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ABSTRACT In mobile wireless multimedia sensor networks’ image compression task collaborations,
the existing methods do not consider the dynamic changes in the processing ability and the locations of
the cooperative nodes. when processing the image compression tasks, these methods will cause frequent
interruptions and result in data re-transmission for those tasks. in this paper, an image compression task
collaboration algorithm based on dynamic alliance is proposed to solve this problem in mobile wireless
multimedia sensor networks. first, a dynamic task alliance is established by the camera node based on the
location, computing capability and resource usage of ordinary nodes. then, the location and average moving
velocity of the camera nodes and ordinary nodes are considered to calculate the task stable execution time. the
image compression task is divided into an image transfer sub task and an image compression sub task based
on the task stable execution time. finally, an image compression task collaboration allocation optimization
model is established according to the transmission time, the execution time, the execution cost, and the
network energy consumption. the gradient method is used to realize the cooperative allocation of image
compression tasks. simulation results show that the proposed algorithm can realize task load balancing,
reduce the execution time, and network energy consumption.

INDEX TERMS Mobile multimedia sensor networks, image compression, task coordination, task decom-
position.

I. INTRODUCTION
At present, with the complex and changeable monitoring
environment, the simple data obtained by traditional wireless
sensor networks cannot meet the overall needs of environ-
mental monitoring. It is urgent to introduce the image, audio,
video, and other multimedia information data into the envi-
ronment monitoring activities based on wireless sensor net-
works. Thus, wireless multimedia sensor networks (WMSN)
have emerged. The WMSN is a new type of sensor network
that is composed of sensors equipped with the camera, micro-
phone, and other environmental data acquisition functions
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[1]. Mobile multimedia sensor networks (MWMSN) adds
mobile modules on the basis of the WMSN, attaching mul-
timedia sensor nodes to movable objects, such as wildlife,
robots, and drones. Mobile wireless multimedia sensor net-
works have been applied in various monitoring applications,
such as battlefield environments [2], intelligent transportation
[3], smart homes [4], ecological environment monitoring [5],
[6], and medical health monitoring [7]–[12]. The literature
review includes the routing, energy efficient, image compres-
sion and task collaboration.

A. ROUTING SCHEMES OF WMSN
The transmission of multimedia information in wireless sen-
sor networks is a challenging task and is an important factor
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that affects its widespread. The literature [13] proposes a col-
laborative multipath routing protocol for image transmission
in wireless multimedia sensor networks. This method defines
a bandwidth-power aware cooperative multi-path routing
problem (BP-CMPR), and proposes a polynomial heuristic
algorithm to solve this problem. This algorithm can effec-
tively reduce the energy consumption through multi-node
cooperation and resource allocation. To reduce the energy
consumption, clustering routing algorithms are proposed in
literature [14]–[16]. The literature [14] proposes the low-
energy adaptive clustering hierarchy (LEACH) protocol to
evenly distribute the energy load among the sensors in the
network. This method uses localized coordination to enable
scalability and robustness for dynamic networks. It incor-
porates data fusion into the routing protocol to reduce the
amount of information that must be transmitted to the base
station. Simulation results show that LEACH can distribute
energy dissipation evenly throughout the sensors. In the liter-
ature [15], an improved low-energy adaptive clustering hier-
archy protocol formobile sensor networks has been proposed.
The method not only prolongs the network lifetime, but
also reduces the packet loss using fuzzy inference systems.
To save energy in wireless sensor networks, the literature
[16] proposes hierarchical protocols based on a clustering
hierarchy. In this method, the nodes with higher remaining
energy could be used to collect data and transmit it to a
base station. Simulation results show the effectiveness of this
approach.

To ensure the real-time performance of QoS, an improved
real-time routing protocol (SPEED-RR) with a QoS guaran-
tee based on the SPEED protocol is designed in the literature
[17]. This protocol takes full account of the residual energy
of two-hop neighbor nodes. For different services, a control
method based on the node sending, receiving data rate and
cache queue length is adopted to distinguish the congestion
control. It is observed that the proposed SPEED-RR protocol
can reduce the energy consumption and the transmission
delay. To efficiently realize cloud storage, processing and
transmission of multimedia data, the literature [18] develops
a quality of service (QoS) multimedia applications guarantee
protocol for WMSN. First, an opportunistic dynamic mul-
timedia cloud platform is proposed based on the changes
in the packet error rate, decodable frame ratio and peak
signal to noise ratio (PSNR) of the channel quality. Then,
the optimal multi-relay hierarchical collaborative multimedia
transmission scheme is designed and implemented based on
the collaborative multimedia stream. It is observed that the
proposed protocol can meet the QoS requirements of wireless
sensor networks (WSN) multimedia applications.

B. ENERGY EFFICIENT SCHEMES OF WMSN
To ensure quality of service (QoS) and minimize energy
consumption, the literature [19] proposes the design of a
cross-layer multipath routing (CLMR) scheme. The CLMR
is designed to determine a suitable multipath and to send
the multimedia packets according to their importance.

A cross-layer design between application, network, and phys-
ical layers is adapted to obtain optimal routing decisions.
The simulation results show that the CLMR has an improve-
ment in performance. The literature [20] proposes an intelli-
gent video packet scheduling protocol based on power effi-
cient multimedia routing (PEMuR). To maximize the QoS of
WMSN and minimize the energy consumption in the video
communication, the PEMuR protocol is used to select the
most energy-efficient routing path. It manages the network
load according to the residual energy of the nodes, and uses an
energy threshold to prevent useless data transmission. In the
case of limited available channel bandwidth, the protocol can
selectively discard unimportant packets before transmission.
The simulation results show the effectiveness of the proto-
col. The literature [21] proposes an adaptive routing protocol,
which considers a mobility parameter during route establish-
ment to meet the QoS and energy efficiency. The remaining
energy, hop count, link quality index and mobility factor for
path formation are used in this protocol. The multi-objective
approach for dynamic routing in WMSN is proposed in this
research. The experimentation results show that mobility
parameter extensions improve the network performance.

The energy consumption of wireless transmission in ordi-
nary sensor networks is relatively high. Thus, the energy
consumption of collection and processing can be ignored.
However, the WMSN collects rich information and larger
amounts data. The literature [22] conducts energy consump-
tion experiments on wireless sensor nodes. The experimental
results show that the energy consumption obeys a uniform
distribution. It means that the energy consumption of node
image acquisition, fast Fourier transformation (FFT) process-
ing and wireless transmission is basically same. Therefore,
WMSN must also reduce the network energy consumption
when meeting high quality of service (QoS) requirements.
However, a single multimedia sensor node has weak data pro-
cessing capability, less computing resources, and less energy
resources. When processing image compression tasks, it is
necessary to achieve efficient task processing by means of
cooperation between sensors.

C. IMGE/VIDEO COMPRESSION EFFICIENT SCHEMES
A low-complexity energy efficient scheme is proposed in
literature [23] to improve the transmission quality of com-
pressed images. The images are compressed by the embedded
zerotrees of wavelet transforms and the set partitioning in
hierarchical trees algorithms in the WMSN. A simple post-
inverse discrete Fourier transform modified mu nonlinear
transformation (mu-MNLT) is used in this scheme. Simula-
tion results show the effectiveness of the proposed scheme.
A distributed video coding scheme and its improvements
are present based on distributed video codec and its asso-
ciated knowledge in the literature [24]. This algorithm can
enhance the coding efficiency of the severe motion region and
improve the decoded image. To solve the problem of limited
energy and computing ability in wireless multimedia sensor
networks, a method of image compression is proposed based
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on multi-node cooperation in the literature [25]. The camera
nodes are connected to ordinary neighbor nodes and then to
cluster-heads to construct a network structure in this method.
The process of image compression and transmission is dis-
tributed in cooperative clusters. A cooperative method is used
to implement the multi-node cooperation in the compression
process. It is observed that the method can prolong the net-
work lifetime and balance the network energy consumption.
However, the overlapping transformation is used to compress
the image in this method. The energy consumption is unbal-
anced when the cooperative nodes are too few. To reduce the
energy costs of communication, the literature [26] propose
a scheme H-K compression. A simple lightweight image
compression algorithm combines the ideas of Huffman cod-
ing and K-means clustering. The H-K compression applies
K-means clustering for pixel color grouping and Huffman
coding for the group color encoding. The method combines
the two schemes into one algorithm which can reduce the
computational cost. It is observed that the proposed schemes
can improve image compression and reduce power usage.

D. TASK COLLABORATION SCHEMES OF MWMSN
Currently, task collaboration for wireless multimedia sensor
networks is in its infancy. In the literature [27], a visual
processing task allocation framework is proposed for low-
speed (such as pedestrian speed) MWMSN. It can realize
visual task processing and multi hop resource sharing in low-
speed MWMSN. The evolutionary self-learning mechanism
of genetic algorithm is used to adapt to the system parameters.
It is observed that the process reduces network delay and
prolong network lifetime. In the literature [28], the comput-
ing missions from edge cloud are offloaded and executed
cooperatively by vehicles in vehicular cloud (VC). To solve
the problem of computation offloading through the vehicular
cloud (VC), the computing missions are further divided into
computing tasks with interdependency. The computing tasks
are executed in different vehicles in the VC to minimize the
overall response time. A task load based stability analysis
of the VCC system is presented for the cases where some
vehicles within the VC are offline. Numerical results demon-
strate that the proposed scheme can improve the utilization of
computing resources. In the literature [29], a novel approach
is proposed to minimize energy consumption of processing
an application in MWSN. By introducing the concept of
cooperation, the logics and related computation tasks can
be optimally partitioned. The solution can be treated as a
joint optimization of computing and networking resources.
An energy efficient cooperation node selection strategy is
proposed to offer a tradeoff between fairness and energy con-
sumption. Simulation results to show the significant energy
saving of the proposed solution. In the literature [30], a cen-
tralized optimal task allocation algorithm for multihop wire-
less networks (COTAM) is proposed to extend the network
lifetime. To extend the usability of the approach, a distributed
optimal task allocation algorithm (DOTAM) is proposed
based on Dantzig-Wolf decomposition. It is observed that the

proposed algorithm can extend the network lifetime. In the
literature [31], to balance network load, a task allocation
algorithm is proposed based on score incentive mechanism
(TASIM) for WSNs. In TASIM, the score is proposed to
reward or punish sensor nodes’ task execution in cluster-
based WSNs. The cluster heads are responsible for task allo-
cation and scores’ calculation. It is observed that the TASIM
can balance network load and reduce the network lifetime.

Most of the existing task allocation algorithms are based on
multi-objective optimization methods, while accounting for
the task completion time [31], [32], energy consumption [30],
[33], [34], load balancing degree [33], [35], and service relia-
bility [36], [37]. Most of these solutions adopt heuristic meth-
ods, which are deterministic and non-retrospective. Even if
the task is found to be inappropriate later in the algorithm’s
execution, the task assignment decision cannot be changed
[38]. These existing methods do not take into account the
dynamic changes in the processing capabilities and the loca-
tions of the cooperative nodes in the image compression task
allocation. Applying these methods directly to the moving
scene will cause frequent interruptions of image compression
tasks and task data re-transmission.

E. CONTRIBUTION AND ORGANIZATION
To reduce the amount of the task data re-transmission in the
MWMSN, we design an image compression task cooperation
algorithm based on dynamic alliance (ATDA). The image
compression task is divided into an image transfer subtask
and an image compression subtask based on the task stable
execution time, the principles, and the constraints of task
decomposition. The simulation results show that the proposed
algorithm can achieve better performance compared with
the average distribution algorithm (ADA) and the TASIM.
Compared with existing image compression task coordina-
tion algorithms, our proposed algorithm contributes through
the following aspects:

1) The dynamic coordination alliance is used to process
the image transmission and compression tasks. Accord-
ing to the location, processing capacity and resource
usage of the union cooperative nodes, the dynamic
coordination alliance is established by union leader
nodes.

2) The task stable execution time is used to decompose
the image compression tasks into the image transmis-
sion subtasks and the image compression subtasks. The
location and average moving speed of the nodes are
considered to calculate the task stable execution time.

3) To solve the problem of task retransmission caused
by node movements, a multi-round task decomposition
mechanism is adopted to decompose the image com-
pression tasks by considering the task stable execution
time.

4) The image compression task is assigned by dynamic
alliance. According to the execution time, the execution
cost and network energy consumption of the image
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FIGURE 1. The topology of the task collaboration alliance network.

compression sub-task, a dynamic task allocation algo-
rithm is proposed.

This paper is organized as follows. Section 2 intro-
duces the assumptions, definitions, task collaboration
alliance, and topology of the task collaboration network.
Section 3 describes the algorithm for the image compression
tasks decomposition. The Section 4 shows the algorithm for
the dynamic task allocation. Simulation results and analysis
of the algorithms are presented in Section 5. Finally, the con-
clusions are drawn in Section 6.

II. TASK COORDINATION NETWORK MODEL
A. TOPOLOGY OF TASK COLLABORATION NETWORK
The topology of the network is shown in figure 1. It is a cluster
networks and there are two task collaboration alliances in
the network in figure 1. The nodes in the task collaboration
network are divided into union leader nodes and union coop-
erative nodes. The union leader node (ULN) is the camera
node that is initiating a task allocation actively. The set that
consists of these nodes is called the union leader set (ULS).
The union cooperative node (UCN) is the common node that
acquires the tasks from ULN and performing tasks. The set
that consists of these nodes is called the union cooperative
set (UCS). The task collaboration alliance (TCA) consists of
a union leader node and its union cooperative nodes. The
union leader nodes are mainly responsible for image data
acquisition, and they send the original image data to the
alliance collaboration nodes. The union cooperative nodes
cooperate in image compression and send these data to the
Sink node after the image compression task is completed.

The set of ULS in an image compression task collaboration
network is assumed to be SI = {si : 1, 2, ..,m}, and the set
of UCS is siJ = {sij : 1, 2, .., n}. The communication radius
of the union cooperative node sij is rc,ij. The space distance
between the si and the other union cooperative nodes is ζ (si,
siJ ). The location of the union leader node si is li = (xi, yi),
and the location of the union cooperative node sij is lij =

FIGURE 2. Calculation diagram of the task stable execution time.

(xj, yj). In this model, the nodes can obtain their neighbor
nodes’ locations in their communication radius through an
existing localization technique at any given time. The average
moving velocity of the si and sij are vi, and vij respectively.
The relative average moving velocity between the si and its
union cooperative nodes is denoted vi,ij, and their relative
direction angle is θ . It is assumed that ach sensor can move
and obtain the moving direction and speed of its neighboring
nodes.

The task stable processing time (TSPT) means that all of
the union cooperative nodes will not leave from the TCA
because of their mobility at that time. The task stable execu-
tion time Ti,sd of TCA (si, siJ ) is described as in figure 2 and
formula (1).

Ti,sd = min
j=1

n


√
r2c,i − ξ (si, sij)

2 sin2 θ + ξ (si, sij) cos θ

vi,ij
(
vi, vij

)

(1)

In figure 2, the solid line arrows denote the average moving
velocity and the direction of si and sij. The dotted arrows
denote the relative average moving velocity vi,ij and their
relative directions between the si and its union cooperative
node sij. The relative velocity between the node si and the
other nodes is denoted as vi,I∪J . In figure 2, the moving
distance of the union cooperative node sij moves away from
the communication range of the union leader node si, and
it is denoted sijsib. Therefore, the union leader node si can
calculate the residence time of the union cooperative node sij
in the communication range of the union leader node si, and
it also can calculate the task stable execution time Ti,sd of the
TCA.

B. TASK COLLABORATION ALLIANCE
When task collaboration is needed by camera node si, it will
send the task collaboration request message (C-request) as the
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FIGURE 3. Formation process of task cooperative alliance.

ULN to its neighboring nodes. The task collaboration request
message of si is < Pi,max , Ci, ci,j, Ti,j, Ti,sd , prij >.

• Pi,max denotes the maximum cost of the union leader
node si that is willing to pay for the UCS.

• Ci denotes the total number of image compression sub-
tasks of the union leader node si that must be completed.

• ci,j denotes the total number of image compression sub-
tasks of the union cooperative node si,j distributed by the
union leader node si.

• Ti,j denotes the task execution time for the union coop-
erative node si,j to complete task ci,j. It is estimated by
si,j and will be sent to the si.

• Ti,sd denotes themaximum time of the union cooperative
node si,j completing the task ci,j that the si can endure.
We let Ti,sd be equal to TSPT.

• prij denotes the penalty rate of the union leader node
si to the union cooperative node si,j. If Ti,j is larger
than Ti,sd , then the union cooperative node si,j failed to
complete the image compression task ci,j as required.
Then, the union leader node si must pay a fine to the
union cooperative node si,j based on this penalty rate.

The formation process of TCA is shown in figure 3.The
camera node si send the C-request to its neighboring nodes
si,1, si,2, si,3, si,4. After these nodes received the C-request,
they will consider whether to join the alliance according to
their own power, calculation ability, task quantity, task com-
pletion time, and cost. In figure 3, si,3, si,4 refuse to join the
alliance according to their own ability and send the C-reject
message to si. Nodes si,1, si,2 agree to join the alliance and
send the ask collaboration accept messageC-accept to si. The
C-accept message is designed as < pj,0, cj,max , tc,j, vj, lj >.

• Pj,0 denotes the cost of completing an image compres-
sion subtask, which is assessed by the union cooperative
node sij according to its own ability.

• cj,max denotes the maximum number of image com-
pression subtasks that can be completed by the union
cooperative node sij.

• tc,j denotes the time of completing an image compres-
sion subtask, which is assessed by the union cooperative
node sij according to its own ability.

• vij denotes the average moving speed of the union coop-
erative node si,j.

• lij denotes the geographical position of the union coop-
erative node si,j.

The TCA consists of camera node si and sensor nodes si,1,
si,2. If all of the sensor nodes refuse to join the TCA and there
is only si in TCA, then the camera node must complete the
task alone.

III. IMAGE COMPRESSION TASKS DECOMPOSITION
A. TASK DECOMPOSITION PRINCIPLE
In the process of complex task decomposition, it is necessary
to define the execution conditions of the tasks. When a com-
plex task is divided into several simple subtasks, the subtasks
are independent and are coupled with each other [39]. When
the number of subtasks is too small, because the granularity
of decomposition is not sufficient, more resources are still
needed, and the execution is difficult, which affects the exe-
cution efficiency. When the number of subtasks is too large,
the difficulty of summarizing the execution results will also
affect the execution efficiency. To improve the efficiency of
task execution, certain principles should be followed in the
process of task decomposition. The main task decomposi-
tion principles include independence, reducibility, hierarchy,
equilibrium, and termination, which are as follows.

1) The principle of independence refers to the criterion
that the sensor nodes should be able to complete the
decomposed subtasks independentlywithout relying on
other sensor nodes.

2) The principle of hierarchy refers to the decomposition
of complex tasks into moderately complex tasks, and
then the decomposition of moderately complex tasks
into less complex tasks.

3) The principle of reducibility refers the criterion to that
after a complex task is divided into multiple subtasks,
the execution results of each subtask should be consis-
tent with the results of the individual execution of the
complex task.

4) The principle of balance refers to the criterion that
the granularity of these subtasks cannot be too large
when the complex tasks are decomposed into multiple
subtasks.

5) The termination principle refers to the criterion that
the task decomposition should be terminated when they
can be executed by sensor nodes alone.

B. TASK DECOMPOSITION CONSTRAINTS
Compared with other communication networks with fixed
infrastructure, a mobile sensor network has limited network
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communication capability. Therefore, a task cannot be
decomposed infinitely solely to reduce the complexity of the
task. Otherwise, the precious energy, computing and com-
munication resources of the sensor network will be wasted.
Even due to the limitations of the network environment and
communication resources, a large number of lag tasks cannot
be executed, which affects the efficiency of the task execu-
tion. The subtasks of the task decomposition should meet the
following main objective constraints:

1) A time sequence constraint means that it is necessary
to execute task ai first and then task aj at the beginning
of the task when the execution time of task ai is earlier
than that of task aj.

2) A synchronization constraint means that task ai and
task aj can execute at the same time when they have no
temporal constraints and no information interaction.

3) Serial constraint means that task ai and task aj must be
executed one by one in order when the completion of
task ai is the premise of task aj.

4) The parent child constraint means that the parent task ai
is completed when n subtasks are completed, and task
ai consists of n (n > 2) subtasks.

5) A Coupling constraints means that the executions of
task ai and task aj need information interaction, and
they are prerequisites for each other.

C. IMAGE COMPRESSION BASED ON SVD
The efficient singular value decomposition (SVD) method
in literature [8] is adopted in image compression. The SVD
image approach has attracted much attention due to its suit-
ability for segmentation [8]. It is a commonly used numerical
analysis tool for matrices [40]. The decomposition of any
matrix A (m × n) can be calculated in formula (2).

A = U
∑

V T (2)

where, U is the orthogonal matrix of m×m, and its column
vector is the left singular vector. V is an orthogonal matrix of
n×n whose column vector is a right singular vector.

∑
is a

singular diagonal matrix m×n, and its values on the diagonal
are singular values, where the values outside the diagonal are
zero. The

∑
can be expressed by formula (3).

∑
=

[∑
1 0

0 0

]
r

m− r
r n− r

(3)

In formula (3),
∑

1 is the diagonal matrix, and
∑

1 =

diag(σ1, σ2, . . . , σr ). Where, σ1 ≥ σ1 ≥ . . . ≥ σr ≥ 0, σ
is the singular value, and r is the rank of A of the matrix. σ
is similar to the eigenvalue and decreases rapidly. In general,
the singular values of the top 10% (or even 1%) account for
more than 99% of the sum of all singular values. Therefore,
the matrix can be approximated by the first k singular val-
ues. Digital image has the property of matrix structure, and
SVD method can be applied to image compression. Thus,

the image compression rate ρ can be calculated in formula
(4).

ρ =
mn

k(m+ n+ 1)
(4)

D. IMAGE COMPRESSION TASKS DECOMPOSITION
MODEL
According to the time sequence constraint, the si should
transmit the image data to the union cooperative node first
when the image compression task cooperates. Then, the union
cooperative nodes compress the image. Therefore, the image
compression task is divided into an image transmission sub-
task and an image compression subtask.

Suppose that the number of image transmission subtasks
assigned by the union leader node si to the union cooperative
node sij is cij. We assume that the data length of an image
transmission subtask is Dij, and then, the data size of the
image transmission subtask assigned to the union cooperative
node sij is cijDij. When the union cooperative node sij receives
the image transmission subtasks cij from the union leader
node si, the number of image compression subtasks received
by the union cooperative node sij is cij.

The time for completing the task cij and the TSPT are equal
in the collaboration alliance (si, sij) in that the cij can be solved
by formula (5).

cijDi,1
/
rt,i + cijtc,1 = Ti,sd (5)

The number of image compression subtasks cij allocated to
the union cooperative node sij by union leader node si in the
stable execution time can be calculated in formula (6).

cij =



⌊
Ti,sd rt,i

/
(Di,1 + tc,1rt,i)

⌋
j = 1

(
Ti,sd −

∑j−1

j=1

Ti,sd
Di,j + tc,jrt,i

)
rt,i

(Di,j + tc,jrt,i)

 1 < j ≤ n

(6)

Here, cij is the number of image transmission subtasks
assigned to the union cooperative node sij by the union leader
node si. Ti,j is the task stable execution time of the task
collaboration alliance (si, sij). rt,i is the data transmission
rate of the union leader node si, and tc,j is the time for the
union cooperative node sij to process an image compression
subtask. It is evaluated by its own ability for evaluation when
the task collaboration alliance is established. The time tc,j
is transmitted from the union cooperative node sij to the
union leader node si. After the task collaboration alliance
is established by the union leader node si, first, the union
cooperative nodes are sorted in ascending order according
to the time for processing an image compression subtask.
Second, considering the timing of the image transmission
subtask execution, the number of image compression sub-
tasks ci1 of the first union cooperative node si1 (the union
cooperative node with the smallest processing time for an
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image compression subtask) is calculated according to for-
mula (6). Finally, the number of image compression subtasks
of the union cooperative node from si1 to sin is calculated in
order.

When
∑n

j=1 cij < Ci, the union cooperative node cannot
complete in a task stable processing time and the task must
be decomposed. Ci is the total number of image compression
subtasks that the union leader node si should be transmitting.
In this paper, the task decomposition is based on the TSPT,
and the method of multiple rounds is used to decompose the
task according to the time sequence constraint. Here, (k)cij can
be solved by formula (7).

(k)cij =



⌊ (k)Ti,sd rt,i
Di,1 + (k)tc,1rt,i

⌋
j = 1

rt,i(k)Ti,sd −
∑j−1

j=1

rt,i(k)Ti,sd
Di,j + (k)tc,jrt,i

Di,j + (k)tc,jrt,i

 1< j≤n

(7)
(k)Ti,sd is the image compression task stable processing

time of the k th task collaboration alliance. (k)tc,j is the time
of an image compression subtask processed by the union
cooperative node sij in the k th task collaboration alliance. The
number of image compression subtasks (k)cij in the k th task
collaboration alliance is assigned to the union cooperative
node sij by the union leader node si.
The maximum number of image compression subtasks

(k)Cij in the k th task collaboration alliance is assigned to all
of the union cooperative nodes by the union leader node si.
Here, the (k)Cij can be calculated by formula (8).

(k)CiJ =
∑n

j=1
(k)cij (8)

When
∑n

j=1 cij ≥ Ci, the union cooperative nodes can
complete in a task stable processing time. The task execution
time Ti,J estimated by the union leader node si should be less
than or equal to the task stable execution time Ti,sd . At this
time, the union leader node si can calculate the task execution
time Ti,J according to formula (9). Then, we replace the Ti,J
with Ti,sd in formula (6) and recalculate the number of image
compression subtasks cij assigned to the union cooperative
node sij by the union leader node si.

Ti,J = Ti,sdCi
/∑n

j=1
cij (9)

E. MTDA-T ALGORITHM SUMMARY
The multi-round task decomposition algorithm based on
TSPT (MTDA-T) is shown in algorithm 1.

IV. IMAGE COMPRESSION TASKS ALLOCATION
A. TARGET OF TASK ALLOCATION
The targets of mobile multimedia sensor network image com-
pression task allocation are reducing the image compression
task execution time, reducing the network energy consump-
tion, and realizing the load balance.

Algorithm 1 MTDA-T
1:Initialize < Pi,max , C, ci,j, Ti,j, Tsd,ij, prij >;
2: The si sends the < Pi,max , C, ci,j, Ti,j, Tsd,ij, prij >
to the sij

3: The sij sends the tc,j to the sij
4: for (k = 1; k ++; k ≤ a) do
5: si calculates Ti,sd according to formula (1);
6: if(

∑n
j=1 cij ≥ Ci) do

7: si calculates TiJ according to formula (6);
8: si replaces the Ti,J with Ti,sd in formula (3) and

recalculates cij of sij;
9: end if
10: si calculates (k)cij of sij according to (k)Ti,J =

(k)Ti,sdCi
/∑n

j=1
(k)cij;

11: if(
∑n

j=1
(k)cij > Ci −

∑k
k=1

(k−1)Ci) do
12: si calculates (k)Ti,J according to formula (6);
13: si replaces Ti,J with Ti,sd in formula (3) and

recalculates (k)cij of sij;
14: end if
15: end for

Ti,j is the image compression task execution time of the
union cooperative node si,j for completing the task ci,j.
In addition, Ti,j can be calculated by formula (10).

Ti,j = cijtc,j (10)

tc,j is the time for an image compression subtask to be
processed by the union cooperative node sij.
Ej is the energy consumption of the union cooperative node

si,j. It includes the energy consumption of the image compres-
sion task processing Epr,j and the energy consumption of the
image compression task transmission ET ,j. In addition, Epr,j
can be calculated by formula (11).

Epr,j = cijec,j (11)

Here, ec,j is the energy consumption of an image com-
pression subtask processed by the union cooperative node
sij. We consider the radio model and the related parameters
referenced in the literature [41]. The energy consumption of
the union cooperative node sij receives an image compression
subtask and sends an image compressed subtask, which is
defined in formula (12).

ET ,j =
(
(1+ ρ)Dc,jeelec + ρDc,jεfsr2c,j

)
cij (12)

where, Dc,j is the data length of sending an image transmis-
sion subtask, and ρ is the image compression ratio. Here, eelec
is the energy consumption of the electronic equipment of l
bit, and εfs is the energy consumption of the wireless antenna
amplifier. Additionally, rc,ij is the communication radius of
the union cooperative node sij. The total energy consumption
of the TCA can be defined as in formula (13), as follows:

EJ =
∑n

j=1

(
ET ,j + Epr,j

)
(13)
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The network task load balancing degree is the range of
difference between the image compression task execution
time and the total image compression task completion time
for all union cooperative nodes. The mean value of the ratio
(the ratio of the difference value to the total task completion
time) is used to evaluate the load balance degree of theWSNs.
The load balance degree of network task Lb can be calculated
by formula (14).

Lb =
1
n

∑n

j=1

T ′i,J − Tij
T ′i,J

(14)

where T ′i,J is the total time for actually completing the image
compression task Ci, and T ′i,J = maxmc=1(Tij). Ti,j is the time
for the union cooperative node sij to process the number of
image compression tasks cij. According to the formula (14),
the smaller the value of Lb is, the better the loads balancing
is. So the optimum task load balance ratio is 0 in the optimal
case of task allocation. In this case, Ti,j = T ′i,J , it means that
the actual time for all the union cooperative nodes to complete
the task is T ′i,J .

B. TASK ALLOCATION PROBLEM MODEL
The cost of image compression is different due to having
different amounts of power, computing power, and resource
usage of nodes. For the union leader node, the most advan-
tageous aspect is that the lower the energy consumption is,
the better the outcome. The lower the profit is, the better the
outcome, while the higher the task balance is, the better the
outcome.

Suppose that the size of the total image compression task
assigned by the union leader node si is Ci, and the union
cooperative set of TCA is assumed to be as siJ (si1, si2, . . . sin).
The image compression task allocation vector of the union
cooperative node is CN (ci1, ci2, . . . , cin). The cost vector
of completing an image compression subtask for the union
cooperative node is Pn(p1, p2, . . . pn). The utility function of
the k th task collaboration alliance generated by siJ is (k)Ui,J .
Suppose that the total cost of the number of image com-
pression subtasks (k)Ci is (k)PN in the k th task collaboration
alliance. In addition, (k)PN =(k) CiPS/Ci, and PS is the total
cost paid by the union leader node si for task Ci. Here, (k)cij
is the number of image compression subtasks of the union
cooperative node si,j. It is distributed by the union leader node
si according to the utility function of the union cooperative
node set siJ . The number vector of the image compression
subtask is (k)CN = ((k)c(k)i1,ci2, . . . ,

(k) cin). It is assigned to the
union cooperative nodes by the union leader node si in the k th

task collaboration alliance. To obtain the task in the k th task
collaboration alliance, the union cooperative node si,j will
submit the cost of completing an image compression subtask
(k)pj,0 to the union leader node si. The number of image
compression subtasks obtained by the union cooperative node
si,j is (k)cij. In addition, the energy consumption of the union
cooperative node si,j is Ej. The problem model of the task

allocation is as follows:

min
cj≥0

∑n

j=1
(k)pj(k)cij(k)Ej(k)Lb (15)

s.t.
∑n

j=1
(k)cij = (k)Ck (16)∑n

j=1
(k)pj(k)cij ≤ (k)pi,max (17)

(k)cij(k)tc,j ≤ (k)Ti,sd (18)

In formula (18), (k)Ti,sd is the image compression task sta-
ble execution time in the k th task collaboration alliance. Here,
(k)c(k)ij tc,j is the task execution time for completing the image
compression subtask (k)cij, and it is assessed by the union
cooperative node sij according to its own ability. In formula
(15), the utility function generated by the union cooperative
node sij in the k th task collaboration alliance is defined as
(k)uj =(k) p(k)j c(k)ij E

(k)
j Lb. Different values the unit of income,

energy consumption, and load balancing degree will lead to
unreasonable distribution results. Therefore, dimensionless
treatment is required, and the treatment is in formula (19),
(20).

(k)pj(k)cij = (k)p′j
(k)cij

/
(k)pi,max (19)

(k)Ej = (k)E ′j
/

(k)EA (20)

In formula (19), (k)p′j
(k)cij is the actual value of the income

obtained by the union cooperative node sij, and (k)p(k)j cij is the
dimensionless value. Here, (k)pi,max is the total cost paid by si
for task (k)Ci in the k th task collaboration alliance. In formula
(20), (k)E ′j is the actual energy consumption value of the union
cooperative node si,j, and (k)Ej is the dimensionless value.
(k)EA is the average energy consumption of the union coop-
erative nodes. In addition, (k)EA =

∑n
j=1

(k)Ej
/

(k)n, where
(k)n is the number of union cooperative nodes in the k th task
collaboration alliance.

C. TASK ALLOCATION PROBLEM SOLVING
The Lagrange function is constructed as follows:

L(C,P, λ, µ)=
∑n

j=1
(k)pj(k)Ej(k)Lbd

−
(k)λi

(
(k)Ci −

∑n

j=1
(k)cij

)
−

(k)µj

(
(k)pi,max −

∑n

j=1
(k)pj(k)cij

)
−

(k)δj
∑n

j=1
((k)Ti,sd−(k)cij(k)tc,j) (21)

The Karush-Kuhn-Tucker conditions are as follows:

3(k)pj(k)Ej(k)Lbd+(k)λj+
(k)µj

(k)pj+(k)δj(Dc,j
/
rt,j+tc,j)=0

(22)

The number of image compression subtasks assigned to the
union cooperative node si,j is calculated as follows: (23), as
shown at the bottom of the next page.

However, to determine the (k)ci,j, we should know the
Lagrange multiplier vector λi, µi, and δj. The dual problem
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is used to obtain the Lagrange multiplier vector. The dual
problem of the original problem is as follows:

max
(k)λj

(k)λi((k)Ci−
n∑
j=1

(k)cij)+max
(k)µj

(k)µj((k)pi,max−

n∑
j=1

(k)pj(k)cij)

+ max
(k)δj

(k)δj

n∑
j=1

((k)Ti,sd − (k)cij(
(k)Dc,j
rt,j
−

(k)tc,j)) (24)

The dual problem function is differentiable. The gradient
iteration method is used to obtain the Lagrange multiplier
vector and the method is as follows:

(k)λ
(t+1)
j =

∣∣∣∣∣∣(k)λ(t)j + (k)1t

(k)Ck −
n∑
j=1

(k)cij

∣∣∣∣∣∣ (25)

(k)µ
(t+1)
j =

(k)µ
(t)
j +

(k)1t ((k)pi,max −

n∑
j=1

(k)pj(k)cij) (26)

(k)δ
(t+1)
j =

(k)δ
(t)
j +

(k)1t

(
(k)Tij − (k)cij(

(k)Dc,j
rt,j
−

(k)tc,j)

)
(27)

The number of iterations using the gradient descentmethod
is t . (k)λi, (k)µi, and (k)δj are the values after iteration t in
the k th task collaboration alliance. (k)1t is the default gra-
dient descent iteration step size in the k th task collaboration
alliance, and it decides the convergence of the algorithm.

D. IMAGE COMPRESSION TASK ALLOCATION ALGORITHM
The image compression task allocation algorithm based on
dynamic alliance (ATDA) is shown in algorithm 2.

The time complexity of ATDA algorithm is O(n2). The
number of sensors n and the number of iteration t are the prob-
lem size. The time frequency (execution times) of the algo-
rithmwith the number of sensors n problem size big is T(n) =
5n. The time frequency of the algorithm with the number
of iteration t problem size big is T(n) = 5nt . So the time
complexity of the algorithm is O(n2).

V. SIMULATION RESULTS AND ANALYSIS
In this section, the proposed algorithms are validated by
comparing their performances with other task coordination
mechanisms in terms of the cost, task processing time, energy
consumption, and network task load balance degree. The
task collaboration alliance is composed of a union leader
node to decompose and allocate the image compression tasks.
There is a union leader node to decompose and allocate the
image compression tasks in our simulation model. Simulink
in Matlab is used to test the algorithm’s performance.

Algorithm 2 ATDA

1: Initialize(k)λ(t)i ,
(k)µ

(t)
i ,

(k)δ
(t)
j , (0)ε

2: The si sends the < Ps,max , cd,j, Td,j, Tj, prj > to siJ
3: The sij sends the (k)pj,0 to the si
4: The si establishes the (k)PJ ,0 =

((k)p1,0,(k) p2,0, . . . ,(k) pn,0)
5: for (t = 1;t+ = 1) do
6: si calculates Lagrange multipliers according to formula

(25), (26), (27);
7: si calculates (k)C (t)

J according to the formula (23);
8: if((k)pi,max −

∑n
j=1

(k)p(t)j
(k)c(t)

ij
< 0) do

9: si calculates (k)C (t)
J according to formula (23);

10: si tunes the parameter (k)p(t+1)j according to (k)C (t)
J ;

(k)p(t+1)j =
(k)p(t)j +

(k)1(t,j)

(
(k)ps,max−

∑n
j=1

(k)p(t)j
(k)c(t)ij

)
n

11: end if
12: si tunes the parameter (k)p(t+1)j according to (k)C (t)

J ;
(k)p(t+1)j =

(k)p(t)j +
(k)1(t,j)((k)p

(t)
j −

(k)pj,min);

13: if((k)p(t)(k)j c(t)ij
(k)E (t)

j
(k)L(t)b −

(k)p(t−1)(k)j c(t−1)ij
(k)E (t−1)

j
(k)Lb ≤ ε) do

14: Output (k)P(t)J = ((k)p(t)1 ,
(k)p(t)2 , . . .

(k) p(t)n ), and
(k)C (t)

i = ((k)c(t)i1 ,
(k)c(t)i2 , . . . ,

(k) c(t)in );
15: end if
16: end for

In the communication simulation, the transmission rate of
the ZigBee protocol (256 kbps) is low and does not provide
satisfactory transmission quality. Therefore, the modified
Distributed Coordination Function (DFC) protocol 802.11b
in reference [42] is selected in our simulation model. There
are forty sensor nodes are randomly deployed at a 100×100m
area. The transmission rate of the sensor is rt,i = 2 Mbit/s,
the packet length of the sensor is lz = 1024 B, and the packet
header length is hz = 34 B. We consider the communication
energy parameters referenced in the literature [43]. The com-
munication energy parameters are set as eelec = 50 µJ/bit,
εfs = 10 nJ/bit. The communication radius is rc,i = 15m
and the initial energy of the sensor is ε0 = 1000KJ. The
maximum speed of the algorithm can be handled is calculated
as 2rc,i/Ti,sd . The Euclidean distance range of the cooper-
ative node leaving away the union leader node is [0, 30m].
In our simulation, the task stable execution time is 5s, so the
maximum speed of the algorithm can be handled is 6m/s.
However, it is difficult to select the union cooperative nodes
and establish the task collaboration alliance in this maximum
speed. Therefore, the moving speed of the sensors is 0-5m/s.
The total task is Ci = 128, and the data length of an image

(k)cij =

√√√√ (k)Tij((k)λj + (k)µj(k)pj + (k)δj((k)Dc,j
/
rt,j + (k)tc,j))

3(k)pj
(
2(1+ ρ)(k)Dc,jeelec + ρ(k)Dc,jεfs(k)R2c,j +

(k)ec,j
)
(k)tc,j

(23)
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TABLE 1. Simulation parameters.

transmission subtask is Dij = 128×128×8 bit. The detailed
simulation parameters are shown in Table 1.

The energy consumption of the data compression pro-
cessing and task data transmission is mainly considered in
this paper. The image compression algorithm (SVD) in the
literature [8] is used to process the image compression task.
The energy consumption model of the data processing in the
literature [44], [45] is selected.

ec,j = NCTV 2
dd (28)

In formula (25), N is the number of clock cycles to complete
an image compression subtask. CT is the periodic conversion
capacitance, CT = 0.67 nF. Vdd is the processor supply
voltage. In the literature [44], [45], the Strong ARM SA-
1100 processor is used to test the energy consumption at the
working frequency of 206 MHz. The average clock period
of 1 bit data processing in the SVD algorithm can be esti-
mated as 50 (clock/bit). The time of 1 bit processing can
be calculated to be approximately 0.24 µs. According to
formula 25, the energy consumption of 1bit data processing
is approximately 364.8 nj.

The two experiments are designed to verify the conver-
gence and performance of the ATDA algorithm. The first
experiment mainly verifies the convergence of the ATDA
algorithm. The second experiment mainly verifies the perfor-
mance of the ATDA algorithm and compares it with TASM
and the average distribution algorithm (ADA).

A. CONVERGENCE ANALYSIS OF THE ALGORITHM
Figure 4 shows the allocation of image compression subtasks
compared with the five nodes of the UCS. The five union
cooperative nodes of TCA are selected to evaluate the per-
formance of the ATDA algorithm. The maximum cost that

FIGURE 4. The allocation of image compression subtasks as a function of
the number of iterations.

FIGURE 5. The cost of a single subtask in iteration as a function fo the
number of iterations.

the union leader node si is willing to pay for the UCS is
Pi,max = 800. The cost of completing an image compression
subtask estimated by the five union cooperative nodes is
assumed to be p1,0 = 11.84, p2,0 = 10.72, p3,0 = 9.60,
p4,0 = 8.64, and p5,0 = 7.52. The union leader node si
distributes approximately 13 image compression subtasks to
the UCN1 and UCN2 in the first task collaboration alliance.
Approximately 25 image compression subtasks is distributed
to the UCN3 and UCN4. Approximately about 52 image
compression subtasks is distributed to the UCN5. The ATDA
algorithm in the iteration is stabilized after approximately
18 times.

Figure 5 shows that the cost of an image compression sub-
task is completed by the union leader node, with the number
of iterations increasing along the x-axis. The cost, energy con-
sumption and load balance of the union cooperative nodes are
considered by the union leader node in the image compres-
sion task allocation. The costs of the two nodes (UCN1 and
UCN2) are stabilized at 8.96 and 9.60 in the iteration after
approximately 18 times. The union leader node si distributes
approximately 13 image compression subtasks to the UCN1
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FIGURE 6. Task allocation comparison of the union cooperative nodes.

FIGURE 7. The benefit comparison of the union cooperative nodes.

and UCN2 in the first task collaboration alliance. The reason
is that their cost of completing an image compression sub-
task is higher, and thus, the number of image compression
subtasks assigned is small. The costs of the UCN3, UCN4,
and UCN5 are stabilized at 5.60, 5.28, and 4.96 in iterations
above approximately 18 times. The union leader node si
distributes approximately 25 image compression subtasks to
the UCN3 and UCN4, approximately 52 image compression
subtasks to the UCN5 in the first task collaboration alliance.
Therefore, more image compression subtasks are assigned to
UCN5.

B. COST ANALYSIS OF ALGORITHM
Figure 6 displays the assigned image compression subtasks
of five union cooperative nodes by using the algorithms of
ATDA, TASIM, and ADA. The image compression subtasks
are distributed equally by using the ADA algorithm. Thus,
the assigned image compression subtasks of five union coop-
erative nodes are the same. The ATDA algorithm distributes
the image compression subtasks based on the cost, energy
consumption, and completion time. Thus, the image com-
pression task allocation of the ATDA algorithm is inclined
to the union cooperative nodes with low cost, low energy
consumption, and high task execution time efficiency.

FIGURE 8. Task processing time comparison at different average speeds
of sensors.

Figure 7 displays the benefit comparison of five union
cooperative nodes by using the ATDA, TASIM, and ADA
algorithms. The image compression subtasks are distributed
equally by using the ADA algorithm. Thus, the benefit of
the five union cooperative nodes is the same. The image
compression subtasks are distributed evenly by using the
TASIM algorithm. The image compression task is distributed
evenly by using the TASIM algorithms and the benefit of the
five union cooperative nodes is different. The task allocation
of the five union cooperative nodes is different when using the
ATDA algorithm. The benefit of the five union cooperative
nodes is also different.

C. TASK PROCESSING TIME ANALYSIS OF ALGORITHM
Figure 8 shows that the average task processing time ofATDA
is slower than that of ADA and TASIM in different average
speeds of the sensors. When the average speed increases,
the average task processing time also increases. The average
task processing time of ATDA is 15.10% lower than that of
ADA and 10.46% lower than that of TASIM. The reason
is that the ATDA algorithm adopts the multi-round alloca-
tion mechanism based on the task stable processing time.
This method reduces the repeated transmission of the image
compression task data caused by the movement of the union
cooperative nodes away from the task collaboration alliance.

Figure 9 shows that the average task processing time of
ATDA is slower than that of ADA and TASIM when the
number of sensors increasing.

The average task processing time of all of the algorithms
decreases when the number of sensors increases. The reason
is that the increase in the number of union cooperative nodes
reduces the number of image compression subtasks for each
node. Thus, the repeated transmission of the image compres-
sion task data caused by the movement of union cooperative
nodes away from the task collaboration alliance is reduced.
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FIGURE 9. Task execution time comparison for different numbers of
sensors.

FIGURE 10. Task execution time comparison for different average speeds
of sensors.

The average task processing time of theATDA is 9.22% lower
than the ADA and 1.26% lower than TASIM for in different
numbers of union cooperative nodes.

D. ENERGY CONSUMPTION ANALYSIS OF THE
ALGORITHM
Figure10 shows the total energy consumption under different
average speeds of sensors using the algorithms of ADA,
TASIM, and ATDA. When the average speed increases,
the total energy consumption also increases. The total energy
consumption of task collaboration alliance of the ATDA is
9.45% lower than that of ADA and 4.77% lower than that
of TASIM in different average moving speed of sensors. The
reason is that the ATDA algorithm adopts the multi-round
allocation mechanism. This method reduces the interruption
of the image compression task and the retransmission of part

FIGURE 11. Task execution time comparison for different numbers of
sensors.

FIGURE 12. Task load balance comparison for different average speeds of
sensors.

of task data caused by the movement of the union cooperative
nodes away from the task collaboration alliance.

Figure 11 shows the total energy consumption under dif-
ferent numbers of union cooperative nodes using the ADA,
TASIM, and ATDA algorithms. When the average speed
increases, the total energy consumption decreases. The reason
is that the increase in the number of union cooperative nodes
reduces the number of image compression subtasks for each
node. The repeated transmission of the image compression
task data caused by the movement of union cooperative
nodes away from the task collaboration alliance is reduced.
Thus, the total energy consumption of the task collaboration
alliance is also reduced. The total energy consumption of task
collaboration alliance of the ATDA is 7.08% lower than that
of ADA and 3.81% lower than TASIM for different numbers
of union cooperative nodes. Compared with the TASIM and
ADA algorithms, the ATDA algorithm has an advantage in
terms of the energy consumption.
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E. TASK LOAD BALANCE DEGREE ANALYSIS OF THE
ALGORITHM
Figure12 displays the image compression task load balance
ratio under different average speeds of sensors using the
ADA, TASIM, and ATDA algorithms.

The time to transfer and process an image subtask (128×
128 × 8bit) can be calculated according to the simulation
parameters. The transfer time (62.50ms) is about twice as
long as the processing time (31.46ms). With the increase of
movement speed of the union cooperative nodes, the possibil-
ity of union cooperative nodes leaving the task collaboration
alliance increases. It will cause the image compression task
data to be transmitted repeatedly when the nodes leaving the
task collaboration alliance. Data retransmission will increase
the actual time to complete the image compression task.
Therefore, as the node speed increases, the value of load
balancing degree Lb also increases. The union cooperative
nodes move slower, the value of load balancing degree Lb
increases less. The load balancing is optimal when nodes
are not moving. The loads balancing degree Lb is about
0.80 when all the nodes speeds are 0.The Figure12 shows that
the proposed algorithm can achieve a better load balance ratio
than that of ADA and TASIM with an increase of the average
speed of sensors.

VI. CONCLUSIONS
An image compression task cooperation algorithm for
MWMSN is proposed to solve the problem of frequent
interruptions of image compression tasks. In this paper,
the MTDA-T and ATDA algorithms are proposed to process
the image compression tasks. The MTDA-T algorithm is
used to divide the image compression task into an image
transmission sub task and an image compression sub task.
The ATDA algorithm is used to realize the cooperative
allocation of image compression tasks. Simulation results
show that the proposed algorithm can improve the load bal-
ancing ratio, energy consumption, and execution time of
the image compression task. However, the proposed multi-
round schemes need more control information. The time
complexity of ATDA algorithm is still high for the union
leader nodes. The proposed algorithm may increase the
response time in the task allocation of image compres-
sion. The image reconstruction is not considered in our
work.

In future research, it is planned to reduce the control
information and the response time of the image compression
task collaboration by using more detailed information of
cooperative nodes (such as location prediction, communica-
tion resources, and their individual capabilities). In addition,
the multiple sinks and autonomous moving for sensors will
be considered to distribute the image compression task for
MWMSN. Another possible direction for future work is the
image reconstruction of MWMSNs. It is important to solve
the random error code, sudden error code, packet loss in the
process of MWMSNs transmission.
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