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ABSTRACT Cancer classification using gene expressions is extremely challenging given the complexity
and high dimensionality of the data. Current classification methods typically rely on samples collected
from a single tissue type and perform a prerequisite of gene feature selection to avoid processing the full
set of genes. These methods fall short in taking advantage of genome-wide next generation sequencing
technologies which provide a snapshot of the whole transcriptome rather than a predetermined subset of
genes. We propose a deep learning framework for cancer diagnosis by developing a multi-tissue cancer
classifier based on whole-transcriptome gene expressions collected from multiple tumor types covering
multiple organ sites.We introduce a newConvolutional Neural Network architecture called Gene eXpression
Network (GeneXNet), which is specifically designed to address the complex nature of gene expressions.
Our proposed GeneXNet provides capabilities of detecting genetic alterations driving cancer progression by
learning genomic signatures across multiple tissue types without requiring the prerequisite of gene feature
selection. Our model achieves 98.9% classification accuracy on human samples representing 33 different
cancer tumor types across 26 organ sites. We demonstrate how our model can be used for transfer learning to
build classifiers for tumors lacking sufficient samples to be trained independently.We introduce visualization
procedures to provide biological insight on how our model is performing classification across multiple
tumors.

INDEX TERMS Cancer classification, convolutional neural networks, deep learning, gene expressions, next
generation sequencing, RNA sequencing, transfer learning.

I. INTRODUCTION
The World Health Organization reports that cancer is a lead-
ing cause of death worldwide accounting for an estimated
9.6 million deaths in 2018 [1]. Despite this dramatic impact,
between 30-50% of cancer death cases can be prevented
through early detection and treatment [2]. Advancements in
cancer classification and prediction play an important role in
early detection since a major challenge in cancer treatment is
that patients are diagnosed at very late stages where appro-
priate interventions become less effective and full curative
treatment is no longer achievable [3].

Gene expressions have been extensively used in cancer
classification [6]–[13]. Technological advances in structural
genomics have allowed studying the full set of DNAs in the
human genome [3], [21]. Next generation sequencing (NGS)
methods such as whole-genome DNA sequencing and Total
RNA sequencing are considered revolutionary technologies
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for studying genetic changes in cancer [18], [23]. These
technologies provide great potential for cancer classification
and better understanding of tumor progression given their
ability to sequence thousands of genes at one time and detect
multiple types of genomic alterations [16], [17], [21]. They
provide capabilities for comparing the sequence of DNA
and RNA in cancer cells with that in normal cells to iden-
tify genetic changes that may be driving the growth of a
tumor. Gene expression analysis using Total RNA sequencing
provides a snapshot of the whole transcriptome rather than
a predetermined subset of genes, enables testing multiple
genes simultaneously and can detect both coding plus mul-
tiple forms of noncoding RNA [18]. These methods have
eliminated many limitations involved in microarray based
experiments that were traditionally used for gene expression
analysis [18], [21], [23].

Despite all these potential capabilities, cancer clas-
sification using gene expressions produced from Total
RNA sequencing is extremely challenging given the com-
plexity and massive amount of genetic data that is
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produced [16], [17], [21], [22], [30]. The magnitude of
data variants obtained from RNA Sequencing is exponen-
tial which makes it difficult for traditional machine learning
approaches to evaluate genetic variants for disease predic-
tion [3], [18], [19]. Gene expression data is characterized
by being very high in dimensionality in terms of having a
very large number of features representing the genes, and a
very small number of training data representing the patient
samples [7], [27]. Complexity is also due to the fact that only
a small subset of genes might be driving the cancer tumor
progression [1], [3].

Current cancer classification methods avoid processing
the full set of genes to overcome these complexities and
are mainly based on performing a process of gene fea-
ture selection as a prerequisite to the classifier learning
process [24]–[27]. Gene feature selectionwill allow the learn-
ing process to proceed, but the resulting classifier will not
have the opportunity to learn the molecular signatures of
genes which have been excluded and their influence on the
underlying cancer tumor [28], [29]. Current classification
methods based on gene feature selection are not optimal for
early cancer diagnosis. This is because these methods fall
short in taking the full advantage of DNA and RNA sequenc-
ing technologies to discover the correlated patterns between
genes across the full set of DNAs in the human genome and
to detect multiple types of genetic alterations that may be
driving the growth of a tumor across the whole transcriptome
rather than a predetermined subset of genes [4]. Another lim-
itation of current methods is that they typically rely on gene
expressions collected from a single cancer tissue type based
on the same anatomical site of origin. This approach does not
utilize the full potential of emerging whole-genome sequenc-
ing technologies and data produced by large-scale genomic
projects that produce detailed molecular characterizations
of thousands of tumors using genome-wide platforms [30].
Recent studies which have performed an integrated multi-
platform analysis across multiple cancer types have revealed
molecular classification within and across tissues of ori-
gin [4], [5]. The results of these studies have recommended
that the traditional approach of anatomic cancer classifi-
cation should be supplemented by classification based on
molecular alterations shared by tumors across different tissue
types [4].

This has motivated our research for early diagnosis of
cancer by leveraging the latest deep learning methods to
develop a comprehensive multi-tissue cancer classifier. Our
proposed classifier is based on molecular signatures of
whole-transcriptome wide gene expressions, that are col-
lected from human samples representing multiple cancer
tissue types covering multiple organ sites of origin. Our
approach using deep learning eliminates the need for dis-
covering a predefined subset of genes by combining the
process of gene feature selection and classification into one
end-to-end learning system. We propose a new Convolu-
tional Neural Network architecture called ‘‘Gene eXpression
Network’’ (GeneXNet) which is specifically designed to

learn the complex nature of whole-transcriptome gene
expressions and which gives the opportunity to design cancer
classifiers with capabilities of detecting more complex types
of genetic alterations by learning the genomic signatures
shared across multiple cancer tissue types. To our knowledge,
this is the first effort to develop amulti-tissue cancer classifier
based on a full set of whole-transcriptome wide gene expres-
sions collected from tumors across different tissue types with-
out requiring a prerequisite process of gene feature selection.
We demonstrate how our model can perform transfer learning
to build classifiers for other types of cancer tumors which are
lacking sufficient patient samples to be trained independently.
We introduce visualization procedures to provide more bio-
logical insight on how our model is performing cancer classi-
fication across multiple tumor types. We visualize gene local-
ization maps highlighting the important regions in the gene
expressions influencing the tumor class prediction. We also
visualize the molecular clusters formed by intermediate gene
expression feature maps learned by the network which helps
in revealing the genomic relationships of gene expressions
that are influential in the tumor progression.

II. RELATED WORK
Gene expressions have been extensively used in cancer clas-
sification [6]–[13]. Transcription produces what is referred
to as precursor messenger RNA (pre-mRNA) which under-
goes further modifications leading to mature mRNA [1].
By collecting mRNA samples for tumors of known classes,
supervised learning can be used to build discriminative
models which can learn the gene patterns of the underly-
ing disease and then be used to predict the tumor class
of new patient samples which were not previously diag-
nosed [1]. This is considered a great achievement as there
are many microarray experiments which demonstrate how
it was possible to distinguish between certain cancer types
using data classification even though they are clinically
indistinguishable [1], [56], [57].

Current methods for cancer classification follow the
approach of feature engineering and are based on applying
innovative gene feature selection techniques as a prerequisite
to the classifier learning process to discover a small subset of
informative genes which are discriminative among the tumor
being analysed [24], [26]. Gene selection methods can be
generally classified into filtering, wrapping and embedded
methods [27]. The accuracy of such a classifier depends heav-
ily on the successful identification of these discriminative
features [28], [29].

Substantial work has been done for cancer classification
by performing gene feature selection and building on tra-
ditional machine learning methods such as Support Vector
Machines [13], [15], [25], Random Forests [12], Decision
Trees [14], AdaBoost [9], K-Nearest Neighbor [12] and
Genetic algorithms [7], [9]. Many other techniques which
combine gene feature selection and cancer classification have
also been proposed for gene expressions in addition to other
types of Omics data [6], [7], [8], [10], [11], [58].
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FIGURE 1. Deep learning system architecture. The system starts with data collection of cancer tumors using Total RNA Sequencing, followed by
training our proposed CNN then performing tumor classification.

III. PROPOSED APPROACH
A. DEEP LEARNING FOR MULTI-TISSUE CANCER
CLASSIFICATION
Current methods for cancer classification are based on gene
feature selection as a prerequisite to the classifier learning
process. Our approach usingDeep Learning provides an alter-
native solution to feature engineering and eliminates the need
for discovering a predefined subset of genes. This is achieved
by combining the process of gene feature selection and classi-
fication into one end-to-end learning system using the whole
set of transcriptome wide gene expressions collected from
tumors across different tissue types. Our proposed Convolu-
tional Neural Network (CNN) architecture combinesmultiple
layers of non-linear building blocks which transform the gene
expression data into a representation at a higher more abstract
level. This allows the network to automatically learn the
molecular patterns of expressed genes which are influencing
the tumors and use that to amplify the discrimination score
for classification. The advantage is that the classifier will
not be limited to learning the molecular characterization of
a single tissue type but will have the capability of detecting
more complex types of genomic alterations by learning the
genetic signatures collected from multiple tumors and across
multiple cancer tissue types. Another major advantage of our
approach is that it allows performing very efficient transfer
learning by reusing the molecular signatures learned by the
trained networks.

B. DEEP LEARNING SYSTEM ARCHITECTURE
A schematic diagram of our end-to-end learning system
architecture is shown in Fig. 1. The first section repre-
sents the data collection and preparation process. It depends
on collecting human samples representing multiple types
of cancer tumors collected from multiple tissues spanning
different organs across the body. The next step performs
gene expression quantification using a Next Generation
Sequencing procedure. Total RNA sequencing is performed
for measuring gene expression quantification across the
whole-transcriptome and extracting coding mRNA. The gene

expression data is normalized and converted into a represen-
tation suitable for feeding it as input data to our deep learning
model.

The second section of our learning system represents build-
ing and training a deep Convolutional Neural Network to
automatically learn the molecular signatures of the full set of
whole-transcriptome gene expressions and produce a trained
model which can be used for classification of cancer tumors.
Our model, which we refer to as ‘‘Gene eXpression Net-
work’’ (GeneXNet), relies on building an architecture with
multiple layers of non-linear functions which transform the
gene expression data into feature maps to increase the level
of accuracy and invariance of the selected gene features [53].
The genetic signatures learned by the feature maps in the
deep layers, eliminate the need for the traditional prerequisite
process of gene feature selection because they are insensitive
to any insignificant genes or irrelevant variations in the gene
expressions [47], [53]. We train the model using supervised
learning by feeding the collected human samples as input
and producing an output probability score for each labelled
category of cancer tumors. We define a cross-entropy loss
function suitable for gene expression data that measures the
error between the network input and the desired output, then
we use stochastic gradient descent optimization and back-
propagation [48] to adjust the network weights.

C. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
Convolutional Neural Networks (CNNs) have contributed to
many record breaking achievements especially in the areas
of computer vision and image recognition [31]–[36]. The
development of new CNN architectures to improve accu-
racy and performance continues to be an active research
area such as AlexNet [52], VGGNet [50], GoogLeNet [49],
InceptionNet [45], ResNet [36], [46], DenseNet [33],
MobileNet [31], [35], SENet [34] and NasNet [32]. CNNs
are made of multiple layers each arranged in a 3D volume
of neurons where each layer transforms the volume using a
non-linear transformation. CNNs differ from fully connected
networks in that neurons are only connected to a small region
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FIGURE 2. Gene eXpression Network (GeneXNet) architecture. Our proposed CNN incorporates multiple layers of building blocks which include a
combination of Dense and Residual learning sub-blocks.

in the previous layer. The convolution operation performs a
dot product between a sliding filter and the input across the
full depth of the volume to produce an activation map [47].

The motivation behind using CNNs for classification of
cancer tumors using gene expressions is that the convolution
operation is very suitable for the high dimensional and sparse
nature of the data. Since the input data has a very high dimen-
sionality, it is not practical to use traditional kernel learning
methods and fully connected networks since the resulting
models will have a huge number of parameters to be learned
which makes the learning process infeasible [47].

D. GENE EXPRESSION REPRESENTATION FOR CNNs
To train our CNN model using the cancer tumor samples,
we first need to represent the gene expressions in a format
suitable for the network input. Given N tumor samples each
having G features representing the full set of genes produced
by the whole-transcriptome sequencing procedure, we can
represent the gene expressions in an equivalent 2D matrix
of real numbers with dimensions (N, G) which stores the
normalized gene expressions such that the value in cell Xij
represents the expression level measured for gene (j) in the
patient sample (i).We convert each sample into the equivalent
3D volume of genes with dimensions (Width, Height, Depth)
to make it suitable as input to our CNN model. The training
data for theN samples can then be represented by the 4D input
matrix of real numbers with dimensions (N, W, H, D).

E. GENE EXPRESSION NETWORK (GeneXNet)
ARCHITECTURE
In this section we describe the detailed architecture of our
proposed CNNmodel. Recent benchmark results obtained by
deep CNNs for image recognition tasks have demonstrated
that network depth is of great importance for feature extrac-
tion and have managed to achieve outstanding results by

designing networks with deeper and more complex architec-
tures [36], [46]. Thesemodels were able to exploit deep archi-
tectures because of the availability of large training datasets
such as ImageNet which contains over 1 million training
images [52]. Training deep models requires large amounts of
training data to avoid common problems such as overfitting,
vanishing gradients and degradation of accuracy [36], [46].
Applying the same deep CNN architectures for classification
of gene expression data is not an evident task since it faces
two conflicting problems. On one hand, we need to benefit
from deep network architectures to efficiently extract the
molecular signatures of the large number of genes so that
our classifier can accurately generalize when presented with
tumor data from multiple tissue types. But on the other hand,
the lack of sufficient human training samples, which could
be in the range of only a few hundred samples, implies
great challenges for training deep networks and results in
overfitting during training which implies using smaller more
compact networks. We attempted to build an end-to-end
learning system for classification without performing the
prerequisite process of gene feature selection by using some
of the available state-of-the-art CNNmodels which have been
specifically designed for computer vision tasks. Our experi-
mental results have shown that training these deep models
suffered from overfitting when presented with the underlying
dataset that includes the full set of transcriptome gene expres-
sions collected from tumors across different tissue types. The
dataset did not have sufficient training samples to train these
deep models and achieve the required accuracy.

To solve these conflicting problems, we propose a new
CNN architecture which we refer to as Gene eXpression Net-
work (GeneXNet) shown in Fig. 2. Our network is designed
to specifically address the complex nature of gene expres-
sions and addresses the lack of training samples by incor-
porating multiple layers of building blocks which we refer
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FIGURE 3. Residual learning block of Gene eXpression Network.

to as GeneXNet blocks. These blocks are motivated from
both deep residual learning networks [36], [46] and densely
connected convolutional networks [33] and are formed by
merging together two different types of learning sub-blocks.

To formulate our building block, we define our network to
have L layers of blocks where the non-linear transformation
of gene expressions can be denoted by Gl and defined as:

xl+1 = Gl (xl,Wl) (1)

Wl =
{
wl,i|1 ≤ i ≤ Kl

}
(2)

where l is the index of the block, Wl represents the set of
weights and biases of the l th block,wl,i represents the weights
of the ith convolutional layer in the l th block,Kl represents the
number of convolution layers in the l th block and xl , xl+1 rep-
resent the input and output features of the l th block. We apply
‘‘pre-activation’’ of weight layers as in [36] by defining the
transformation at each layer as a sequence of multiple oper-
ations which are Batch Normalization (BN) [44], Rectified
Linear Unit (ReLU) [38] and Convolution.

If gene expression data flows through the network using
only the transformation in (1), that would be following the
traditional approach for CNN layers. Deep residual learn-
ing provides a framework for more efficiently training deep
networks by reformulating the layers as residual learning
functions with reference to the layer inputs [46]. Empirical
results have shown that residual learning helps to avoid degra-
dation in performance accuracy as the depth of the network
increases [46]. Residual networks have achieved excellent
performance in many image recognition and object detection
tasks, where networks with over 150 layers have been trained
on ImageNet [52] and managed to achieve substantial accu-
racy gains in comparison to normal networks which simply
stack consecutive layers [36]. To make use of residual learn-
ing we reformulate our building block by implementing the
non-linear transformation of gene expressionsGl as a residual
function defined as:

xl+1 = fl [Gl (xl,Wl)+M (xl)] (3)

where Gl is a residual function for the l th block, M (xl) is a
mapping which bypasses the non-linear transformation and
fl represents a mapping function of the input and output fea-
tures of the l th block. The simplest form of residual learning
can be realized by choosing fl to be a Rectified Linear Unit
(ReLU) [38] and also introducing identity skip connections

which are equivalent to choosing M (xl) as an identity map-
ping so thatM (xl) = xl . Another formulation can be realized
by implementing both M (xl) and fl as identity mappings.
We apply the later formulation which has shown to improve
accuracy by creating a more direct path for information prop-
agation and allowing the signal to propagate more directly
from one unit to any other unit in the forward and backward
passes [36]. The resulting non-linear transformation of gene
expressions and the gradient of the loss function can then be
expressed recursively as:

xL = xl +
L−1∑
i=l

Gi (xi,Wi) (4)

∂ε
∂xl
=

∂ε
∂xL

∂xL
∂xl
=

∂ε
∂xL

[
1+ ∂

∂xl

L−1∑
i=l

Gi (xi,Wi)

]
(5)

where xL represents the output features of the network with
L layers of blocks, ε is the loss function and ∂ε/∂xl is the
gradient obtained by applying the chain rule and backprop-
agation [36]. The residual function Gi is implemented as
in (1) by applying two or more weight layers each using
pre-activation and the sequence of multiple operations BN,
ReLU and convolution. The resulting sub-block is shown
in Fig. 3 which we refer to as the Residual Learning block.
We also experiment with applying a bottleneck architec-
ture [36], [46], by modifying the design of this block to have
three layers instead of two in the form of (1 × 1), (3 × 3)
and (1 × 1) convolutions. Since we are using the full set of
whole-transcriptome genes, the role of the (1×1) convolution
is to enhance computational efficiency by reducing the large
dimensions of the intermediate feature maps before applying
the (3×3) convolution and then restore them back again [36].
Despite the strong advantages of residual learning net-

works in allowing the gradient to flow directly through the
skip connections, there have been other proposed approaches
to use stochastic depth to improve the training of deep
residual networks by dropping layers randomly during train-
ing [37]. This has led to different intuitions that theremight be
a great amount of redundancy in deep residual networks and
that not all the layers are required [33]. Densely connected
convolutional networks (DenseNets) [33] exploit the poten-
tial of the network through feature reuse as an alternative
to deep or wide architectures by connecting all layers with
matching feature-map sizes directly with each other. This
design consideration is very important for our task, since one
of the biggest challenges in our work is to build a multi-tissue
cancer classifier that can benefit from deep network architec-
tures to efficiently extract the molecular signatures of large
number of genes, without facing severe overfitting or degra-
dation in performance due to the lack of sufficient human
training samples. This has inspired us to further reformulate
the design of our GeneXNet building block and augment its
learning capability by introducing additional dense layers that
precede the residual learning layers. The dense layers follow
a similar approach as in DenseNets [33].
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FIGURE 4. Dense learning block of Gene eXpression Network.

The design of our dense layers is implemented by passing
additional inputs into each layer from all preceding layers
and passing the feature maps of each layer to all subsequent
layers. Our aim from this design is to provide each layer with
direct access to the gradients from the loss functions and the
original input signal which can potentially improve flow of
information throughout the network. Our additional dense
layers are formulated as:

xl+1 = Gl (Concat [x1, x2, x3, . . . , x l]) (6)

where xl+1 represents the output of the l th block,
Concat [x1, . . . , x l] represents the concatenation of the gene
expression feature maps resulting from all preceding layers
and Gl represents the same transformation as in (1) which
applies pre-activation of weights and the sequence of mul-
tiple operations BN, ReLU and convolution. The resulting
sub-block is shown in Fig. 4 which we refer to as the Dense
Learning block.

Our proposed GeneXNet block is finally formed by merg-
ing together these two sub-blocks as shown in Fig. 2, which
represents a combination of dense learning and residual learn-
ing layers. We define several parameters to control the vari-
ation of the network design and size across different gene
expression data sets. The parameter θk controls the number of
filters used in the convolution layers. The two parameters θD
and θR define the percentage of dense and residual sub-blocks
in the network, where 0 ≤ θD ≤ 1 and 0 ≤ θR ≤ 1.
The full Gene eXpression Network (GeneXNet) architec-

ture is shown in Fig. 2. It is implemented by feeding the
gene expression input volume tomultiple layers of GeneXNet
blocks each containing a combination of dense and resid-
ual learning layers as described above. The network ends
with a global average pooling [43] after the last GeneXNet
block and a fully connected softmax layer for classifica-
tion. We experiment with different network sizes having
two to four GeneXNet blocks and with different θk , θD,

TABLE 1. Gene eXpression Network detailed architecture. (implementing a network with 4 blocks, θk = 32, θD = 1, θR = 1).
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θR configurations. A detailed architecture is shown in table 1
implementing a network with 4 GeneXNet blocks, θk = 32
and both θD, θR set to 1.

Our results have demonstrated that our proposed network
which combines both dense and residual learning layers, has
allowed training deeper network architectures with complex
data such as gene expressions, despite the large number of
genes. The dense layers allow the network to efficiently
extract the genetic signatures frommultiple tumors and across
multiple cancer types. This is achieved by means of re-using
the gene expression feature maps learned by different layers,
which increases the variation of input signals fed to subse-
quent layers since it represents the collective knowledge of
the network [33]. The residual layers with identity mappings
contribute to providing a direct path for information prop-
agation in the forward and backward passes [46] while the
connectivity of the dense layers provide each layer with more
direct access to the gradients from the loss function and the
original input signal [33].

IV. TRANSFER LEARNING USING GENOMIC SIGNATURES
OF MULTIPLE CANCER TUMOR TYPES
Our approach for building a comprehensive multi-tissue can-
cer classifier is by designing the Gene eXpression Net-
work (GeneXNet) with the capability of learning the genomic
signatures of whole-transcriptome gene expressions shared
across multiple cancer tumor types. By training the model
with samples from multiple tissue types collected from mul-
tiple sites, the classifier is able to learn and extract complex
patterns from the gene expressions that represent genomic
and transcriptomic alterations. This allows the classifier to
more accurately classify cancer tumors which are result-
ing from DNA or RNA changes that alter cell behavior
across multiple tissues and cause uncontrollable growth and
malignancy.

A major advantage is that we can reuse the genomic sig-
natures learned by the trained model to perform very effi-
cient transfer learning to solve one of the biggest challenges
in cancer classification which is lack of patient samples.
We demonstrate how transfer learning can be used to build
and finetune classifiers for other different types of cancer
tumors not included in the underlying dataset, whichmight be
lacking sufficient patient samples to be trained independently.
By reusing the weights of the pretrained GeneXNet model,
we demonstrate how the same network or an extended version
of it can be used for feature extraction on a different cancer
tumor type. The intuition behind transfer learning comes
from recent studies which have performed an integrated mul-
tiplatform analysis across multiple cancer types that have
revealed similar molecular classification within and across
tissues of origin [4], [5]. This means that the discriminative
molecular features for one cancer classifier will most likely
be relevant for other cancer types. Our pretrained model will
have already learned the complex types of genetic alterations
and genomic signatures collected from multiple cancer tissue

types originating from different organs, and can effectively
function as a generic model for cancer classification.

V. VISUALIZING GENOMIC RELATIONSHIPS OF GENE
EXPRESSIONS ACROSS MULTIPLE TUMOR TYPES
One of the challenges in using deep learning for disease diag-
nosis, is that deep networks are conceived as ‘‘black boxes’’
without much interpretation on how these complex models
make their decisions [42]. Extensive work has been done to
introduce novel visualization techniques for deep networks
to help understand and interpret their record breaking perfor-
mance in computer vision tasks [41], [42], [51]. The output
from these techniques can be interpreted by non-experts when
studied in conjunction with image or video datasets because
they are visually comprehensible. Unfortunately, these meth-
ods are not directly applicable to genomic datasets such as
gene expressions, since they cannot be visually rendered in
a human-friendly form that allows easy interpretations. Our
learning system architecture can contribute in solving this
problem, since it is designed to address the complex nature
of gene expressions.

We introduce two visualization procedures to providemore
biological insight on how our proposed deep network is
performing cancer classification across multiple tumor types.
Our methods are inspired from the work used to visualize
intermediate feature activations for CNNs used in image
classification [51]. We also build on the methods for Class
Activation Maps (CAM) [41], [42] which visualize heatmaps
of class activations for deep networks used in image classifi-
cation and captioning.

A. VISUALIZING CLASS-DISCRIMINATIVE LOCALIZATION
MAPS OF GENE EXPRESSIONS
We introduce a visualization method which uses the gra-
dient information flowing into the last convolutional layer
of the GeneXNet model to produce gene localization maps
highlighting the important regions in the gene expressions
which influenced the resulting tumor class prediction. The
gene expression data used to train the network is sparse and
very high in dimensionality since it represents a snapshot of
the whole transcriptome rather than a predetermined subset
of genes. By identifying a class-discriminative localization
map in the gene expressions, we can identify the subset of
genes driving cancer progression and resulted in the model’s
tumor class prediction. We refer to this localization map as
a Gene-Class-Activation-Map (Gene-CAM). For each tumor
type, the Gene-CAM is a representation of the discriminative
genes used by the network to correctly classify the tumor. The
procedure can be summarized as follows:

For a GeneXNet with L blocks, the network will produce
a set of intermediate activation feature maps as the output of
each block. Let Fl represent the output feature maps of the
l th block with dimensions (width: Xl , height: Yl , depth: Dl).
This volume represents the molecular features learned by the
network that will be activated whenmatched with similar pat-
terns in the input gene expressions of a given tumor sample.
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Let f kL (i, j) represent the k th feature map for the last
block at special location (i, j). Since the network uses
Global Average Pooling (GAP) [43] before the final softmax
layer to calculate the spatial average of the feature maps, then
the classification score sc for tumor type c which is used as
input to the softmax can be written as:

sc =
DL∑
k

wck

XL∑
i

YL∑
j

f kL (i, j) (7)

where c is the tumor class, wck represents the weights for class
c with respective to feature map k and DL is the number of
feature maps in the last block before the GAP layer each with
width XL and height YL .
We redefine the weights of each feature map with respect

to a class as αck by computing the gradient of the score of each
class with respect to each feature map as follows:

αck =
1

XL .YL

XL∑
i

YL∑
j

∂sc

∂f kij
(8)

where the new weights αck represent the importance of
each feature map for class discrimination. The Gene-Class-
Activation-Map (Gene-CAM) is then calculated as:

Gene_CAM c (i, j) = ReLU

[ DL∑
k

αck · f
k (i, j)

]
(9)

The resultingmapwith dimensions (XL , YL) represents a gene
localization for the given tumor sample that captures the dis-
criminative regions in the gene expression input matrix which
influenced the prediction of the tumor class. The ReLU [38]
is applied to obtain only the features that have a positive
contribution to the correct class [42].

Finally, to visualize the Gene-CAM we resize it using
up-sampling and overlay it against the input gene expres-
sion matrix. The resulting heatmap highlights the important
regions in the gene expression input matrix which in turn
helps identify the subset of genes that are possibly influencing
the Cancer tumor and resulted in the model’s class prediction.

B. VISUALIZING MOLECULAR CLUSTERS OF
INTERMEDIATE FEATURE MAPS
We introduce a visualization procedure for observing the
evolution of molecular clusters formed by intermediate gene
expression feature maps learned by the network. The genetic
signatures learned by the feature maps in the deep layers
make the network capable of representing complex genetic
alterations shared by tumors across different tissue types.
Visualizing the molecular clusters of gene expressions pro-
vides more insight on how the network is learning small
meaningful relationships between the genes which in turn
describe the characteristic influencing the cancer tumor.
We demonstrate how this visualization provides the oppor-
tunity to study the genomic relationships of gene expres-
sions across multiple tissue types. This is motivated by

recent studies which have performed an integrated multi-
platform analysis across multiple cancer types that have
revealed molecular classification within and across tissues
of origin [4], [5].

As in the previous section, for a GeneXNet with L
blocks, let Fl represent the output feature maps of the l th

block. Let f kl (i, j) represent the k
th feature map for the l th

block at special location (i, j). We apply Global Average
Pooling (GAP) [43] to each of the intermediate feature
maps after each block to convert the volume Fl into a
1-dimensional feature vector F ′l with dimensions (1, 1,Dl) as
follows:

f
′k
l (i, j) = 1

Xl .Yl

Xl∑
i

Yl∑
j

f kl (i, j) (10)

F ′l = [f
′k
l (i, j)] ∀k ∈ {1, ..,Dl} (11)

where Dl is the number of feature maps in the l th block each
with width Xl and height Yl . The feature vector F ′l represents
the spatial average of the feature maps produced by each filter
in the convolutional layer. The intuition behind using GAP
is due to its ability to produce a generic localizable deep
representation of the features which can be used for class
discrimination [42].

We stack together all the feature vectors at the l th block
across all N tumor samples to produce what we refer to as a
Gene Feature Map (Gene_Mapl) of dimensions (Dl,N ):

Gene_Mapl = [F ′l (n)
T ] ∀n ∈ {1, ..,N } (12)

The resulting matrix stores the collective class-discriminative
localization maps for the gene expressions at the l th block
across all the tumor types. It also represents the collective
genetic signatures learned by the feature maps shared by
tumors across different organ sites.

Finally, we perform a consensus hierarchical cluster-
ing [55] of the gene feature map Gene_Mapl to generate
a Gene_Cluster_Mapl which is a molecular clustering that
groups each of the tumor types together based on the class
discriminative gene localizations extracted from the gene
expressions. Consensus clustering is specifically tailored for
gene expression data and is based on resampling to reach a
consensus across multiple runs of a clustering algorithm and
assess the stability of the discovered clusters [55].

By visualizing a heatmap of the resulting clusters, we can
observe the evolution of molecular clusters formed by inter-
mediate gene expression feature maps learned by the net-
work. Visualizing the molecular clustering helps in revealing
the genomic relationships and high-level structures of gene
expressions across multiple cancer tumor types that appeared
influential in the cancer tumor progression beyond the stan-
dard grouping by anatomical organ site.

The results of applying the visualization procedures to the
underlying dataset are described in the experiments.
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VI. EXPERIMENTS
A. DATASETS
Our objective was to design a comprehensive multi-tissue
cancer classifier capable of detecting complex types of
genetic alterations, by learning the genomic signatures of
whole-transcriptome wide gene expressions across multiple
cancer tissue types. To achieve this objective, the datasets we
selected for our experiments included a total of 11,093 human
samples for mRNA gene expression quantification, which
were collected from 26 different human anatomical organ
sites and covering 33 different cancer tumor types. The
datasets were obtained from ‘‘The Cancer Genome Atlas’’
(TCGA) [30] and generated by means of Total RNA sequenc-
ing [4]. Each individual human sample represents the whole
transcriptome and includes a total of 60,483 genes annotated
against a reference genome. The patients included males and
females and the biospecimens were collected from tumor
tissue, adjacent normal tissue and normal whole blood sam-
ples [4]. Table 2 shows a listing of the 33 cancer tumor
types we used in our experiments together with the associated
human organ sites and the number of human samples avail-
able for each tumor type. One of the biggest challenges in
using this dataset is the very small number of human samples
in each of the tumor types, compared to the very large number
of genes. Most of the tumors only have several hundred sam-
ples and some even have less than a hundred samples while
we have a total of 60,483 genes for each sample.We represent
the gene expression data in a format that makes it suitable as
input to ourmodel.We convert each sample into an equivalent
3D volume of genes with dimensions (142, 142, 3). The full
dataset for all the 11,093 samples is represented by a 4D input
matrix of real numbers with dimensions (11903, 142, 142, 3).

B. CLASSIFICATION EXPERIMENTS
Our experiments demonstrate how the design of our
GeneXNet model can be used as a general end-to-end learn-
ing system for classification across multiple cancer tissue
types without performing the prerequisite process of gene
feature selection. We also demonstrate how our model can
specifically target the complex nature of whole-transcriptome
gene expressions and address the lack of training samples,
without suffering from severe overfitting in comparison to
using the current state-of-the-art deep CNN models.

We perform several different multi-class and binary clas-
sification tasks. For binary classification we predict whether
the given sample represents a tumor versus a normal tissue.
For multi-class classification we predict for a given sample
the type of cancer tumor within each site of origin. The
following is an outline of the experiments:

1) We build amulti-tissuemulti-class classifier by training
our model using ALL the data which includes 26 organ
sites covering 33 tumor types.

2) We build a multi-tumor binary classifier for individual
organ sites that relatively had the greatest number of
samples which included 11 sites as shown in table 3.

3) We repeat the second experiment, but this time we
perform transfer learning using the weights of the
pre-trained model from the first experiment. The objec-
tive was to compare the performance between transfer
learning using a pre-trained model and full training.

4) We use transfer learning to build binary classifiers for
organ sites that did not have sufficient data to be trained
independently. These included Bile Duct and Esopha-
gus which only had 45 and 147 samples respectively.

C. TRAINING, OPTIMIZATION AND EVALUATION
We use stratified random sampling to divide our datasets
into 85% for training/validation and 15% for final testing.
We train all models using stratified k-fold cross-validation
experimenting with different fold sizes. We use the validation
data to optimize the hyperparameters of our models while the
test data is strictly used only once as an independent dataset
to evaluate the final performance.

Training a deep multi-layer CNN architecture like
GeneXNet is a very complex optimization problem as it
involves non-convex loss functions [53]. Among the chal-
lenges we faced inmodel optimization is the very high dimen-
sional landscape of the network weight space resulting from
training the network with the whole-transcriptome wide gene
expressions for every tumor sample. To overcome these prob-
lems, we train our model using mini-batch Stochastic Gradi-
ent Descent (SDG) with an adaptive learning rate optimiza-
tion algorithm [48]. We experiment with Adam [39], Ada-
Grad [40] and RMSprop [48]. We start with a learning rate
of 1e−4 and divide it by half when the validation loss plateaus
for more than 50 epochs. We evaluate the performance of
our GeneXNet model with different architectures and sizes
by tuning the parameters θD, θR with values (0, 0.25, 0.5 and
1) and θk with values (32, 64). These parameters define the
percentage of dense and residual sub-blocks in the network
and the number of filters used in the convolution layers.

We evaluate the classification performance of our
GeneXNet models using the receiver operating character-
istics (ROC) curves [54]. For all experiments, we report
the average classification accuracy and ROC area under
the curve (AUC) on the Test dataset. The ROC AUC has
an advantage of being less sensitive to changes in class
distribution as it summarizes the performance over a range
of tradeoffs between the true positive and false positive
rates [54]. To overcome any potential impact on the classifi-
cation performance due to class imbalance, we experimented
with two different methods for addressing class imbalance.
We used Synthetic Minority Over-sampling [59] and Adap-
tive Synthetic Sampling [60].

We also evaluate the performance of our model in compar-
ison with some of the current state-of-the-art CNN models
specifically designed for computer vision tasks. We perform
the same multi-class classification task using all the data but
replacing our model with the publicly available implementa-
tions of ResNet [36], [46], DenseNet [33], NasNet [32] and
MobileNet [31], [35].
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TABLE 2. Results of multi-tissue classification using 26 organ sites
covering 33 tumor types.

D. RESULTS
The results of the first experiment which performed multi-
class classification using ALL the data including 26 organ
sites covering 33 tumor types are shown in table 2. Our
GeneXNet model was able to achieve excellent results with

TABLE 3. Results of multi-tumor binary classification for 11 individual
organ sites.

an overall classification accuracy of 98.93% and a ROCAUC
of 0.99 on the test dataset. The results show that our model
achieved 100% accuracy on 14 different tumor types, even
for some tumor types which had very little human samples
such as: Bile Duct (CHOL), Eye (UVM) and Pleura (MESO)
which only had 45, 80 and 86 samples respectively.

The results of the second experiment which performed
binary classification for 11 selected individual organ sites are
shown in table 3. Our GeneXNet model was able to achieve
100% accuracy for 8 different tumor types and between
95.35% to 99.42% accuracy for the remaining tumors.

The results of the third and fourth experiments which
performed transfer learning are also shown in table 3. The
results show that transfer learning achieved excellent results
which are comparable to those achieved using full training.
Transfer learning was able to solve the problem for tumor
sites such as Bile Duct and Esophagus which did not have
sufficient data to be trained independently. By finetuning the
pre-trained model, we were able to achieve 92.31% accuracy
for Esophagus and 85.71% accuracy for Bile Duct despite that
these sites only had 147 and 45 samples respectively.

The results of transfer learning have demonstrated how
our pre-trained model was able to effectively function as a
generic model for cancer classification. The comprehensive
genomic signatures learned by our network allowed perform-
ing very efficient transfer learning to solve one of the biggest
challenges in cancer classification which is lack of patient
samples. We demonstrated how transfer learning can be used
to build classifiers for cancer tumors which are lacking suffi-
cient patient samples to be trained independently.

The results for evaluating the performance of our
GeneXNet model in comparison with state-of-the-art
CNN models is shown in table 4. A comparison between the
ROC curves for the different models is shown in Fig. 5. These
results demonstrate that our GeneXNet model consistently
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FIGURE 5. Comparison of ROC curves for multi-tissue classification
between our GeneXNet model and state-of-the-art CNN models. Our
model produced a much higher ROC curve and outperformed other
models by a large margin.

outperformed other CNN models by a large margin. The
classification accuracy achieved by our model is 98.93%
which is significantly higher than the other models which
achieve an accuracy below 37%. Fig. 5 shows that our model
produced a much higher ROC curve in comparison to the
other models. To provide more insight on this degradation in
performance for state-of-the-art models, Fig. 6 shows a com-
parison between the training and validation curves for each
model by plotting the cross-entropy loss across the training
epochs. Fig. 6 demonstrates that training these state-of-the-
art models which were specifically designed for computer
vision tasks, suffered from severe overfitting when presented
with the underlying dataset that includes whole transcriptome
gene expressions from multiple tumors types.

On the other hand, our GeneXNet model was able to
achieve high accuracy in multi-tumor classification while
avoiding overfitting. This ability is attributed to the archi-
tecture of our model that is designed specifically to target
the complex nature of gene expressions and which incorpo-
rates both dense and residual learning layers that perform
a regularizing effect which allows the network to overcome
overfitting.

Our experiments have demonstrated how our model can
be used for classification across multiple cancer tissue types
without performing the prerequisite gene feature selection.
Our model has allowed training deeper network architectures
with complex data like whole-transcriptome gene expres-
sions, despite the large number of genes. Our GeneXNet
managed to address the lack of training samples, without
suffering from severe overfitting in comparison to other
CNN models.

The experiments demonstrated that our model design
which combines both dense and residual learning layers,
helps avoid overfitting and degradation in performance as
the network depth increases. The dense layers provide more
direct access to the gradients from the loss function and

FIGURE 6. Comparison of training and validation cross-entropy Loss for
multi-tissue classification, between GeneXNet and other models. Our
model achieved minimum loss while other models suffered severe
overfitting. Dashed curves are training and solid are validation.

TABLE 4. Classification performance of GeneXNet in comparison with
state-of-the-art CNN models.

the input, while the residual layers with identity mappings
provide a direct path for information propagation in the for-
ward and backward passes.

E. RESULTS FOR VISUALIZING CLASS-DISCRIMINATIVE
LOCALIZATION MAPS
We apply the visualization procedure to identify a class dis-
criminative Gene-Class-Activation-Map (Gene-CAM) to the
underlying dataset to produce a Gene-CAM for each of the
33 individual tumors and then visualize them using heatmaps.
Fig. 7 shows the resulting heatmaps of four selected tumor
types (Breast, Liver, Stomach and Uterus). By mapping the
resulting Gene-CAM to each input sample the network was
able to identify a subset of 75 discriminative genes. For visu-
alization, we apply a threshold where each heatmap shows
the top 20 genes influencing the underlying tumor across 20
random samples. The rows represent genes, the columns rep-
resent samples and the values are the gene expression levels.
The gene symbols are displayed on the right of each row with
the percentage of samples that have also identified this gene
in their Gene-CAM. Eachmap is a visual representation of the
discriminative genes used by the network to correctly classify
the tumor.

The strength of our method is that the network automati-
cally identified a small subset of class-discriminative genes
out of the total 60,483 genes originally included in each
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FIGURE 7. Visualizing class-discriminative localization maps highlighting the important regions in the gene expressions which influenced the
tumor class prediction. Each map shows the top 20 genes across 20 random samples and is a visual representation of the discriminative genes
used by our network to correctly classify the tumor. The rows represent genes, columns represent samples and the values are the gene
expression levels.

individual sample. What was also very interesting is that the
network automatically identified the TP53 gene as one of
the top features common across all tumor types. This result
implicitly validates our procedure since TP53 is considered
the most commonly mutated gene in all cancers which pro-
duces a protein that suppresses the growth of tumors [3].

We also observed from our experiments that some of the
identified discriminative genes were also common in at least
30% of samples across different tumor types even though
the tissues belonged to different organ sites. This subset
includes: TP53, TTN, MUC16, LRP1B, CSMD3, PIK3CA,
MUC4, RYR2, USH2A, FLG, PTPRD, CSMD1. These dis-
criminative genes identified by the network have great bio-
logical significance for early cancer diagnosis. For example,
themutations of PIK3CAgene are one of themost common in
Breast cancer and are reported in over one third of cases [62].
Mutations in TTN gene are associated with one of the most
common inherited cardiac disorders known as Hypertrophic
Cardiomyopathy (HCM) [61]. MUC16 has a biological role
in the progression of Ovarian tumors and there has been
substantial work to develop therapeutic approaches to erad-
icate Ovarian tumors by targeting MUC16 [63]. LRP1B
is frequently mutated in Melanoma, Non-small Cell Lung
cancer (NSCLC) and other types of tumors. LRP1B is also
a potential contributor to the emergence of chemotherapy
resistance while treating cancer patients [64]. CSMD3 was
identified as the second most frequently mutated gene in

Lung cancer after TP53 [3]. MUC4 is a membrane bound
mucin gene responsible for progression of several cancers due
to its anti-adhesive properties including Bile Duct, Breast,
Colon, Esophagus, Ovary, Lung, Prostate, Stomach and Pan-
creas [61]. Mutations of RYR2 gene are a common cause
of abnormal heart failures such as Catecholaminergic Poly-
morphic Ventricular Tachycardia (CPVT) [61]. PTPRD is
frequently mutated in various types of cancer, including
Glioblastoma, Melanoma, Breast and Colon [3]. CSMD1 has
been found as a tumor suppressor in the development of
Breast cancer [61].

F. RESULTS FOR VISUALIZING MOLECULAR CLUSTERS OF
INTERMEDIATE FEATURE MAPS
We apply the visualization procedure for observing the
molecular clusters formed by intermediate gene expression
feature maps to the underlying dataset. We use a GeneXNet
with four blocks to produce amolecular clustering of the gene
feature maps (Gene_Cluster_Maps) after each block. Each
Gene_Cluster_Map represents a molecular clustering that
groups the tumors by organ site based on the class discrimi-
native gene localizations extracted from the gene expressions
and learned by the network after each block.

Fig. 8 shows a heatmap of the Gene_Cluster_Map for
the last block filtered for clusters with at least 200 samples
per cluster, which resulted in a total of 17 cluster groups
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FIGURE 8. Visualizing molecular clusters of intermediate feature maps to
reveal genomic relationships across multiple tumors that appeared
influential in cancer progression. The heatmap shows a Gene Cluster Map
of 17 cluster groups comprising 33 tumors across 26 organ sites.

comprising the 26 organ sites. The rows represent gene local-
ization feature maps, the columns represent samples and
the values are the activations of feature maps. The heatmap
visually illustrates the genomic relationships and high-level
structures of the cancer tumor types across the different organ
sites. We observed from our experiments that the number of
cluster groups learned by the network in the Gene Cluster
Maps decreases as we move towards the deep layers in the
network. The feature maps generated after the first block
seem to have little in common across the different tumors
which is evident by the very large number of resulting cluster
groups. As we reach the final network block, we observed
that the Gene_Cluster_Map has less number of clusters
where more clusters have merged together to finally reach
only 17 cluster groups. These results have great significance
since they demonstrate that as we go deeper in the network,
the gene feature maps become more abstract in the sense that
they are less representative of the individual tumor samples
and more representative of the tumor classes.

We further analyzed the resulting cluster groups in terms
of membership of tumor organ sites among the groups as
in [4]. We observed that although tissue organ site was mostly
a dominant factor for cluster formation, but some clusters
also included tumor types across multiple different organs.
We also observed that clusters were formed for tumors
which appeared to have similar organs or tissue character-
istics. For example, Bile Duct and Liver tumors clustered
together including CHOL and LIHC. Brain and Nervous
system tumors clustered together including LGG and GBM.
Kidney and Adrenal Gland tumors formed multiple clusters
including KICH, KIRC, KIRP and ACC. Lymph Nodes and
BoneMarrow tumors clustered together including DLBC and
LAML. Many small overlapping clusters formed together
for Stomach, Colorectal, Esophagus and Pancreas tumors
including STAD, COAD, READ, ESCA and PAAD. Finally,
the remaining clusters were dominated by mostly tumors
of a single organ but also included less than 5% of other
tumors. These results are very much inline with the molecular
characteristics of the underlying dataset reported in [4].

Visualizing the evolution of molecular clusters formed
by intermediate gene feature maps, has demonstrated how
our proposed GeneXNet is functioning as a comprehensive
multi-tumor cancer classifier. The network was capable of
learning the complex molecular signatures and genetic alter-
ations shared by tumors across different tissue types and
organ sites. This also demonstrates how the network was able
to perform efficient transfer learning by using the pre-trained
models as a generic multi-tumor feature extractor to build
additional classifiers for any individual tumor types.

VII. CONCLUSION
We proposed a deep learning framework for cancer diag-
nosis by developing a multi-tissue cancer classifier based
on whole-transcriptome gene expressions. We introduced a
new CNN architecture specifically designed to address the
complex nature of whole-transcriptome gene expressions and
demonstrated how it can be used as a general end-to-end
learning system for classification across multiple cancer tis-
sue types without performing the prerequisite process of gene
feature selection. We demonstrated how the genetic signa-
tures learned by our model can be used for transfer learning
to build classifiers for other types of cancer tumors which are
lacking sufficient patient samples to be trained independently.
We contributed in providing more confidence in using deep
learning for medical diagnosis by introducing visualization
procedures to provide biological insight on how our model is
performing classification across multiple tumors.

We believe there is great potential for further research
to expand on our work for cancer diagnosis. Our work
focused on designing a multi-tissue cancer classifier based on
Total RNA Sequencing using gene expressions from coding
mRNA. Future work can explore learning more complex
genomic signatures by including Omics data using other
multiple forms of NGS platforms and experimental strate-
gies such as DNA hypermethylation, aneuploidy, non-coding
microRNA, DNACopy Number Variants (CNV) and Reverse
Phase Protein Arrays (RPPA). This will provide the opportu-
nity to create a more comprehensive repository of pretrained
models readily available for cancer classification using trans-
fer learning. Future work can also target cancer diagnosis
and improving classifier performance by designing Ensemble
Models which could integrate multiple genome-wide plat-
forms by learning molecular signatures across multiple forms
of Omics data.
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