combined
with Adasyn or SVM-SMOTE.

acid propensity (PSAAP), pseudo amino acid composition
(PseAAC), and physicochemical properties (PP). The BE
and the PSAAP measures the amino acid preferences in dif-
ferent positions flanking the known citrullination sites; The
PseAAC incorporates the order information hidden in protein
sequences; The PP of residues is known to be important for
protein interactions as it is associated with protein folding,
interior packing, catalytic mechanism. These features may
provide some clues for uncovering the mechanisms of pro-
tein citrullinations. Furthermore, the classification boundary
of PCSs and non-PCSs in the feature space obtained by
t-SNE + Adasyn is clearly visible in Figure 6. Therefore,
the SVM, Adasyn, and t-SNE are respectively employed as
the prediction algorithm, the over-sampling method, and the
feature selection method to construct our final PCS predictor,
PCSPred_SC.

E. EFFECTIVENESS OF THE FEATURE
SELECTION METHODS
Feature selection is a crucial step for constructing a robust
prediction model. To evaluate the effectiveness of the feature
selection method, the prediction performance on the original
feature set without feature selection is compared to that on
the optimal feature subset with feature selection. As listed
in Table 3 and Table 4, the SVM + Adasyn with MI is
superior to the SVM + Adasyn without MI in terms of Acc
and MCC increasing from 0.934 and 0.850 to 0.937 and
0.858, respectively. Similar conclusions can be conducted
for SVM + Adasyn with AE or t-SNE. Except that the Acc

TABLE 4. Performance comparisons of different feature selection methods with Adasyn or SVM-SMOTE.
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FIGURE 6. The distributions of PCSs and non-PCSs in the feature space
obtained by t-SNE + Adasyn.

and MCC achieved by SVM + SVM-SMOTE with t-SNE is
lower than those achieved by SVM+ SVM-SMOTE without
t-SNE, all the models with feature selection in Table 4 outper-
forms the models without feature selection in Table 3. These
results indicate that the feature selection methods adopted in
this study are effective to remove irrelevant and redundant
features from the original feature space.

F. PERFORMANCE COMPARISONS UNDER
DIFFERENT VALIDATION METHODS
After the predictor is completely trained using the training set,
the independent testing is performed using the independent
test set. In the leave-one-out cross validation, each sequence
in the dataset is in turn singled out as the independent test
sample and the remaining samples train the predictor. The
10-fold cross validation, the leave-one-out cross validation
and the independent dataset test are respectively conducted
20 times and the corresponding performance measures are
averaged to avoid over-fitting. The results in Table 5 shows
that the prediction performance under the 10-fold cross vali-
dation, the leave-one-out cross validation and the independent
dataset test is exactly similar, indicating the robustness and
the excellent generalization ability of the proposed method.

TABLE 5. The prediction performance of PCSPred_SC under different
validation methods.

G. PERFORMANCE COMPARISONS
WITH EXISTING METHODS
To gain insights into the efficiency of the proposed
PCSPred_SC, we make comparisons with the competing
prediction methods, Q. Zhang et al.’s method [35] and

CKSAAP_CitrSite [37] by the 10-fold cross validation. For
PCSPred_SC in Table 6, the performance measures are
calculated by the prediction results of the samples in the
original dataset, and not including the prediction results of
the samples generated by the over-sampling method. That
is to say, the data used to compare the prediction per-
formance of the proposed method with other methods is
not changed. Therefore, the comparisons are relatively fair.
As listed in Table 6 where the best results are highlighted
in bold, all performance measures except Sp achieved by
PCSPred_SC is superior to those of the competing predic-
tion methods. Specifically, PCSPred_SC achieves the highest
MCC, followed by CKSAAP_CitrSite with MCC = 0.753
and Q. Zhang et al.’s method with MCC = 0.598. The
Acc yielded by PCSPred_SC is 0.937, which is respec-
tively 0.079 and 0.043 higher than Q. Zhang et al.’s
method and CKSAAP_CitrSite. The high Sps achieved by
Q. Zhang et al.’s method and CKSAAP_CitrSite with values
of 0.943 and 0.953 are notably accompanied with extremely
low Sn with values of 0.603 and 0.776, respectively. On the
contrary, PCSPred_SC achieves a pretty high Sn of 0.948.
The excellent performance of PCSPred_SC is also reflected
in the value of AUC approaching to 1. Most importantly,
PCSPred_SC just employs 3 features to yield the outstand-
ing performance, followed by Q. Zhang et al.’s method
with 44 features and CKSAAP_CitrSite with 250 features.
Overall, PCSPred_SC significantly enhances the PCS predic-
tion performance and at the same time reduces the number of
features used for this task remarkably.

There are some possible factors accounting for the com-
petitive performance of PCSPred_SC. Firstly, the feature
extraction methods can capture the characteristics of PCSs,
leading to more discriminative power; Secondly, the imbal-
anced dataset problem is solved by the over-sampling
methods; Thirdly, the feature selection methods are effec-
tive to remove irrelevant and redundant features; Lastly,
the combined method integrates the consistency of prediction
algorithms, over-sampling methods, and feature selection
methods.

Generally, overfittng occurs under the following
3 cases: (i) high-dimensional features containing noise;
(ii) overtraining; (iii) insufficient training data. To reduce the
influence of the overfitting problem, we have adopted feature
selection methods to map the high dimensional feature space
to a low dimensional feature space, while filtering out the
redundant and noisy information. In addition, the traditional
prediction algorithms are employed to implement the classifi-
cation with some default parameters to prevent overtraining.
Therefore, the insufficient training data adopted in this study
and previous studies is the potential factor that may cause
our model overfitting. Recent breakthrough of proteomic
techniques has resulted in a rapid growth of newly discov-
ered protein sequences. In the future work, expanding the
benchmark dataset for citrullination site prediction to avoid
overfitting will be an important research direction.
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TABLE 6. Performance comparisons with the existing methods by the 10-fold cross validation.

IV. CONCLUSIONS
In view of the significant roles of PCSs on numerous bio-
logical events and human diseases, a novel and powerful
sequence-based PCS prediction method named PCSPred_SC
is proposed with hybrid features integrating BE, PSAAP,
PseAAC, and PP. Under the complete feature space, the PCS
predictors are respectively constructed by various predic-
tion algorithms. To solve the imbalanced dataset problem,
several over-sampling methods are systemically explored.
For the irrelevant and redundant features in the feature space,
the feature selection methods are adopted to further enhance
prediction performance. Experimental results indicate that
the combination of SVM, Adasyn, and t-SNE attains much
more outstanding performance for PCS prediction. When
performed on the training dataset using the 10-fold cross
validation, PCSPred_SC achieves excellent performance
with a Sn of 0.948, a Sp of 0.931, a Acc of 0.937, a MCC
of 0.862 and a AUC of 0.997, which is far better than
the competing methods. Furthermore, PCSPred_SC can sig-
nificantly reduce the computational and space cost by just
employing 3 features. In the future work, a wider range of
segmented-based feature extraction methods will be inte-
grated into PCSPred_SC to further improve the performance.
Additionally, we will construct deep learning based frame-
work to solve deficiencies of the traditional hand-crafted
features.
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