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ABSTRACT The cooperative control technology of robot formation can sense all kinds of external envi-
ronment in real time. It is a multi-functional control and management system including visual recognition,
task management execution and distribution, behavior decision-making and so on. It can easily adapt to
all kinds of harsh environment. In order to meet the efficient response requirements of robot formation
control, a real-time transmission system of robot cooperative motion control is built based on the Internet
of things platform, which collects and feeds back the trajectory of multiple robots. Through particle swarm
optimization deep learning algorithm, more accurate identification, prediction and guidance of the robot’s
next action. Finally, the simulation of robot formation motion is established by MATLAB software, which
verifies the feasibility of particle swarm optimization deep learning neural network algorithm under the
Internet of things technology. Compared with the traditional robot formation control method, the optimized
control method has faster convergence speed, smaller error and more accurate position, which provides
method guidance for the accuracy and efficiency of robot formation control technology.

INDEX TERMS Robot, formation cooperative control, Internet of things, particle swarm optimization, deep
learning.

I. INTRODUCTION
Originally robots were mainly used to replace humans to
perform tasks in dangerous, complex or completely unknown
working environments. A complete robot has a complex
system structure, and can independently complete tasks by
responding to changing environments in real time. In the face
of relatively complex tasks and environments, a single robot
cannot meet the work needs only through its own behavior,
and the collaborative work of multiple robots has become
the focus of researchers in various fields [1]. The research
on robot formation began in the 1970s. With the contin-
uous development of robotics, communication technology
and automatic control technology, robot formation collabo-
ration technology has gradually been applied in the military
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field, traffic control, and space exploration, including border
patrols, reconnaissance and rescue, Resource detection, etc.

Aiming at the research of robot formation control method,
the T. Fukuda team of Nagoya University in Japan, under
the influence of multiple cells, developed a distributed sys-
tem. A single robot has the ability to communicate and
move autonomously. It will perform dynamic reconfiguration
when facing complex tasks and environments. Construct [2].
In 1985, researchers at Stanford University proposed the
virtual potential field method for the first time, using the
force of gravity and combined forces to make multiple robots
reach their targets according to a prescribed route [3]. With
the development of navigation and automatic recognition
technology, as well as research based on behavioral meth-
ods, multi-robot cooperative control has begun to be applied
in complex environments [4]. At present, the methods of
robot formation control are mainly artificial potential field
method, virtual structure method, behavior control method
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and follower leader method, and the control method is closely
related to the application environment [5]. In the future devel-
opment, the environmental adaptability of the robot forma-
tion control system, the matching of hardware technology,
and high sensitivity requirements are the basis for coping
with complex and tedious tasks. With the application of the
Internet of Things technology, efficient and rapid information
acquisition and transmission play an important role in the
collaborative control of robots. Arivazhagan A [6] proposed
in the article that the use of artificial intelligence and Internet
of Things technology can assist robots to complete different
tasks better, and can effectively reduce costs. Plauska and
Damasevicius [7] found through research that the collabora-
tive learning robot based on the Internet of Things technology
provides students with a highly motivated learning envi-
ronment and improves student learning efficiency. An effi-
cient feedback learning mechanism is the key to the robot
formation control system, which directly affects the task
completion and accuracy. Yu and Rus [8] used the most dis-
crete and approximate optimal methods in multi-robot path
planning to shorten the task completion time and improve
the information redundancy. Guo et al. [9] proposed an
improved genetic algorithm, which increased genetic targeted
mutations to convert multi-objective optimization into single-
objective optimization and found a suitable scale factor in
robot path planning. In addition, the organic combination of
deep learning and robots can design intelligent robots with
high work efficiency, high real-time performance and high
accuracy, which are widely used in indoor and outdoor scene
recognition, robot industrial services and home services, and
multi-robot collaboration [10]. Algorithm optimization based
on the deep learning mechanism can effectively improve the
accuracy and reduce the error rate of the system.

Therefore, in order to better match and control robot for-
mation, this study proposes a robot formation control tech-
nology based on the Internet of things platform from the
perspective of information transmission and data prediction.
The first part summarizes the current control technology of
robot formation. The second part is the software and hardware
system of the robot under the Internet of Things platform,
which combines the robot control board, radio frequency
positioning and monitoring software to transmit the posi-
tion and motion information of the robot. The third part
is a deep learning model based on Particle Swarm Opti-
mization for robot formation motion information, which is
used to plan and predict the robot trajectory. The fourth part
is the simulation process of robot formation control under
the Internet of Things platform to test the accuracy of the
system model. Through the data transmission of the Internet
of Things platform and the position prediction of the deep
learning model, the robot’s motion parameters and trajec-
tory are accurately planned, which effectively improves the
cooperation ability and work efficiency of the robot forma-
tion. It lays a foundation for the research of robot formation
control.

FIGURE 1. Main control methods of multi-robot formation.

II. DESIGN OF ROBOT SOFTWARE AND HARDWARE
SYSTEM IN THE INTERNET OF THINGS PLATFORM
The formation of multiple mobile robots requires the design
of multiple mobile robots, including a robot control board to
control the movement of a single robot; an ultra-wideband
radio frequency positioning system, including a base station
and positioning tags, completes the positioning of the robot;
PC monitoring software is used to collect the trajectory of the
mobile robot and issue instructions to the robot [11].

A. MULTI-ROBOT FORMATION CONTROL METHOD
The first problem of multi-robot formation control is the
formation of formations. Formation mainly refers to how to
form a reasonable and stable formation in a complex and
unknown environment. In the multi-robot formation system,
a reasonable and optimal formation plays a vital role in
completing the task. A reasonable and appropriate formation
can not only improve the accuracy of completing the task,
but also improve the efficiency of the system to complete the
task. In different tasks, the robot system will select a suitable
and appropriate team according to different needs, and the
entire robot system will continuously adjust and change the
team according to the changes in the environment and its
own conditions during the journey, so as to better to achieve
system formation benefits.

The main control methods of multi-robot formation are
shown in Figure 1. They mainly include the Leader-Follower
method [12], [13], the Behavior-based method [14], [15],
and the Artificial Potential Method [16], [17], Virtual Struc-
ture method [18], [19], Graph Theory method [20] and so
on. Among them, pilot-following method, behavior-based
method and artificial potential field method are suitable for
distributed control, while the virtual structure method and
graph theory method are suitable for centralized control.

B. THE INTERNET OF THINGS PLATFORM ENVIRONMENT
SETUP
Before designing a mobile robot software and hardware sys-
tem, you first need to analyze and build the mobile robot’s
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FIGURE 2. Base station structure.

operating environment. In order to simulate the Internet
of Things platform environment, a wireless communica-
tion network should be established first, mainly including
Ultra-Wideband (UWB)wireless network,WiFi wireless net-
work, Zig Bee wireless network and GSM network, etc.
At the same time, wireless sensor networks are built, mainly
including UWB positioning system networks, temperature
sensors, and smoke sensor networks [21]. The structural
block diagram of the base station based on the Internet of
Things environment is shown in Figure 2.

In the Internet of Things environment built in this arti-
cle, the WiFi network, ZigBee network, and GSM network
are mainly responsible for communication between mobile
robots and consoles, mobile robots and operators, consoles
and sensor networks, mobile robots and sensor networks, etc.
Specifically: Ultra-Wideband positioning module uses WiFi
/ Bluetooth / 5G technology for data communication, mobile
robot and console communicate through Zig Bee network,
console and sensor network also communicate through Zig
Bee network, control personnel and control The stations can
communicate via Wi-Fi, ZigBee, and 5G, and mobile robots
and sensor networks communicate via ZigBee networks [22].
The sensor network is mainly responsible for collecting envi-
ronmental temperature, smoke and other information, and
communicating with mobile robots and consoles through
the Zig Bee wireless network. The mobile robot can move
autonomously or be controlled through the console, and it is
responsible for performing inspection and monitoring tasks.

C. THE SPECIFIC DESIGN OF THE HARDWARE SYSTEM
1) CONTROLLER
As the core part of themobile robot hardware system, the con-
troller not only needs to communicate with the sensor system
to collect the status information of the mobile robot, but also
needs to process this information and solve the corresponding
positioning algorithms to obtain the position and attitude
angle of the mobile robot information such as speed, angular
velocity, etc. also exist as a motion controller, responsible
for solving the motion control algorithm of the mobile robot,

and providing control signals to the motor drive module to
control the motor. Therefore, the controller needs to have
excellent computing performance and rich interfaces. This
paper chooses the TMS320F28335 digital signal processor
as the controller of the mobile robot [23].

2) POWER MODULE DESIGN
The mobile robot hardware system includes controllers,
multiple sensors, motors, motor drive circuits, and other
parts. Each part has different requirements for power, which
requires the system to provide various power outputs with
different voltage and current values. According to the power
requirements of each part, the power to be provided is clas-
sified according to the voltage value. There are three main
types: 12V, 5.0V, and 3.3V. The main power source of the
mobile robot will be a lead battery with a rated voltage of
12V and a rated output current of 2.5A., which are responsible
for providing the input of the voltage stabilization circuit and
the driving power of the motor drive module; the voltage
stabilization circuit will output a 5.0V power supply for the
controller Digital Signal Processing (DSP) and the power of
sensors such as the electronic compass, photoelectric code
disc, etc. One output is 3.3V power supply, which is responsi-
ble for supplying power to ZigBee module, Inertial measure-
ment unit (IMU) and other modules [24].

3) SENSOR SYSTEM DESIGN
The sensor system is the main component of the mobile
robot hardware system, and it is the main way to obtain envi-
ronmental information and its own information. The infor-
mation required by a mobile robot includes its own pose,
heading angle, linear velocity, angular velocity, acceleration,
and obstacles in the environment, which can be divided into
pose information and speed information.

In order to obtain pose information, the Ultra-Wideband
wireless positioning system is used to obtain the position
information of the mobile robot, the electronic compass is
used to obtain the heading angle of the mobile robot, the laser
radar is used for environmental scanning, and the relative
pose information and environmental information are obtained
through the Iterative Closest Point (ICP) algorithm. In order
to obtain the speed information, the photoelectric wheel is
used to obtain the rotation speed of the driving wheels, and
the angular velocity and acceleration of the mobile robot are
measured by IMU [25].

4) WIRELESS COMMUNICATION MODULE DESIGN
The communication problem in the entire mobile robot hard-
ware system includes the communication problem between
the mobile robot and the console in addition to the commu-
nication between the sensor and the controller. As a bridge
between the mobile robot and the user, the console needs
to obtain the status information of the mobile robot and
other task information in real time. Therefore, it is neces-
sary to ensure timely and smooth communication between
the mobile robot and the console. ZigBee technology is a
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FIGURE 3. Flow chart of mobile robot control program.

two-way wireless communication method, a short-range and
low-rate communication form, which has the advantages of
simple structure, low cost, and low power consumption. It is
mainly used for short-distance data transmission where the
data rate is not high. Considering the working characteristics
of mobile robots, ZigBee wireless module is used here as
the communication method between the mobile robot and the
console [26].

5) MOBILE ROBOT CONTROL PROGRAM DESIGN
From the above analysis, it can be known that the informa-
tion that the controller of the mobile robot needs to process
includes status information such as position, attitude, and
speed measured by each sensor, which also needs to process
instructions sent by the console and send mobile robot status
information to the console. At the same time, the control
algorithm must be solved to drive the motor to complete the
trajectory tracking of the mobile robot [27]. To process this
information, a reasonable control program must be designed,
otherwise the established tasks of the mobile robot will not
be completed. According to the specific tasks of the mobile
robot and the characteristics of each part, the design flow of
the mobile robot control program is shown in Figure 3.

D. ROBOT FORMATION CONTROL BASED ON INTERNET
OF THINGS TECHNOLOGY PLATFORM
The traditional machine learning method is no longer suitable
for multi robot scenes. In this scenario, the strategies of
each robot are different. From the perspective of each robot,
other robots are changing and the environment is unstable.
It presents a state of incomprehensibility and unpredictability
with its own strategy. Some algorithms are difficult to con-
verge due to the influence, but when the number of robots
increases, the variance of strategy gradient algorithm will
increase [28]–[30] Of course, some researchers used the
model-based strategy method to predict the next state of the
environment by modeling the environment and robot, using
the learning strategy in deep learning, or based on certain
assumptions and communication with each other. However,
it is not applicable or too expensive for many scenarios.

This study uses the method of distributed deep learning,
which only regards other agents as dynamic obstacles, and

FIGURE 4. Robot formation control flow based on Internet of Things
technology platform.

each agent only cares about its own state. Group reinforce-
ment learning inputs combined state and combined action to
the evaluation network during training, and only the observa-
tion data and state of the agent itself are needed for testing.
In this way, a more reasonable cooperation strategy can be
trained and no communication is needed during execution,
which is more in line with expectations. Based on the con-
struction of the Internet of things platform, the deep learning
method will be used to solve the cooperative navigation
and control problem of multi robots. The specific process is
shown in Figure. 4.

III. DESIGN OF ROBOT SOFTWARE AND HARDWARE
SYSTEM IN THE INTERNET OF THINGS PLATFORM
Using the platform of Internet of Things, the position and
motion information of robot formation is transmitted to the
formation controller of the system. Under the condition of
obtaining position information, the motion model can make
prediction and feedback according to the current information,
and the system can assign it to each robot in formation. At the
same time, the error rate and interference rate should be min-
imized. The objective acquisition can be achieved by reason-
ably planning the route. the visualization and classification of
information data structure should be ensured when choosing
the operation model. And the internal attributes and relations
between data are determined. In depth learning, multi-layer
grids are used to transform the nonlinear features of depth
to realize the transfer of sample features in different spaces.
It reflects important learning characteristics. The construction
of the Internet of Things platform transmits the information
characteristics for the deep learning mechanism in the motion
model. Through key information and data prediction, more
accurate trajectory planning is provided for robot formation.

A. PRINCIPLE AND IMPROVEMENT OF DEEP LEARNING
Deep learning can transfer data information by simulating
the multi-level neural network of human brain and using the
divergent connection of neurons. After multi-level process-
ing, the hidden characteristics of data can be fully displayed.
Compared with the traditional neural network with only one
layer of hidden layer nodes, the model has the characteristics
of multi-level, large sample size and strong computing power.
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FIGURE 5. The structure diagram of deep neural network model.

Deep neural network has more hierarchical results. It has
stronger ability tomodel or abstract things, and it can simulate
more complex models. Deep neural network can deal with
a large set of functions through a good compact nonlinear
mapping relationship [31], [32]. The deep neural network
model structure is shown in Figure. 5.

According to figure 5, deep neural network model consists
of input layer, hidden layer and output layer. The input layer
is composed of m dimensional column vectors, that is X =
[x1, x2, · · · , xm], which is used to represent different factors
of formation information of robots. The vector of the input
layer is transformed and input to the hidden layer. The output
expression of the first hidden layer is:

R1 = f (W1 · X + B1) (1)

In the expression, R1 is the output matrix of the first hid-
den layer, R1 = [r1,1, r1,2, · · · , r1,n], n is the number
of nodes in the hidden layer. W1 is the weight matrix
between the input layer and the output layer of the first
layer, W1 = [w1,1,w1,2, · · · ,w1,p, · · · ,w1,n]. w1,p =

[w1,p,1,w1,p,2, · · · ,w1,p,m] represents all the weights from
the input layer to the p node of the hidden layer. B1 is the
threshold matrix between the input layer and the hidden layer,
B1 = [b1,1, b1,2, · · · , b1,n]. The output value expression of
the p node element of the first hidden layer is:

r1,p = f

(
m∑
i

w1,p,i · xi + b1,p

)
(2)

In the expression, f (·) is the activation function. The
commonly used activation functions are sigmoid function
and tanh function. The output value of sigmoid function
is between 0 and 1. The definition interval of function is
continuous and differentiable.

f (z) =
1

1+ e−z
(3)

f (z) ∈ (0, 1). Further, we can deduce the matrix of output
after the first hidden layer is input to the second hidden layer.
The output expression of the l hidden layer is as follows:

Rl = f (WlRl−1 + Bl) (4)

After the multilayer hidden layer, the vector matrix of the
output layer is: Y = [y1, y2, · · · , ym], the specific expression
is:

Y = f (Wk+1 · Rk + Bk+1) (5)

In the expression, Wk+1 is the weight matrix between the
hidden layer k and the output layer, and Bk+1 is the threshold
matrix between the hidden layer k and the output layer.
The motion information of robot formation is real-time and
dynamic. At the same time, the feedforward mechanism in
effective range is needed to describe the expression effect
of dynamic nonlinear time series and further improve the
accuracy of the model. Therefore, the recurrent deep neural
network model is constructed by adding the feedback delay
structure into the deep neural network model. By changing
the feed-forward structure of the initial deep neural network
model, the dynamic learning ability of the model is improved.
In the network structure of recurrent deep neural network
model, an association layer structure is added to transfer the
dynamic memory of the network and feed it back to the
network structure to correct the parameters. The role of the
correlation layer is to feedback the output results to the first
hidden layer. The output expression of the first hidden layer
at time t is:

R1(t) = f (W1 · [X (t),Z (t)]+ B1) (6)

In the expression, Z (t) = Y (t − 1), Z (t) is the value input
from the correlation layer to the hidden layer at time t , which
is also the output result of the model operation at the previous
time. Accordingly, the expressions of the hidden layer l and
the final output layer at time t are as follows:

Rl(t) = f (WlRl−1(t)+ Bl) (7)

Y (t) = f (Wk+1 · Rk (t)+ Bk+1) (8)

The recurrent deep neural network model has the ability of
associative memory. In the application process of the actual
model, the stability of the model needs to be tested. When the
average absolute error of the model decreases gradually and
its derivative is less than 0, the model is considered to be sta-
ble. Another expression of the model’s stability is: when the
initial input sample is input into the model, the output result
is input into the hidden layer in the way of delay memory.
New output is generated after continuous operation, and the
error between the result and the first output result needs to be
gradually reduced. The expression of mean absolute error F
and its derivative to Y (t) is as follows:

F =
1
m

k∑
i=1

(
Ŷ (t)− Y (t)

)2
(9)

F ′ = −
2
m

 k∑
l=1

f ′

 n∑
j=1

wk+1f ′

 (10)

In the expression, Ŷ (t) is the predicted value and Y (t) is the
actual value. f ′ is the derivative of the activation function, and
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its derivative result is f ′(z) = 1
1+e−z −

1
(1+e−z)2

. Because of
f (z) ∈ (0, 1), f ′(z) ≥ 0, F ′ ≤ 0 can be calculated, the average
absolute error F is gradually reduced. After calculation, the
model is considered to be stable. The optimization of weight
W and threshold B is needed to ensure the stability and
accurate output of the model. Particle swarm optimization is
a kind of intelligent algorithm which uses the mutual cooper-
ation and competition of population particles to achieve the
purpose of optimization. It is convenient, flexible and easy
to achieve [33]. The internal parameters of particle swarm
optimization algorithm are easy to adjust. It is widely used
in the optimization problem of particle swarm optimization
algorithm, which is mainly used to optimize parameters.
Therefore, particle swarm optimization is chosen to optimize
the weight and threshold in recurrent deep neural network
model.

B. APPLICATION OF PARTICLE SWARM OPTIMIZATION
ALGORITHM
Particle swarm optimization optimization algorithm was first
proposed by Eberhart and Kennedy in 1995, and its basic
concept comes from the foraging behavior of birds [34]. The
algorithm has uncertainty, global optimization, bionic opti-
mization and stability in the application process. The basic
idea of particle swarm optimization algorithm is to use an
intelligent particle to simulate individual birds. In N dimen-
sional space, each particle is a searching individual. The
flight process of particles is regarded as the search process
of individuals. The flight speed of particles can be adjusted
according to the historical position of individuals and the
optimal position of groups [35], [36]. Speed and position
are two attributes of particles. The optimal solution of each
particle is individual extremum, and the optimal individual
extremum in the group is the current global optimal solution.
Through continuous iteration to update the speed and posi-
tion, the optimal solution satisfying the conditions is finally
obtained.

The expression of velocity and position update of individ-
uals in particle swarm is as follows:
vi(n+ 1) = w · vi(n)+ c1 · rand() · (pbesti(n)− xi(n))

+ c2 · rand() · (gbesti(n)− xi(n))
xi(n+ 1) = xi(n)+ vi(n)

(11)

In the expression, vi(n), vi(n + 1), xi(n) and xi(n + 1)
represent the velocities and positions of the particles of
the n and n + 1 generations respectively. w is the inertial
factor, c1 and c2 are the learning factors, usually set as 2.
rand() is a random number between 0 and 1, pbesti and
gbesti are the individual extremum and global optimal solu-
tion of the n generation particles. In addition, the fitness
function and objective parameters need to be determined.
We select the mean square error in recurrent deep neu-
ral network model as the fitness of particles [37], and the

FIGURE 6. Schematic diagram of RDeep neural network network model
optimized by particle swarm optimization.

expression is:

S =
1
N

N∑
i=1

(
Ŷ (i)− Y (i)

Y (i)

)2

(12)

In the expression, N is the number of samples, Ŷ (i) and
Y (i) are the predicted and actual values of the i sample. The
objective parameters are all elements of the weight W and
threshold B matrices. The population size of particle swarm
is 50, the maximum number of iterations is 10000, the inertial
factor is 1, and the target error is 0.01. The initial velocity and
position of particles are defined randomly, and the maximum
velocity is no more than 5 [38]. The schematic diagram of
recurrent deep neural network model optimized by particle
swarm optimization is shown in Figure 6.

It can be seen from Fig. 6 that particle swarm optimization
algorithm is used to optimize the weights and thresholds in
the prediction model. The optimized weights and thresholds
are substituted into the network model [39]. Data samples
of robot formation motion information are input to recurrent
deep neural network model. After continuous feedback learn-
ing, more accurate next step motion data can be provided for
robot formation [40]. By using recurrent deep neural network
model, the accuracy of robot formation control method is
improved significantly. A reasonable trajectory planning can
improve the motion efficiency of the robot.

IV. SIMULATION OF ROBOT FORMATION CONTROL
BASED ON INTERNET OF THINGS
Usually, Deep neural network deep learning neural net-
work training needs a large number of data samples, but
because there is no ready-made open source sample library,
the overall control data samples of robot formation need
to be obtained by the system itself. Build the Internet of
things platform, including wireless communication network
and wireless sensor network: Ultra-Wideband positioning
system network, temperature sensor, smoke sensor network,
etc. The data in this paper is acquired by the terminal of
the robot contact sensor and feature extraction is realized
by the aforementioned method. In the case of larger search
space brought by higher dimension input, multi controller
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FIGURE 7. Deep learning neural network training process.

FIGURE 8. Training process of deep learning neural network based on
particle swarm optimization.

guidance and priority experience playback mechanism are
used to complete the application of single agent deep rein-
forcement learning in obstacle avoidance navigation. In this
paper, the high-dimensional laser distance information, the
robot’s own speed information and the coordinate informa-
tion of the target point relative to the robot are taken as
the input, and the continuous values of the linear speed and
angular speed of the robot are taken as the output of the
single robot action data. Among 762 sets of characteristic
data, 629 sets are selected as training sample data and 100 sets
as recognition test data. There are 762 groups of feature
data of robot position data, 629 of which are selected as
training sample data and 100 groups as recognition test data.
In order to verify the deep learning neural network algorithm
proposed in this paper, the simulation platform MATLAB is
used to compare the deep learning neural network algorithm
with the traditional deep learning neural network algorithm.
All the deep learning algorithms adopted activation func-
tion: ReLU, convolution kernel: 3∗3, Xavier initialization,
batch_size=1.5. The maximum number of iterations of the
neural network is 10000, the system accuracy is 0.01, and
the maximum evolution algebra of the deep learning neural
network algorithm is 50.

FIGURE 9. Performance evolution of deep learning neural network.

FIGURE 10. Performance evolution of deep learning neural network
based on particle swarm optimization.

As shown in Figure 7 and Figure 8, it can be seen that the
training process of deep learning neural network is relatively
slow, reaching the optimum at 7500 steps, and the average
error is about 0.01. The training process of deep learning
neural network based on particle swarm optimization is fast.
Only 3000 steps are used to reach the target error value,
and the final error is about 0.01. It shows that the deep
learning neural network algorithm based on particle swarm
optimization is efficient. It can be seen from Figure 9 and
Figure 10 that the training process of deep learning neural
network algorithm under particle swarm optimization is rela-
tively smooth, which makes the deep learning neural network
algorithm under particle swarm optimization more stable in
application. In independent reinforcement learning, the envi-
ronment observed by each robot is dynamic and unstable,
resulting in training fluctuations. The noise disturbance at the
starting point and the random designation of the target point
make the target point to be visited by the robot in each round
different, the path length to be experienced is different, the
waiting time after reaching the target point is different, and
even the navigation difficulty of the target point is different.
In particular, some robots have a relatively close target point,
which is easy to reach and move in place in a small range
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FIGURE 11. Results and error analysis.

FIGURE 12. Cooperative control of multiple robot formation.

to wait for other robots to complete the task, and continue
to get the reward of reaching the target point. Some robots
may need to avoid many obstacles on the way to the target
point. In order to ensure the safety, they will move forward at
a slow speed, and may collide to cause the robot to reset, and
get a little reward or even punishment in the whole process.
As shown in Figure 11, the simulation test results and error
analysis of particle swarm optimization deep learning neural
network model.

Figure 11 shows the simulation results of deep learning
neural network algorithm under particle swarm optimization.
It can be seen that the control and route of the robot are well
matched. However, in the robot turning, in other words, the
error in the continuous turning process of the robot is greater
than 0.5%. Therefore, the cooperative control of multiple
robots should pay more attention to the cooperative control of
multiple robot formation turning process. In the multi robot
system, based on the same goal type of the robot, there is
no competition relationship, and it is a cooperative mode.
The single robot method is extended in parallel to get the
Deep neural network algorithm. In order to achieve the global
situation, the return function is modified, and its feasibility is
verified by experiments. The method has the advantages of
fast sampling speed, short training time and convergence in

training environment. It can increase or decrease the number
of robots without affecting the convergence of the network.
It is suitable for the scene with a large number of robots or a
constant number of robots.

Figure 12 shows the cooperative control route of multiple
robot formation, among which ellipse, triangle and rectangle
represent obstacles. During the process of robot team from
(−8, −15) to (8,15), the shortest route principle is adopted,
and the robot needs to avoid obstacles and change the dis-
tance between robots. It can be seen from the figure that
the robot team can perfectly avoid obstacles and reach the
designated destination by changing the route and shape of the
team. Therefore, the deep learning neural network algorithm
proposed in this paper has a high speed of optimization.

V. CONCLUSION
The robot system can sense all kinds of external environment
in real time. It is a multi-functional control and manage-
ment system, including visual recognition, task management
execution and distribution, behavior decision-making and so
on. It can easily adapt to all kinds of harsh environment.
When some of the world’s top professional chess players
are defeated by the alpha dog with the powerful deep learn-
ing function of artificial intelligence, it represents the rapid
improvement of the robot’s intelligence. However, when a
single robot is in a complex work or in a complex task
environment, it can not directly meet the needs of complex
task processing through its own behavior. Therefore, based
on the formation control technology of the robot, relying on
the Internet of things data efficient processing platform, this
paper compares the deep learning neural network algorithm
and the particle swarm optimization neural network algo-
rithm, and draws the following conclusions:

• Through the communication between WiFi network,
ZigBee network, GSM network, mobile robot and con-
sole, mobile robot and operator, console and sensor net-
work, mobile robot and sensor network, a multi machine
person networking information transmission and storage
architecture is constructed

• The training process of deep learning neural net-
work under particle swarm optimization is fast,
only 3000 steps are used to achieve the target error value,
and the final error is about 0.01, which is efficient.

• A deep learning neural network algorithm based on
particle swarm optimization (PSO) is proposed, which
has a high speed of optimization and can avoid obstacles
accurately and efficiently to reach the destination.
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