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ABSTRACT In recent years, human assistant transportation systems have received much attention. Based
on a microprocessor, a bicycle robot (BR) is designed and implemented in this work. In this study, a robust
intelligent backstepping tracking control (RIBTC) system combined with an adaptive output recurrent
Takagi-Sugeno-Kang type cerebellar model articulation controller (AORTSKCMAC) and a robust controller
for BRs is implemented. The bicycle robot can maintain balance when subjected to a disturbance and still
go forward. The proposed RIBTC is proposed to control the lean angle of the BR. The BRs can stably
stand even with external disturbances. The development of the proposed controller is combined with a
backstepping technique, the adaptive output recurrent TSKCMAC and a robust control method. The adaptive
output recurrent TSKCMAC is used to mimic the ideal backstepping controller (IBC) because an accurate
mathematical model of the system is hard to obtain. In general, the optimal values of system parameters can
be calculated based on system dynamics when the systemmodel is always known. However, the exact system
dynamics are not always known. The parameters of the adaptive output recurrent TSKCMACare tuned online
in this study. The robust controller is designed to attenuate the effect of the residual approximation errors.
Moreover, the Lyapunov function is used to verify the stability and convergence of the controller. The main
contributions of this work include (1) the successful design and implementation of BR hardware and (2) the
successful realization of the proposed RIBTC control scheme to control the BR. Finally, the experimental
results demonstrate the effectiveness of the proposed control scheme for bicycle robot systems with unknown
dynamic functions.

INDEX TERMS Bicycle robot, backstepping control, TSK CMAC, Lyapunov function, real-world control.

I. INTRODUCTION
Recently, many studies on the topic of the balance control
of two-wheeled vehicles have been proposed. In particular,
the balance control of an unmanned bicycle interests many
researchers. There are manymethods used for balance control
of a riderless bicycle. In [1], the running motion of an electri-
cal bicycle was stabilized using a bicycle’s center of gravity
and steering handle angle control. The authors in [2] used a
gyroscopic balancer based on a fuzzy sliding mode controller
to control a riderless bicycle. Yang and Murakami [3] pro-
posed amethod to control the steering of electricmotorcycles.
The motorcycle could self-balance by keeping its wheels at
sway. A riderless bicycle was developed with a gyroscopic
balancer controller by combining a fuzzy sliding mode con-
troller with an adaptive fuzzy sliding mode controller [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Shen .

In [5], the authors proposed a design method for steering
control to maintain the balance of a bicycle.

High speed and accurate motion are necessary in modern
control systems. Such performance can be realized using a
mechanical transmission with rotary motors. These trans-
mission parts obviously reduce the linear speed and system
response but also generate chatter and friction. In some
applications, simplification in actuation systems is a popular
research topic. This can reduce the system cost, energy
consumption, mechanical structure design and system uncer-
tainty. A system with actuators that operate within their
degrees of freedom is called an underactuated system. Under-
actuated systems can be found in many control applications
such as biped robots, helicopters and inverted pendulums. For
some applications, underactuated systemsmay be designed to
sufficiently respond to actuator breakdowns.

Many studies have examined the system control of inverted
pendulums. The inverted pendulum is an example of an
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underactuated and highly unstable system. Recently, many
extensions of the one-dimensional inverted pendulum control
system have been proposed. The most challenging task is
to control such an inverted pendulum system when a cart is
no longer on a guide rail. Obviously, the controller design
becomes more difficult because of the physical structure.

In [6], a novel automatic motion control algorithm was
investigated for wheeled inverted pendulum control. The
developed scheme achieved dynamic balance and the desired
motion tracking. In [7], the authors proposed an approach to
compensate for external disturbances andmodel uncertainties
to improve the system performance. The authors presented
optimalmotion planning forminimizing the energy consump-
tion of a wheeled mobile robot in [8]. In [9], the authors
proposed a novel smooth time-invariant controller to achieve
desired position control and stabilization of an unstable
pendulum-like central body.

On the control view, intelligent control theories (genetic
algorithms, fuzzy controls, neural networks, or cerebel-
lar model articulation controllers. . . etc) [10]–[20] provide
a method for the design of online controllers of nonlin-
ear systems with unknown or uncertain system dynamics.
Many researchers have argued that neural networks (NNs)
are powerful building blocks for a wide class of complex
nonlinear system control strategies when model informa-
tion is absent or when a controlled plant is considered a
‘‘black box’’. However, learning is slow because all system
parameters are updated during each learning cycle. Therefore,
the appropriateness of NNs is limited for problems requir-
ing online learning. Recently, a cerebellar model articulation
controller (CMAC) was proposed. In general, simple com-
putation, fast learning, good generalization capability, and
easier hardware implementation are themajor advantages of a
CMAC. However, the main drawback of CMACs is that they
are static networks.

Recently, the backstepping controller has become a pop-
ular topic for nonlinear systems [21]–[22]. The main idea
of backstepping controller design is to recursively choose
some appropriate functions of state variables, which are used
as fictitious control inputs for lower-dimension subsystems
of the entire system. Each backstepping stage creates a new
virtual control design, which is represented by the virtual
control design of the previous design stages. The process ter-
minates the feedback design of the real control input, which
achieves the goal of original design by the final Lyapunov
function, which is formed by summing the Lyapunov func-
tions associated with each individual design stage. Therefore,
the backstepping control method can maintain robustness
with respect to uncertainty.

In this study, bicycle robot (BR) balance control based on
robust intelligent backstepping tracking control (RIBTC) is
proposed. A BR can be considered an inverted pendulum
on the bicycle lean axis. This motion is achieved using
a flywheel and a mechanical transmission with reduction
gears and a lead screw. These transmission components
markedly reduce the linear speed and dynamic response but

also generate backlash and considerable friction. Clearly, this
configuration has transmission loss. Conventional control
technologies always require a good understanding of a plant.
Undoubtedly, this system has many nonlinear components.
Therefore, the dynamic model for such a system will be
nonlinear, and the motor parameters are time-varying due
to increased temperature and motor drive changes during
operation. Obviously, BR control becomes arduous when
using traditional control techniques because its exact system
model is difficult to understand.

The RIBTC includes an adaptive output recurrent
Takagi-Sugeno-Kang cerebellar model articulation controller
(AORTCMAC) and a robust controller. The AORTCMAC
is used to mimic an ideal backstepping control, and the
robust H∞ controller is designed to attenuate the effect
of the residual approximation errors and external desired
attenuation level. The output recurrent Takagi-Sugeno-Kang
cerebellar model articulation controller is a modified version
of the traditional CMAC network such that a small number
of receptive fields are used to capture the system dynamics,
convert the static CMAC into a dynamic controller and add
the Takagi-Sugeno-Kang fuzzy model, which has good capa-
bility for nonlinear systems. Combining the advantages of the
above, AORTCMAC can aptly mimic an ideal backstepping
controller.

In this study, RIBTC is used to control BRs. To obtain
the optimal values of the system parameters, all parameter
adaptation laws of the AORTCMAC are tuned online based
on the Lyapunov stability theorem. The Taylor lineariza-
tion technique and H∞ control technology are used; hence,
the stability of the proposed controller can be guaranteed.
In addition, the learning rate of the adaptation parameters
is also determined by the Lyapunov function to ensure the
convergence of tracking errors. The major contributions of
this work include (1) the successful design and implemen-
tation of BR hardware and (2) the successful realization of
the proposed RIBTC control scheme to control BRs. Finally,
the effectiveness of the proposed control scheme for
bicycle robot systems is demonstrated by several experimen-
tal results.

II. THE BICYCLE ROBOT PLATFORM HARDWARE
STRUCTURE
This section introduces the hardware structure of a BR. Fig. 1
shows the degrees of freedom of the BR. The motions of
the BR in this study maintain the balance at a fixed point.
Therefore, the BR needs tomaintain balance along the Z-axis.
In this case, it has one degree of freedom. There are two state-
space variables used to fully describe the dynamics of the BR.
The dynamics of the BR are derived by assessing the BR as
a reaction-wheel inverted pendulum. Obviously, the BR is a
complex nonlinear system. For simplification, the flywheel
and robot body are assumed to be a single body in this study.

A BR can be considered a reaction-wheel inverted pen-
dulum, which is a nonlinear unstable system. The BR is
divided into two subsystems: mechanism and hardware.
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FIGURE 1. The degrees of freedom of BRs.

The mechanism of BR contains a frame, a motor and a fly-
wheel. A child’s bicycle is used as the skeleton for loading the
whole system to conduct experiments. A 48 V planetary gear
motor provides torque through the flywheel to maintain the
balance of the BR. The hardware of the BR includes inertial
measurement units (IMUs), a micro control unit and motor
drive module. The main IMUs in this study are inclinometers
and gyroscopes. The inclinometer measures the lean angle,
and the gyroscope measures the change rate of the lean angle.
A micro control unit (Arduino mega 2560) is used to acquire
system states, realize the control algorithm and send out
the control signals. To achieve the motor forward-reverse
transfer, an H-bridge circuit is designed to drive the motor.
To control the speed of the motor, pulse width modulation
(PWM) techniques are used to control the motor. A 0–48 V
PWM square wave signal at 490 Hz is sent to drive the motor.
With these outlined features, the BR can maintain balance.
Generally, the Arduino mega 2560 unit is suitable for control
algorithm implementation and system control. The 48 V DC
motor for the flywheel is placed on the BR system. Thismotor
is sufficient for system control. However, it is uncontrollable
if a large extra disturbance is exerted because the extra dis-
turbance will exceed the ability to maintain system stability.
In this case, the BR will be uncontrollable. In this study,
the proposed BR can afford a maximum lean angle of under
5 degrees.

The Lagrange method is used to derive the dynamic model
of the BR. Fig. 2 shows the variable definition of the dynamic
model of the BR. Here, two variables require control to
achieve a BR balance. One is the lean angle of the BR (θ), and
the other is the change rate of the lean angle of the BR (θ̇).

The parameters used for BR are as follows.
MF : Mass of the flywheel
MG: Mass of the body
IF : Moment of inertia of flywheel
IG: Moment of inertia of the body about the center of the

robot
lF : Distance between the center of the flywheel and ground
lG: Distance between the center of the robot body and

ground
g: Acceleration of gravity

FIGURE 2. Definition variables of the dynamic model.

To obtain the dynamic equation from the Lagrange equa-
tion, the potential energy V and kinetic energy T are needed.
V is the energy of that an object in a force field has due
to its position. T is in the energy an object has due to its
motion. It includes translational kinetic energy and rotational
kinetic energy. The potential energy can be represented as
equation (1). The total kinetic energy is obtained as the sum
of translational kinetic energy and rotational kinetic energy
as equation (2).

V = (mGlG + mF lF )g cos θ (1)

T = (mGl2G + mF l
2
F )θ̇

2. (2)

Therefore, the Lagrange equation L can be represented as

L = T − V

= (mGl2G + mF l
2
F )× θ̇

2
− (mGlG + mF lF )g cos θ. (3)

Substituting L into the Lagrange dynamic equation,
the dynamic equations of the system are obtained as equa-
tion (4).

d
dt
(
∂L

∂θ̇
)−

∂L
∂θ
= τG. (4)

where τG denotes the reaction torque caused by the flywheel.
From equations (1), (2), (3) and (4), the dynamic equation is
represented as equation (5).

θ̈ =
(mGlG + mF lF )g sin θ

2(mGl2G + mF l
2
F )

+
1

2(mGl2G + 2mF l2F )
τG (5)

After linearizing the system model of the BR in approxi-
mately θ ≈ 0

◦

and θ̇ ≈ 0
◦

/ sec, the dynamic equation of the
system body can be expressed as

θ̈ =
(mGlG + mF lF )g

2(mGl2G + mF l
2
F )
θ −

ktorque
2(mGl2G + 2mF l2F )

τF (6)

where τF is the torque generated by the flywheel. The
relationship between τG and τF can be expressed as τG =
k(torque)τF . It can be learned from the actual test that they
move in opposite directions, and the value of τG is approxi-
mately 0.8 times that of τF .
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III. CONTROLLER DESIGN
Let us consider BRs where the dynamic equation is described
as follows:

ẋ1(t) = x2(t) (7)

ẋ2(t) = f (x, t)+ g(x, t)u(t)+ d(t) (8)

where X = [x1(t), x2(t)]T = [x, ẋ]T is the state vector
of the system that is available through measurement. f (x, t)
and g(x, t) represent the nonlinear uncertain functions that
are assumed to be bounded, u (t) ∈ R is the control input,
and d (t) ∈ Rn denotes an unknown but bounded external
disturbance. (7) and (8) can be reformulated as follows:

ẋ1(t) = x2(t) (9)

ẋ2(t) = f0(x, t)+1f (x, t)+ [g0 +1g(x, t)]u(t)+ d(x, t)

= f0(x, t)+ g0u(t)+ l(t) (10)

where f0(x, t) and g0 denote the nominal parts, 1f (x, t) and
1g(x, t) are the unknown uncertainties of f (x, t) and g(x, t),
respectively, and l(t) represents lumped uncertainty, which
is defined as l(t) = 1f (x, t) + 1g(x, t)u(t) + d(x, t). It is
essential that the constant g0 6= 0 for all x and t . It is supposed
that 0 < g0 <∞ for all x and t .

The control objective is to design a suitable control law
for (8) so that X can track a reference trajectory vector Xd =
[xd1(t), xd2(t)]T = [xd , ẋd ]T . If f0(x, t), g0 and l(x, t) are
clearly known, an ideal backstepping controller (IBC) can be
designed.

The system model of BRs cannot always be obtained pre-
cisely. To overcome this problem, a robust intelligent back-
stepping tracking control (RIBTC) system has been proposed
for the systems.

A. ARTICULATION OF THE OUTPUT RECURRENT
TAKAGI-SUGENO-KANG CEREBELLAR MODEL
ARTICULATION CONTROLLER
A dynamic output recurrent Takagi-Sugeno-Kang cerebellar
model articulation controller (ORTSKCMAC) neural net-
work is proposed.

1) Input space X : X is a continuous n-dimensional input
space. For a given X = [x1, x2, · · · , xn]T ∈ <n, the state
variable of each input xi, i = 1, 2, · · · , n, must be divided
into discrete regions, which are called elements. The number
of elements is defined as nE and is termed as a resolution.
2) Associative memory space A: Different elements can

form a block. The number of blocks nB is usually equal to
or greater than two in a CMAC. A represents an associa-
tive memory space in which nA (nA = n× nB) constituents.
In this space, the Gaussian function is accepted as the basis
function here, which can be expressed as

ϕik = exp

[
−(xri − mik )2

v2ik

]
, for k = 1, 2, · · · nB (11)

where ϕik is the k-th block for the i-th input xri with mean
mik and variance vik . In addition, the input of this block can

be represented as

xri(N ) = xi(N )+ r iy (N − 1) (12)

where ri is the recurrent weight of the recurrent unit.
y (N − 1) denotes the past information of the network. It
is clear that the input of this block contains the memory
terms, which store the past information of the network. It cap-
tures system dynamics and converts the static CMAC into
a dynamic controller. It will achieve good performance for
nonlinear unknown systems.

3) Receptive-field space R: The areas formed by blocks are
called receptive fields. The number of receptive fields is nR.
Its multidimensional basis function is as follows:

bk (x,mk , vk ) =
n∏
i=1

ϕik = exp

[
−

(
n∑
i=1

(xri − mik )2

v2ik

)]
for k = 1, 2, · · ·, nB (13)

where bk is a receptive field formed by the k th basis func-
tion. The multidimensional receptive-field function can be
expressed in vector type as follows:
ψ(x,m, v, r) = [b1, · · · , bk , · · · , bnR ]

T where m =

[mT1 , · · · ,m
T
k , · · · ,m

T
nR ]

T
∈ <

nnR , v = [vT1 , · · · , v
T
k , · · · ,

vTnR ]
T
∈ <

nnR and r = [rT1 , · · · , r
T
k , · · · , r

T
nR ]

T
∈ <

nnR .
4) TSK space T : This space is the linear combination

function in the consequent part of the fuzzy system. Each
location of the receptive field R can be converted to a lin-
guistic variable with nR components in the TSK space. The
basic configuration of the TSK space includes a fuzzy rule
base that is composed of a collection of fuzzy IF-THEN rules
in the following.

Ruleλ : If xr1 is Fλ1 , · · · , xrn is F
λ
i , then

φλ = q0λ + q1λxr1 + · · · + qnλxrn
= [1,XT ]qλ
= q0λz0 + q1λz1 + · · · + qnλzn
= ZT qλ (14)

where Ruleλ denotes the λth rule and λ is the number of rules.
Fλi are the fuzzy sets, i = 1, 2, · · · , n, and qλ is a vector of the
adjustable factors of the consequence part of the fuzzy rules.
Furthermore, φλ is the linguistic variable. It can be expressed
as φ = [φ1, φ2, · · · , φnR ], Z = [1,XT ]T .

5) Output space Y : The output of ORTSKCMAC is the
algebraic sum of the network linkage, parameter update, and
active weighting in weight memory space in each layer, and
it is expressed as

φTψ = qT0 = uORTSKCMAC = y (15)

where q = [qT1 , qT2 , · · · , q
T
nR ]

T , 0 = [b1ZT , b2ZT , · · · ,
bkZT ]T , and uORTSKCMAC is the output of ORTSKCMAC.

B. ROBUST INTELLIGENT BACKSTEPPING TRACKING
CONTROL
The design of the RIBTC system for a BR uncertain nonlinear
system is described as follows.
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The system tracking error is defined as

e1(t) = xd1(t)− x1(t). (16)

Then the derivative of tracking error can be represented as

ė1(t) = ẋd1(t)− ẋ1(t) = xd2(t)− x2(t). (17)

x2(t) can be viewed as a virtual control in the above equa-
tion. The following stabilizing function is defined:

α(t) = k1e1(t)+ xd2(t) (18)

where k1is a positive constant. The first Lyapunov function is
chosen as

V1(t) =
1
2
e21(t) (19)

Define

e2(t) = α(t)− ẋ1(t)
= k1e1(t)+ xd2(t)− ẋ1(t)
= k1e1(t)+ ė1(t)

(20)

The derivative of V1(t) is

V̇1(t) = e1(t)ė1(t) = e1(t)[e2(t)− k1e1(t)]

= −k1e21(t)+ e1(t)e2(t) (21)

Therefore, if e2(t) = 0, V̇1(t) = −k1e21(t) ≤ 0 will be
achieved.

The derivative of e2(t) is expressed as

ė2(t) = α̇(t)− ẍ1(t)

= α̇(t)− [f0(x, t)+ g0u+ l(t)] (22)

Another Lyapunov function is chosen as

V2(t) = V1(t)+
1
2
e22(t) (23)

Then, the derivative of V2 (t) is

V̇2(t) = V̇1(t)+ e2(t)ė2(t)

= −k1e21(t)+ e1(t)e2(t)+ e2(t)ė2(t)

= −k1e21(t)+ e2(t) [e1(t)+ ė2(t)]

= −k1e21(t)+ e2(t)

× [e1(t)+ α̇(t)− f0(x, t)− g0u(t)− l(t)] (24)

If the dynamic system is well known, the ideal backstep-
ping control law can be obtained as

u∗IBC =
1
g0

[α̇(t)− f0(x, t)− l(t)+ e1(t)+ k2e2(t)] (25)

where k2 is a positive constant. Substituting (25) into (24),
the following equation can be obtained:

V̇2(t) = −k1e21(t)− k2e
2
2(t) ≤ 0 (26)

However, the dynamic model cannot be obtained in detail.
Therefore, the AORTSKCMAC is utilized to estimate IBC in
this study.

Theorem 1: The adaptive laws of AORTSKCMAC are
chosen as

˙̂q = ηqe2(t)0̂T (27)
˙̂m = ηme2(t)Cq̂T (28)
˙̂v = ηve2(t)Hq̂T (29)
˙̂r = ηre2(t)Rq̂T (30)

where ηq, ηm, ηv and ηr are positive constants and

C =
[
∂b1
∂m
· · · · · ·

∂bnR
∂m

]∣∣∣∣
m=m̂
∈ RnnR×nR ,

H =
[
∂b1
∂v
· · · · · ·

∂bnR
∂v

]∣∣∣∣
v=v̂
∈ RnnR×nR ,

R =
[
∂b1
∂r
· · · · · ·

∂bnR
∂r

]∣∣∣∣
r=r̂
∈ RnnR×nR .

The robust H∞ controller is given as

uR =
(δ2 + 1)
2δ2

e2(t) (31)

where δ is a positive constant. Then, the desired robust track-
ing performance can be achieved for a prescribed attenuation
level δ.

Proof: Since the AORTSKCMAC is utilized to estimate
IBC, uAORTSKCMAC can be written as

uAORTSKCMAC (x, q,m, v, r) = y = qT0(x,m, v, r) (32)

Assume there is an optimal u∗AORTSKCMAC to approach the
IBC such that

u∗IBC = uAORTSKCMAC (x, q∗, m∗, v∗, r∗)+ ε = q∗T0∗ + ε

(33)

where ε is a minimum estimation error and q∗,m∗, v∗, 0∗ and
r∗ are the optimal values of q, m, v, 0, and r . Nevertheless,
the optimal u∗AORTSKCMAC cannot be obtained, and the online
estimation of ûAORTSKCMAC is used to estimate. u∗IBC . The
control law (28) can be rewritten as follows:

u = uAORTSKCMAC (x, q̂, m̂, v̂, r̂)+ uR = q̂T 0̂ + uR (34)

where q̂, m̂, v̂, 0̂ and r̂ are the estimates of the
optimal parameters q∗T ,m∗, v∗, 0∗ and r∗. Subtracting (34)
from (33), an approximation error ũ is defined as

ũ = u∗IBC − u

= q∗T0∗ + ε − q̂T 0̂ − uR
= q̃T0∗ + q̂T 0̃ + ε − uR (35)

where q̃ = q∗− q̂ and 0̃ = 0∗− 0̂. Furthermore, employing
the linearization technique transforms the multidimensional
receptive-field basis function into the partially linear form.
The expansion of 0̃ in the Taylor series can be obtained as

0̃ =



b̃1
...

b̃k
...

b̃nR

 =


( ∂b1
∂m )T
...

( ∂bk
∂m )T
...

( ∂bnR
∂m )T



∣∣∣∣∣∣∣∣∣∣∣∣
m=m̂
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· (m∗ − m̂)+



( ∂b1
∂v )

T

...

( ∂bk
∂v )

T

...

( ∂bnR
∂v )T



∣∣∣∣∣∣∣∣∣∣∣∣
v=v̂

· (v∗ − v̂)

+



( ∂b1
∂r )

T

...

( ∂bk
∂r )

T

...

( ∂bnR
∂r )T



∣∣∣∣∣∣∣∣∣∣∣∣
r=r̂

· (r∗ − r̂)+ Ot

= CT m̃+ HT ṽ+ RT r̃ + Ot (36)

where b̃k = b∗k − b̂k ; b
∗
k and b̂k are the optimal and estimated

parameters of bk . m̃ = m∗ − m̂ ; ṽ = v∗ − ṽ ; Ot ∈ RnR

is a vector of higher-order terms. Rewriting (36), it can be
obtained that

0∗ = 0̂ + CT m̃+ HT ṽ+ PT r̃ + Ot (37)

Substituting (36) and (37) into (35) yields

ũ = q̃T (0̂ + CT m̃+ HT ṽ+ RT r̃ + Ot )

+ q̂T (CT m̃+ HT ṽ+ RT r̃ + Ot )+ ε − uR
= q̃T 0̂ + q̂T (CT m̃+ HT ṽ+ RT r̃)+ ξ − uR (38)

where ξ = q̃T
[
CT m̃+ HT ṽ+ RT r̃

]
+ q∗TOt + ε.

To develop the robust H∞ controller, the derivative of
e2 (t) can be expressed as

ė2(t) = g0(u∗IBC − u)− e1(t)− k2e2(t)

= g0ũ− e1(t)− k2e2(t)

= g0
[
q̃T 0̂ + q̂T (CT m̃+ HT ṽ+ RT r̃)

]
+ ξ − uR − e1(t)− k2e2(t) (39)

The Lyapunov function is defined as

V3(t) = V2(t)+
g0
2ηq

q̃q̃T +
g0
2ηm

m̃T m̃+
g0
2ηv

ṽT ṽ+
g0
2ηr

r̃T r̃

(40)

where η1, η2, η3, and η4 are positive constants. Taking the
derivative of the Lyapunov function (40) and using (39) it is
concluded that

V̇3(t) = V̇2(t)+
g0
ηq
q̃ ˙̃qT +

g0
ηm

˙̃mT m̃+
g0
ηv

˙̃vT ṽ+
g0
ηr

˙̃rT r̃

= −k1e21(t)+ e2(t) [e1(t)+ ė2(t)]−
g0
ηq
q̃ ˙̂qT

−
g0
ηm

˙̂mT m̃−
g0
ηv

˙̂vT ṽ−
g0
ηr

˙̂rT r̃

= −k1e21(t)− k2e
2
2(t) + e2(t)g0

×

{
q̃T 0̂ +

[
q̂T (CT m̃+ HT ṽ+ RT r̃

]
+ ξ (t)− uR

}
−
g0
ηq
q̃ ˙̂qT −

g0
ηm

˙̂mm̃−
1
ηv

˙̂vṽ−
1
ηr

˙̂rr̃

= −k1e21(t)− k2e
2
2(t)+

[
q̃T (e2(t)0̂ −

1
ηq

˙̂qT )g0

]
+

[
(e2(t)q̂TCT

−
1
ηm

˙̂mT )m̃g0

]
+

[
(e2(t)q̂THT

−
1
ηv

˙̂vT )ṽg0

]
+

[
(e2(t)q̂TRT −

1
ηr

˙̂rT )r̃g0

]
+ e2(t)g0(ξ (t)− uR)

(41)

If the adaptive laws of the AORTSKCMAC are chosen
as (27)-(30) and (31), (41) can be rewritten as

V̇3 = −k1e21 − k2e
2
2(t)+ g0e2(t)(ξ −

δ2 + 1
δ2

e2(t))

= −k1e21(t)− k2e
2
2(t)−

1
2δ2

g0e22(t)

−
1
2
g0 [e2(t)− ξ (t)]2 +

1
2
g0ξ (t)2

≤ −
1
2δ2

g0e22(t)+
1
2
g0ξ (t)2 (42)

Assume ξ ∈ L2 [0,T ] , ∀T ∈ [0,∞), Integrating the
above equation from t = 0 to t = T , yields

V3(T )− V3(0) ≤ −
1
2δ2

g0

∫ T

0
e22(t)dt +

1
2
g0

∫ T

0
ξ2(t)dt (43)

Since V3(T ) ≥ 0, the above inequality implies the follow-
ing inequality

1
2δ2

g0

∫ T

0
e22(t)dt ≤ V3(0)+

1
2
g0

∫ T

0
ξ2(t)dt (44)

Using (40), the above inequality is equivalent to the fol-
lowing

1
δ2

∫ T

0
e22(t)dt ≤

e21(0)

g0
+
e22(0)

g0
+

1
η1
q̃(0)q̃T (0)

+
1
η2
m̃T (0)m̃(0)+

1
η3
ṽT (0)ṽ(0)

+
1
η4
r̃T (0)r̃(0)+

∫ T

0
ξ2(t)dt (45)

If the system starts with initial condition e1(0) = 0,
e2(0) = 0, w̃(0) = 0, m̃(0) = 0, ṽ(0) = 0, r̃(0) = 0
the H∞ tracking performance in (41) can be rewritten as

sup
ξ∈L2[0,T ]

||e2||
||ξ ||

≤ δ (46)

where ||e2||2 =
∫ T
0 e22(t)dt and ||ξ ||

2
=
∫ T
0 ξ

2(t)dt . The
attenuation constant δ can be specified by the designer to
achieve the desired attenuation ratio between ||e2|| and ||ξ ||.
If δ = ∞, this is the case of minimum error tracking control
without disturbance attenuation [20]. Then, the desired robust
tracking performance in (46) can be achieved for a prescribed
attenuation level δ.

Q.E.D.

Figure 3 shows the structure of the proposed control
system.
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FIGURE 3. Bloch diagram of RIBTC.

C. CONVERGENCE ANALYSIS
The learning laws of equations (27) to (30) are arbitrary
positive constants. Obviously, the learning laws of (27) to (30)
need to call for a proper choice of the constants ηq, ηm, ηv
and ηr . For a small value, the adaptive speed is slow. On the
other hand, the performances of the intelligent backstep-
ping system may not be good if the constants are too large.
Definitely, it is difficult to choose suitable learning rates
for the four adaptive laws in real-time control by the user.
To choose those constants effectively, the variable learning
constants, which guarantee the convergence of the output
error, are given in the following.
Theorem 2: Let ∂y

/
∂s = Qs(N ) for s = q,m, v and r ,

the convergence is guaranteed when ηs is chosen as

0 < ηs <
2

||Qs(N )||2[δp
/
e1(N )]2

(47)

where ‖·‖ is Euclidean norm. ∂y
∂q = Qq(N ), ∂y

∂m = Qm(N ),
∂y
∂v = Qv(N ), ∂y

∂r = Qr (N ). In this study, the learning rates
can be obtained as

ηs =
1

||Qs(N )||2[δp
/
e1(N )]2

. (48)

Proof:
As Qs(N ) = ∂y

∂s for s = q,m, v and r , this reveals that

Qq(N ) =
∂y
∂q
=

[
∂y
∂qj1

, · · · ,
∂y
∂qjk

, · · · ,
∂y
∂qjnR

]T
(49)

Qm(N ) =
∂y
∂m
=

[
∂y
∂m11

, · · · ,
∂y
∂mik

, · · · ,
∂y

∂mnnR

]T
(50)

Qv(N ) =
∂y
∂v
=

[
∂y
∂v11

, · · · ,
∂y
∂vik

, · · · ,
∂y
∂vnnR

]T
(51)

Qr (N ) =
∂y
∂r
=

[
∂y
∂r1

, · · · ,
∂y
∂ri
, · · · ,

∂y
∂rn

]T
. (52)

Here, the Lyapunov function is chosen as

V (N ) =
1
2
e21 (N ) (53)

FIGURE 4. The BR experiment system. (a) Front view. (b) Side view.

The change of the Lyapunov function is obtained as

1V (N ) = V (N + 1)− V (N ) =
1
2

[
e21 (N + 1)− e21 (N )

]
(54)

The error difference e1(N +1) can be expressed as follows

e1 (N + 1) = e1 (N )+1e1 (N ) = e1 (N )+
[
∂e1 (N )
∂s

]
1s

(55)

where it is obtained that

∂e1
∂s
=
∂e1
∂x

∂x
∂y
∂y
∂s
= −

∂x
∂y
Qs (N ) (56)

The error term to be propagated is given by [23]

σp = −
∂V
∂y
= −

∂V
∂e1

∂e1
∂x

∂x
∂y
= e1

∂x
∂y

(57)

Thus,

e1 (N + 1) = e1 (N )−
[
σp

e1(N )
Qs (N )

]T
ηsσpQs (N )

= e1 (N )
[
1− ηs(

σp

e1(N )
)2||Qs (N ) ||2

]
(58)
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FIGURE 5. The system simulation response of the BR standing upright
control with nonzero initial conditions: (a) The lean angle and the angular
velocity of the BR. (b) The control effort of the BR.

From (54) and (58), 1V (N ) can be represented as

1V (N ) =
1
2
ηsσ

2
p ‖ Qs (N ) ‖

2
[
ηs(

σp

e1(N )
)2 ‖ Qs (N ) ‖2−2

]
(59)

If ηs is chosen as 0 < ηs <
2

||Qs(N )||2[σp
/
e1(N )]2

,1V (N )
in (59) is less than 0. Therefore, the Lyapunov stability of
V > 0 and 1V < 0 is guaranteed. Thus, the tracking error
e1 (N ) will converge to zero as t → ∞. From the above
derivation, V > 0 and 1V < 0, when t → ∞, the stability
of the Lyapunov function can be guaranteed.

Q.E.D.

IV. SEVERAL SYSTEM RESPONSES
The BR is controlled by using the RIBTC in this section.
Photographs of the BR experimental system are shown
in Fig. 4. Here, the reference signals xd and ẋd are all zero.
The parameters of the BR are given as follows: the

total weight of the BR is approximately 19.7 kg (MG is
approximately 17.5 kg and MF is approximately 2.2 kg),
lFO = 0.42m, and lGO = 0.2m.

FIGURE 6. The system simulation response of the BR under the Case 2
situation: (a) The lean angle and the angular velocity of the BR. (b) The
control effort of the BR.

A. SIMULATION RESULTS
Here, the proposed AORTCMAC is characterized by ρ = 4,
nE = 5, and nB = nR = 2 × 4. The initial conditions of the
AORCMAC control system parameters are chosen as k1 = 5,
mi1 = −0.21, mi2 = −0.15, mi3 = −0.09, mi4 = −0.03,
mi5 = 0.03, mi6 = 0.09, mi7 = 0.15, mi8 = 0.21 and
vik = 0.5, with rik = 0.005 for all i and k . Moreover,
q11 = −10, q21 = −7.5, q31 = −5, q41 = −2.5, q51 = 2.5,
q61 = 5, q71 = 7.5, q71 = 10 and qh2 = 5, with qh2 = 5
for h = 1, · · · , 8. The adaptive laws of RIBTC are chosen
as Eqs. (27)-(30). The attenuation level δ = 0.5. Moreover,
according to Theorem 2, the proposed variable learning-rates
are selected.

1) CASE 1: BALANCE CONTROL WITH NONZERO INITIAL
CONDITIONS
In this case, a standing upright balance control is tested, and
its target lean angle of the BR is 0 degrees. The control
system initial parameters shown above are considered. The
system performance is shown in Fig. 5. The initial value of
the system lean angle is given as π/10. In Fig. 5(a), the lean
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FIGURE 7. The system simulation response of the BR under the Case 3
situation: (a) The lean angle and the angular velocity of the BR. (b) The
control effort of the BR.

angle of the BR converges to 0 degrees at approximately
1 second. Moreover, the angular velocity of the BR also
converges at approximately 1 second. The control effort of
the BR is shown in Fig. 5(b). Clearly, the vehicle can stand
upright stably.

2) CASE 2: BALANCE CONTROL WITH DIFFERENT INITIAL
PARAMETERS
In this case, balance control with nonzero initial conditions is
performed again. However, the means of the antecedent part
of the Gaussian membership functions are set to other values.
For different parameter initial conditions testing, the initial
conditions of the AORCMAC control system parameters are
given as mi1 = −0.63,mi2 = −0.45, mi3 = −0.27, mi4 =
−0.09, mi5 = 0.09, mi6 = 0.27, mi7 = 0.45 and mi8 = 0.63.
The system performance is shown in Fig. 6.

Comparing Fig. 5(a) with Fig. 6(a), the difference is small.
In this case, the proposed controller can deal successfully
with the effect of the initial parameter setting. Fig. 6(b) shows
the control effort of the BR.

FIGURE 8. The system performance of the BR balance control at a fixed
point. (a) The lean angle of the BR. (b) The angular velocity of the BR.

3) CASE 3: THE EFFECT OF BALANCE CONTROL WITH
PARAMETER UNCERTAINTIES ON THE DYNAMIC RESPONSE
In this case, balance control is performed again. However, at
5 seconds, the angle error of the BR is given as 0.1. Moreover,
at 10 seconds, the BR system input is suddenly 300. The
system response is shown in Fig. 7. The largest differences
are shown at 5 seconds and 10 seconds in Fig. 7(a). However,
the angle trajectory finally converges to the intended target
position. Obviously, in this case, the proposed controller can
deal successfully with the effect of parameter uncertainties.
Fig. 7(b) shows the control effort of the BR.

B. EXPERIMENTAL RESULTS
The proposed AORTCMAC in experimental testing is also
characterized by ρ = 4, nE = 5, and nB = nR = 2× 4. The
initial conditions of the AORCMAC control system parame-
ters are chosen as k1 = 0.8, r1 = 0.1, r2 = 0.1, mi1 = −3,
mi2 = −2, mi3 = −1, mi4 = −0.5, mi5 = 0.5, mi6 = 1,
mi7 = 2, mi8 = 3 and vik = 1.9 for all i and k . Moreover,
q11 = −1.5, q21 = −1.125, q31 = −0.75, q41 = −0.375,
q51 = 0.375, q61 = 0.75, q71 = 1.125, q71 = 1.5 and
qh2 = 0.15, with qh2 = 0.15 for h = 1, · · · , 8. The adaptive
laws of RIBTC are chosen as Eqs. (27)-(30). The attenuation
level δ = 1. The control interval is set to 1.5 ms. Moreover,
according to Theorem 2, the proposed variable learning rates
are selected.

Generally, the Arduino mega 2560 unit is suitable for con-
trol algorithm implementation and system control. A 48VDC
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FIGURE 9. The system performance of the BR balance control for FLC.
(a) The lean angle of the BR. (b) The angular velocity of the BR.

FIGURE 10. The system performance of the BR balance control for PID.
(a) The lean angle of the BR. (b) The angular velocity of the BR.

motor for the flywheel is also sufficient for system control.
However, it is uncontrollable if a large extra disturbance is

FIGURE 11. The system performance of the BR balance control for ENN.
(a) The lean angle of the BR. (b) The angular velocity of the BR.

FIGURE 12. The system performance of the BR balance control for TS
fuzzy control. (a) The lean angle of the BR. (b) The angular velocity of
the BR.

exerted. In this subsection, the maximum lean angle of the
BR is limited to less than 5 degrees.
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FIGURE 13. The system performance of the BR balance control with
lateral external disturbance. (a) The lean angle of the BR. (b) The angular
velocity of the BR.

1) BALANCE CONTROL EXPERIMENT
In this case, the BR starts at approximately 1.5 degrees on
indoor flat ground. After 20 seconds, the experimental test
stopped. The BR is required to stay at the origin point. Figure
8 shows the experimental results. The lean angle is shown
in Fig. 8(a). Figure 8(b) shows the angular velocity of the
BR. Obviously, the lean angle approaches zero degrees at
approximately 2 seconds. Then, the BR stands stably.

For comparison, the classic PID, the fuzzy logic con-
trol (FLC), the Elman neural network (ENN) [23], and the
Takagi–Sugeno (TS) fuzzy control schemes [24] are used
to control the BR. In the Mamdani-like fuzzy controller,
the Gaussian function is used as the membership function of
the antecedent part. The consequent part is a singleton. The
chosen parameters of the classic PID controller are: kp = 0.2,
ki = 0.1 and kd = 0.2. The parameters of the AFSMC
method are: γf = 0.3, γg = 0.2, γk = 0.001 c1 = 10, gmax =

1.46, gmin = 0.74, and F = 16. Moreover, the normalization
factor of the fuzzy control term is Kafs = 5.
In this case, the BR starts at approximately 1.5 degrees

on indoor flat ground. After 20 seconds, the experimental
test stopped. The BR is required to stay at the origin point.
Figure 8 shows the experimental results. The lean angle is
shown in Fig. 8(a). Figure 8(b) shows the angular veloc-
ity of the BR. Obviously, the lean angle approaches zero
degrees at approximately 2 seconds. Then, the BR stands
stably.

FIGURE 14. The system performance of the BR moving balance control.
(a) The lean angle of the BR. (b) The angular velocity of the BR. (c) BR
position.

For recording the respective control performances, the
root-mean-square-error (RMSE) [21] for the angle tracking
errors is defined as:

RMSE =

√√√√ 1
N

N∑
i=1

e1(i)2 (60)

where N = 4000 is sampling times for the angle tracking
errors. The unit of RMSE is degrees. The experimental per-
formance comparisons of the classic PID, the fuzzy control
method, the ENN, and the TS fuzzy control scheme are
summarized in Table 1.

According to the RMSE measures in Table 1, the proposed
control scheme has the minimum RMSE.

Based on the above experimental results and Table 1,
the RIBTC control system can achieve good control
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TABLE 1. Performance comparisons.

performance for the BR compared with the other methods.
The proposed controller is suitable for BR real-time control.

2) LATERAL EXTERNAL DISTURBANCE EXPERIMENT
In this test, the BR starts at approximately 0 degrees on
indoor flat ground. When the BR tends to stabilize, the exter-
nal disturbance is given at approximately 11 seconds. The
control process lasts for 20 seconds. Figure 13 shows the
experimental performance. The lean angle of the BR is shown
in Fig. 13(a). Figure 13(b) shows the angular velocity of
the BR. It is obvious that the BR leans to 0.5 degrees
when an external disturbance is exerted. Then, the BR tends
to -0.5 degrees immediately. At approximately 13 seconds,
the BR returns to stable status. Obviously, the BR stabilizes
quickly.

3) MOVING BALANCE EXPERIMENT
The BR starts at approximately 0.5 degrees and goes to
100 cm before the start point on indoor flat ground. The
BR reaches the target position at approximately 6 seconds,
and then the BR stays in the target position stably until
20 seconds. Figure 14 shows the system performance of
the BR moving forward control experiment. In Fig. 14(a),
the lean angle of the BR has a large variation when the BR
moves forward. After 6 seconds, the lean angle of the BR is
maintained at approximately 0 degrees.

Obviously, good control performance is achieved by the
proposed controller shown in the above experimental results.
This means that the RIBTC is suitable for real-time BR con-
trol. Figure 15 shows a sequence of experimental photographs
for the external disturbance test.

FIGURE 15. The sequence of experiments.

V. CONCLUSION
In this study, a BR real-world control system has been suc-
cessfully implemented. The proposed intelligent controller is
designed to maintain the bicycle balance. When the BR is
hit by an external disturbance, the controller can still prevent
the system from falling down. The main contributions of this
work include (1) the successful design and implementation
of a BR hardware, and (2) the successful realization of the
proposed RIBTC control scheme to control the BR. The
experimental results verify that the proposed control schemes
are effective for BR real-world control.
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