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ABSTRACT There is a universal trend toward a data-driven smart grid, which aims to realize two-way
communication of energy flow and data flow between various agents across power generation side,
transmission& distribution side, electricity retailors and end users. However, the low frequency electrical
measurement data accumulated over a long period of time is insignificant for intelligent agents. This paper
presents a machine learning method for reconstructing the low frequency electrical measurement data in
smart grid. Firstly, the electrical measurement data is converted into electrical images, and then the low
frequency electrical measurement data is reconstructed into high frequency electrical measurement data
by generative adversarial network to improve the training stability, Wasserstein distance is introduced
into the reconstruction mechanism. In addition, by designing the deep residual network based generator,
the deep convolutional network based discriminator as well as the perception loss function, the reconstruction
accuracy and the high-frequency detail reduction ability are improved. The proposed method is tested on
three publicly available datasets and compared with the traditional data reconstruction method, justifying
that this method not only can restore high-frequency details with less error, but also can be generalized to
different datasets at one location and to datasets at different locations with satisfactory accuracy.

INDEX TERMS Data-driven, super-resolution reconstruction, generative adversarial network, electrical
measurement data.

I. INTRODUCTION
Smart grid is considered as the next generation power
grid, which builds a widely distributed automated energy
transmission network facilitating the data exchange and
energy transmission among various agents of power genera-
tion, transmission, distribution, electricity sale and electricity
consumption [1]. The intelligence degree of contemporary
artificial intelligence is closely related to the utilization
degree of data. Intelligent technology characterized by deep
utilization of data will be the core field of future elec-
tric power development. Smart grid places higher require-
ments on technologies such as data communication [2],

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiayong Li.

data-driven [3], multi-energy management [4], [5], multi-
agent optimization and control [6].

High quality data is the premise a data-driven smart grid.
There are two kinds of data communications, including trans-
mitting data from the sending end to the data center, and
from the data center back to the receiving end [7]. How-
ever, a large amount of low-frequency electrical measure-
ment data is collected in the current power system for three
main reasons. First, the data sender can only install smart
meters with low sampling frequencies due to insufficient
economic capacity or technical constraints. The second is that
although smart meters can be installed at the data sending end
with high sampling frequency, the high-frequency electrical
measurement data has to be compressed before transmission
due to the traffic restrictions of communication equipment.
Third, high-frequency electrical measurement data puts a lot
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of storage pressure on the data center. Consequently, the
low-frequency electrical measurement data received by the
data receiver is only the average or maximum value of each
sampling period [8], resulting in a lack of high-frequency
detail information.

Until the above problems are solved economically and
technically, the research on the compression mechanism and
reconstruction mechanism has important significance for the
advancement of the smart grid. At present, some pioneering
research on the compression mechanism has been carried
out, e.g., an automatic encoder to extract the corresponding
structure from the electrical measurement data [7]. How-
ever, there are few studies on the reconstruction mechanism.
Reference [9] used active power and voltage phase angle as
state variables for data compression and linear interpolation
for data reconstruction. However, the reconstruction accu-
racy obtained by the interpolation method is unsatisfactory.
Reference [10] realized the reconstruction of missing data in
power system state estimation through shallow auto-encoder
neural networks, but it is difficult for shallow networks to
accurately describe the complex spatiotemporal character-
istics of electrical measurement data. References [11]–[13]
implemented high-precision reconstruction of missing data
through generative adversarial networks, matrix filling, and
graph regularized low-rank matrix recovery methods, respec-
tively, but did not involve the improvement of the electrical
measurement data sampling frequency.

The essence of image super-resolution reconstruction is
similar to that of electrical measurement data. Both are diffi-
cult to model and restore high-frequency details. There are
three main types of super-resolution reconstruction meth-
ods in the image field, including interpolation-based meth-
ods, modeling-based methods, and learning-based methods.
Among them, the interpolation-based methods such as adap-
tive interpolation algorithms [14] are visually too smooth
and inevitably lose edge detail information, while typical
methods such as Bayesian analysis [15], maximum posterior
probability estimation [16] require a huge size of the solution
space and is likely to result in excessive calculation and
multiple solutions, based on its basic principle to reconstruct
a high-resolution image solution space from a large number
of low-resolution images. By contrast, the learning-based
method solves the shortcomings of interpolation-based or
modeling-based methods. For example, [17] applies sparse
coding algorithms to super-resolution image reconstruction,
but it tends to be smooth processing visually, and the restora-
tion degree of high-frequency details is insufficient.

In recent years, generative adversarial network (GAN) [18]
not only has made breakthrough progress in the fields of
images and texts [19], [20], but also is widely applied in
the electrical field [21], [22]. With the help of a trained
discriminator network, GAN distinguishes super-resolution
images from real images, in order to solve natural imageman-
ifolds and learn complex spatio-temporal relationships unsu-
pervised from historical data. Reference [23] has introduced
Wasserstein distance in the training target, which improves

the stability of the GAN training process. Reference [24] has
designed a GAN structure for image super-resolution recon-
struction and introduced perceptual loss, which improved the
ability of GAN to restore high-frequency details.

In this paper, a generative adversarial network based super-
resolution reconstructionmethod for low-frequency electrical
measurement data in smart grid is proposed. The contribu-
tions of work are listed as follows:

1) A method for transforming electrical measurement data
into electrical images is designed so that the GAN can effec-
tively learn the potential distribution of electrical measure-
ment data with the help of image processing techniques.

2) The Wasserstein distance is introduced into the GAN
model to avoid the disappearance of the gradient of the GAN,
which improves the training stability.

3) Three designs are involved, including a generator based
on deep residual network, a discriminator based on deep
convolutional network, and a perceptual loss function, so that
the reconstruction accuracy of GAN can be improved.

4) The proposed method is a data-driven based unsuper-
vised training method. The generalization of the proposed
method in different data sets at the same geographical loca-
tion and its applicability in different data sets at different
geographical locations are verified.

The rest of the paper is organized in the following
sequence. Section II develops the data flow in smart grid.
Section III proposes a super-resolution reconstructionmethod
of low-frequency electrical measurement data based on
improved GAN. Section IV simulation experiment verifies
the feasibility of the proposed method. Section V concludes
the paper.

II. DATA FLOW IN SMART GRID
Nowadays, a large number of smart meters have been config-
ured to collect data which has the following characteristics:
On the one hand, the acquisition frequency is low. At present,
the sampling frequency of most publicly available power
datasets is at the levels of 15min, 30min, and 1h, but only a
few reaches the level of 1min or 1Hz. On the other hand, there
are few datasets with high collection frequency and large
coverage. As shown in Table 1, it is difficult for the existing
publicly available electrical measurement datasets to simul-
taneously guarantee high acquisition frequency and large

TABLE 1. Details of publicly available electrical measurement datasets.
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FIGURE 1. Data flow pattern of traditional grids.

coverage. High acquisition frequency means high equipment
investment, communication, and high cost of data storage.
Therefore, high frequency datasets generally involve only a
small number of users and a small amount of measurement
data types. Similarly, large-coverage datasets are generally
low-frequency datasets due to the requirement: to install a
large number of equipment and collect many data types.

In addition to economic and technical constraints, the com-
pression mechanism of the smart grid is also an important
factor resulting in a large amount of low-frequency elec-
trical measurement data. The smart grid operates through
the agents in the five kinds of data flows between power
generation, transmission, distribution, electricity market, and
power consumption. As shown in Figure 1, the data flow
mode of the traditional power grid is to first transmit the
data collected by the data sender from the installed electricity
meter through the communication infrastructure and store it
in the data center. Then the data is transmitted through the
communication infrastructure and directly utilized at the data
receiver. Obviously, this model has two major disadvantages.
One is that the communication and storage of high-frequency
data brings a heavy burden on the economy and technology
while the other is that the value of low-frequency data cannot
be fully tapped.

To promote the development of smart grids, typical
advanced data flow mode becomes to collect data from the
installed smart meters, and use a compression mechanism to
compress high-frequency data in place, as shown in Figure 2.
Low-frequency data is transmitted through the communica-
tion infrastructure and stored in the data center, and then
transmitted through the communication infrastructure and
reconstructed into high-frequency data through the recon-
struction mechanism at the data receiver. Obviously, this
model has two major advantages. One is that benefitting
from in-place compression and in-place reconstruction, data
processing changed from a centralizedmanner to a distributed
one, which has greatly reduced the computing pressure of
the data center. The second is that only low-frequency data

FIGURE 2. Data flow pattern of smart grids.

is the communication infrastructure transmits, so that more
datasets can be transmitted under the same bandwidth, which
improves communication efficiency.

It must be pointed out here that this paper discusses the
reconstruction of low frequency measurement data in smart
grid, not other processes of data flow. In the following con-
tent, this paper proposes an algorithm based on machine
learning to reconstruct low-frequency electrical measurement
data for smart grid.

III. SUPER-RESOLUTION RECONSTRUCTION METHOD OF
LOW-FREQUENCY ELECTRICAL MEASUREMENT DATA
BASED ON IMPROVED GAN
Super resolution reconstruction, which involves data transfor-
mation from a low-dimensional space to a high-dimensional
one, is a highly ill-conditioned inverse problem which has a
large number of feasible solutions [24]. Based on the most
advanced progress in super-resolution image reconstruction,
this paper proposes to convert electrical measurement data
into so-called electrical images, where data for different kinds
of electrical measurements are saved in different color chan-
nels while the pixel elements in one channel represents mea-
sured data at a sampling time moment. Compared with the
traditional single-layer and one-dimension data flow, elegant
merits of electrical image are that multiple kinds of mea-
surement data can be transmitted by using multiple channels
while larger amount of data can be stored with nearly the
same storage by realigning the original data vector into a
two-dimensional data matrix. Clearly, the higher frequency
the samples are, the higher resolution the corresponding elec-
trical image channel will be and the more storage resources
are required. As mentioned before, low-resolution images are
preferable to be transmitted for economical concern and are to
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FIGURE 3. Method adopted for converting electrical measurement
datasets into electrical images.

TABLE 2. The entire execution of transforming electrical measurement
data into electrical images.

be reconstructed back into a high-resolution one by the super-
resolution reconstruction technique.

A. TRANSFORM ELECTRICAL MEASUREMENT DATA
INTO ELECTRICAL IMAGES
Assuming that the high-frequency electrical measurement
data set includesN types of electrical measurement data, such
as active power, reactive power, voltage, current, frequency,
power factor, and so on. The original high-frequency elec-
trical measurement dataset can be expressed as a matrix of
L × N , where L denotes the total number of samples at differ-
ent time moments. Each channel is a two-dimensional matrix
derived from the original data vectors, as shown in Figure 3.
The steps are shown in Table 2.

B. MECHANISM OF SUPER RESOLUTION
RECONSTRUCTION
The super-resolution reconstruction mechanism with GAN
introduced is shown in Figure 4, which includes training
stability enhancement, design of the generator and the dis-
criminator structures, and the loss function development.
The low-resolution electrical images are put into a trained

FIGURE 4. Super resolution reconstruction framework based on
improved GAN.

generator by which a super-resolution electrical image is
obtained. Finally, pixels in the super-resolution electrical
images are converted back yielding high-frequency electrical
measurements.

C. GENERATIVE ADVERSARIAL NETWORK
GAN is a new neural network architecture proposed byGood-
fellow in 2014, which consists of a generator and a discrim-
inator. The generator provides a sample that is similar to
the real sample but indistinguishable, while the discriminator
distinguishes the difference between the two samples [30].

The GAN-based super-resolution reconstruction method
for low-frequency electrical measurement data generates
super-resolution electrical images by training a generator.
Then, the discriminator screens out a large number of pos-
sible solutions from the generated samples with the mini-
mal difference from the actual situation, thereby solving the
highly ill-conditioned inverse problem. In addition, unlike a
learning-based method that uses only one neural network,
GAN uses two neural networks as generators and discrim-
inators, respectively, resulting in stronger data distribution
learning capabilities. The reason is that the discriminator
directly compares the difference in potential data distribution
between the generated data and the real data, thus replacing
the error calculation part of the generator.

The GAN structure of the proposed method is shown
in Figure 5. The real high-resolution electrical image set,
the real low-resolution electrical image set and the super-
resolution electrical image set are xHR, xLR, and xSR,
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FIGURE 5. GAN structure for super resolution reconstruction.

respectively, whose probability distribution pH(xHR),
pL(xLR), and pS(xSR) that are difficult to express explicitly
through mathematical models. xSR can also be expressed as
GθG (x

LR), where θG is the parameter of the generator. Since
the generator is able to counterfeit, discrimination cannot dis-
tinguish whether the input is real data or not so that it outputs
a probability for generated sample i.e., DθD (GθG (x

LR)) and
real sample, i.e., DθD (x

HR), where θD is the parameter of the
discriminator.

The training process of GAN is to optimize a min-max
zero-sum game problem that its objective function is as fol-
lows.

min
θG

max
θD

M∑
m

log(DθD (x
HR
m ))+

M∑
m

log(1− DθD (GθG (x
LR
m )))

(1)

The above formula reflects the adversarial game between
the generator and the discriminator. The generator tries to
reduce the difference between the generated sample and the
real sample, while the discriminator recognizes the differ-
ence. When the discriminator can no longer recognize this
difference, the game reaches an equilibrium.

D. ENHANCEMENTS TO THE STABILITY OF TRAINING
As mentioned above, although GAN can theoretically gen-
erate following complex spatiotemporal laws, it is likely to
diverge in actual training. The reason is that GAN measures
the distance between pS(xSR) and pH(xHR) as KL divergences
or JS divergences. When the overlap of the two distributions
is small to a certain extent or does not exist, the gradient
disappears and the model collapses. To improve the stability
of GAN training, this paper introduces the Wasserstein dis-
tance to modify formula (1). The objective function of GAN

FIGURE 6. Generator structure for super resolution reconstruction.

is shown as follows.

min
θG

max
θD

M∑
m

DθD (x
HR
m )−

M∑
m

DθD (GθG (x
LR
m )) (2)

Compared with formula (1), formula (2) removes the log-
arithm operation, and each iteration of the actual training
process needs to cut the discriminator parameters in a fixed
range [-c, c], generally set c = 0.01.

E. GENERATOR
In this paper, deep residual network (DRN) is taken as the
generator. Instead of only transmitting outputs to the next
layer, output of DRN in a layer can span several layers, which
alleviates the problem of gradient disappearance caused by
increasing depth in a deep neural network. Besides, the super-
imposed multilayer residual blocks can improve the model’s
feature learning ability and accuracy [31].

The structure of the generator is shown in Figure 6. The
low-resolution electrical image is considered as the input
of the generator and is mapped into the hidden layer space
through a convolution layer and an activation function layer.
To speed up the training, the DRN is initialized with the
pre-training results of VGG-19 [32]. DRN consists of R
residual blocks, which have the same structure, including a
convolution layer, a batch normalization layer, an activation
function layer, a convolution layer, a batch normalization
layer, and an element-wise sum layer. The magnification of
each up-sampling block is two to improve the resolution of
the reconstructed image. Obviously, when the reconstruction
multiple is K , there are (K /2) up-sampling blocks between
the DRN and the output. Each up-sampling block includes
3 layers, namely a deconvolution layer, a batch normal-
ization layer, and an activation function layer. In addition,
some terms for convolution operations are also involved.
n64s1 indicates that the convolution kernel of the convolution
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layer has 64 channels and the sliding step of the convolution
kernel is 1. n64s0.5 and n3s1 are similar to the expression
of n64s1. All convolutional layers and deconvolutional layers
use a 3 × 3 convolution kernel.

F. DISCRIMINATOR
Different from the generator, the discriminator mainly imple-
ments the classification of real samples and generated sam-
ples. Deep convolutional network (DCN), one of the core
algorithms in the field of image recognition, has excellent
performance in classification [33], which is used as the dis-
criminator as shown in Figure 7.

FIGURE 7. Discriminator structure for super resolution reconstruction.

The input is mapped into the hidden layer space through
a convolutional layer and an activation function layer. The
DCN consists of 10 convolutional blocks, each of which
includes a convolutional layer, a batch normalization layer,
and an activation function layer. The number of channels
of the convolution kernel of the 10 convolution blocks is
128, 256, 512, 1024, 2048, 1024, 512, 128, 128, and 512.
The convolution kernel size of the first 5 convolution blocks
is 4 × 4 and the sliding step size is 2. The convolution
kernel size of the 6th, 7th, and 8th convolution blocks is
3 × 3 and the sliding step size is 1. The convolution kernel
size of the 9th and 10th convolution blocks is 1 × 1 and
the sliding step size is 1. The deep convolutional network
is followed by 1 element -wise sum layer, 1 flatten layer,
and 1 fully connected layer. The above activation functions
are all regarded as leaky ReLU, for the reason that it is
able to improve the recognition accuracy of discriminator by
avoiding pooling operation. In the end, discriminator outputs
a probability value, whichmeans the probability that the input
of the discriminator belongs to a real sample.

G. LOSS FUNCTION
1) GENERATOR LOSS FUNCTION
In order to improve the reconstruction accuracy and high-
frequency detail restoration ability, the generator loss

function is designed as a weighted combination of the fol-
lowing loss functions.

Generative adversarial loss is generated according to the
formula (2). By adding the result of discriminator to genera-
tive adversarial loss, the generator can deceive the discrimi-
nator. The calculation formula for Generative adversarial loss
is as follows.

lGen = −
M∑
m=1

DθD (GθG (x
LR
m )) (3)

In this paper, the mean square error (MSE) of the generated
sample and the real sample is taken as the actual loss. The
formula for calculating actual loss is as follows.

lMSE =
1
l2

M∑
m=1

l∑
w=1

l∑
h=1

((xHRm )w,h − (GθG (x
LR
m ))w,h)2 (4)

where w and h are the width and height of the matrix in each
channel, respectively.

The fact that the generator is trained with actual loss may
result in smooth generated samples and conservative recon-
struction results, which is not conducive to the restoration
of high-frequency details. Thus, this paper introduces the
perceptual loss to measure the difference in local features
between the generated samples and the real samples. Specif-
ically, considering that the VGG-19 model has the ability to
extract local features of the electrical image, the generated
samples and actual samples are input in the trained VGG-
19 model, so that the feature map of the electrical image is
extracted ϕa,b, where the meaning of ϕa,b is the b-th feature
map obtained by the VGG-19 model before the a-th pooling
operation. The mean square error between each pixel point
ϕa,b(xHR)w,h of feature maps corresponding to actual sam-
ples and each pixel point ϕa,b(GθG (x

LR))w,h of feature maps
corresponding to generated samples is called the perceptual
loss, which is calculated as

lVGG=
1
l2

M∑
m=1

l∑
w=1

l∑
h=1

(ϕa,b(xHRm )w,h−ϕa,b(GθG (x
LR
m ))w,h)2

(5)

In summary, the generator loss function is as follows.

lG = λ1lGen + λ2lMSE + λ3lVGG (6)

where λ1 = 1× 10−3, λ2 = 1, and λ3 = 2× 10−6.

2) DISCRIMINATOR LOSS FUNCTION
Discriminated adversarial loss, obtained according to for-
mula (2), is considered as the discriminator loss function.

The discriminator can discriminate the authenticity by
adding results of discriminator to discriminated adversarial
loss, which is calculated as follows.

lD =
M∑
m=1

DθD (GθG (x
LR
m ))−

M∑
m=1

DθD (x
HR
m ) (7)
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IV. SIMULATION ANALYSIS
In order to test the reconstruction effect of the super-
resolution reconstructionmethod proposed in this paper, three
cases are carried out in this section:
• Case 1: use I-BLEND dataset to present a comparison
between the performance of the super-resolution recon-
struction method and the interpolation method.

• Case 2: use the datasets about different buildings in
I-BLEND dataset to study the generalization of different
datasets in the same geographical location.

• Case 3: uses the datasets I-BLEND, AMPds2, and
IHEPCds from India, Canada, and France, respectively,
to study the applicability of the super-resolution recon-
struction method in different geographic datasets, and
the generalization of the trained model in different geo-
graphic datasets.

The number of iterations in this study is set to be 5000.
Moreover, Adam is used as the optimizer. The exponen-
tial decay rate of the first-order moment estimation of the
optimizer is set to be while the initial learning rate of the
optimizer is 1×10−4 which becomes 1/10 of the initial after
every 500 iterations.

A. DATA PREPARATION
1) FILLING UP MISSING VALUES
In this study, relatively complete data fragments are inter-
cepted as experiment data, whose missing data amount is
trivial and can be filled up by linear interpolation.

2) NORMALIZATION
In order to improve the visualization effect of the power
image, the electrical measurement data is normalized to the
commonly used value range of the image, which is [0, 255]

xmn =
x ′mn −min(x ′mn)

max(x ′mn)−min(x ′mn)
× 255 (8)

where x ′mn and xmn represent the matrix before and after
normalization of the n-th channel of them-th electrical image,
respectively. max(x ′mn) and min(x ′mn) are the maximum and
minimum values of x ′mn, respectively.

3) DATASETS PARTITIONING
The three public data sets used in this study are shown in
table 3, and 691,200 samples are taken for simulation. For the
I-BLEND dataset, four buildings from the same school are
selected, namely, Academic building, Boys dormitory, Girls
dormitory, and Restaurant. The remaining two are data sets
on the electricity consumption of one residential building.

It should be pointed out that the main purpose of this
paper is to reconstruct the low-frequency data in Figure 2 into
high-frequency data. Thus, in this paper, three high-frequency
data sets are used for simulation, and the corresponding
low-frequency data is used for reconstruction, in order to
verify the reconstruction effect by comparing the differences
between the reconstructed high-frequency data and the real
high-frequency data.

TABLE 3. Experimental datasets.

The reconstruction multiple is K . In order to facilitate the
construction of low-resolution electrical images, let K be
a factor of the composite number l, then the total number
of samples of low-frequency electrical measurement data is
(l/
√
K ), which meansK high-frequency samples are taken in

order of time. The maximum value of the electrical measure-
ment data is taken as one sampling point of the low-frequency
electrical measurement data. The steps for transforming
low-frequency electrical measurement data in the shape
of (L/K ) × N into low-resolution electrical images of a
2-dimensional N -channel are similar to the steps for convert-
ing high resolution electrical images. Specifically, by replac-
ing the high frequencies and high resolutions mentioned in
the high-resolution electrical image conversion process with
low frequencies and low resolutions, and replacing l in step
3 of Table 2 with (l/

√
K ), low resolution electrical images of

M 2-dimensional N -channel can be obtained. Each channel
is a 2-dimensional matrix with rows multiplied by columns
(l/
√
K )× (l/

√
K ).

In this study, the sampling frequencies of low-frequency
and high-frequency electrical measurement data are 15 min
and 1 min, respectively. To facilitate the calculation process
in constructing electrical images, a value of 0 is added every
15 data points so that the reconstruction factor K changes
from 15 to 16 and

√
K is an integer. Such adding zero

operation will not affect the conversion of low-resolution
electrical images. Consequently, the electrical measurement
data is converted into one electrical image every 64 hours,
wherein the length and width of each channel of the high-
resolution electrical image is l = 64, and the length and
width of each channel of the low-resolution electrical image is
l/
√
K = 16. All the mentioned datasets are transformed into

180 high-resolution electrical images and 180 low-resolution
electrical images. The training set and test set are divided in
an 8: 1 ratio.

B. EVALUATION INDEX
Electrical images are highly structured, meaning that there is
a strong correlation between adjacent pixels. This paper takes
structural similarity (SSIM) [34] as the index for evaluating
the reconstruction accuracy of electrical images from the per-
spective of image structure, in which the mean value is used
as the estimation of brightness, the standard deviation as the
estimation of contrast, and the covariance as themeasurement
of structural similarity. Thus, SSIM can offset the defects of
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MSE in measuring the similarity of image structure, as

SSIM (xHRm , xSRm ) =
2µxHRm µxSRm

+ C1

µ2
xHRm
+ µ2

xSRm
+ C1

×
2σxHRm xSRm

+ C2

σ 2
xHRm
+ σ 2

xSRm
+ C2

(9)

where µxHRm and µxSRm are the average values of xHRm and xSRm
respectively while σxHRm and σxSRm are the standard deviations
of xHRm and xSRm , respectively. σxHRm xSRm

is the covariance of xHRm
and xSRm . C1 and C2 are constants, where C1 = (0.01×255)2,
and C2 = (0.03×255)2. It can be seen that the value range of
SSIM is [0, 1] while the larger the SSIM is, the more closely-
correlated the internal structures between the super-resolution
and the high-resolution electrical image will be regarding
the texture and hue, implying the corresponding similarity in
changing trend and numerical size of the electrical measure-
ment data, respectively.

Besides, peak signal-to-noise ratio (PSNR) [35] is taken
as indicator for evaluating reconstruction quality in image
compression and image reconstruction. PSNR is defined
by MSE. The higher the PSNR, the smaller the MSE,
and the smaller the distortion from the perspective of
power image or electrical measurement data, which can be
calculated as

PSNR(xHRm , xSRm )= 10 log10
2552

MSE(xHRm , xSRm )
(10)

MSE(xHRm , xSRm )=
1
l2

l∑
w=1

l∑
h=1

((xHRm )w,h−(xSRm )w,h)2 (11)

C. COMPARISON BETWEEN SUPER-RESOLUTION
RECONSTRUCTION AND INTERPOLATION
RECONSTRUCTION
Comparisons between the super-resolution reconstruction
and the bicubic interpolation (BI) [36] reconstruction are
conducted from the following five aspects.

1) VISUAL ASSESSMENT
Figure 8 shows the results of super-resolution recon-
struction and interpolation reconstruction. In this study,
the four building datasets are individually trained and tested.
Figures 8 (a)-(d) show the last electrical image of the test
set. In terms of the amount of electrical data, high-resolution
electrical images are 16 times that of low-resolution electrical
images. The high-resolution electrical image has 64 electrical
data per line, while the low-resolution electrical image has
only 16 electrical data per line, resulting in the low-resolution
electrical image being visually blurred. In addition to the
overall color distribution of low-resolution electrical images,
high-resolution electrical images are also visually rich in
high-frequency details and clear textures. Although the pix-
els of the interpolation-reconstructed electrical image have

FIGURE 8. Results of super resolution reconstruction and interpolation
reconstruction (electrical image). Acronyms: LR→Low resolution electrical
image, HR→High resolution electrical image, BI→Electrical image
reconstructed by bicubic interpolation, SR→Super resolution electrical
image.
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FIGURE 8. (Continued.) Results of super resolution reconstruction and
interpolation reconstruction (electrical image). Acronyms: LR→Low
resolution electrical image, HR→High resolution electrical image,
BI→Electrical image reconstructed by bicubic interpolation, SR→Super
resolution electrical image.

increased, they are smooth visually, and the reconstruction
effect is relatively conservative, indicating that the interpo-
lation reconstruction method does not have the ability to
restore high-frequency details. By contrast, the texture of the
super-resolution electrical image has a very high similarity
with the texture of the high-resolution electrical image, indi-
cating that the high-frequency details of the super-resolution
reconstruction have a high reconstruction quality. It can be
seen that the super-resolution reconstruction method can
achieve a good reconstruction effect for the electrical mea-
surement data from different buildings in the same geograph-
ical location.

2) OBJECTIVE ASSESSMENT
Calculate the PSNR and SSIM of real samples and generated
samples by formulas (8)-(10), and take the average value as
the final evaluation index, as shown in Table 4. Note that
for the electrical measurement data sets of different buildings,
the PSNR of super-resolution reconstruction is relatively
high, indicating that the reconstruction result of this method is
less distorted. The SSIMs involved in super-resolution recon-
struction are around 0.9, indicating that the method can learn
the structural relationship of electrical images including tex-
ture and hue, thereby effectively recovering high-frequency
details of electrical measurement data. However, the values
of PSNR and SSIM of the interpolated reconstruction are
relatively small, indicating that the method cannot effectively
extract the data structure relationship of the electrical image
so that the restoration of high-frequency details for the elec-
trical measurement data is insufficient.

TABLE 4. Evaluation of reconstruction accuracy for different
reconstruction methods.

3) TREND OF TIME SERIES DATA
The electrical image of the test set is flattened into electrical
measurement data in the form of time series, as shown in
Figure 9. The comparison between the reconstructed curve
and the real curve shows that, except for the high peaks or low
valleys in individual intervals, the trends of the two curves
are basically the same, indicating that the proposed method
can recover the edge details of the low frequency electrical
measurement data.

4) STATISTICAL CHARACTERISTICS
In this article, two important characteristics of reconstructed
data are discussed.

(i) Distribution similarity. This study verifies that the
reconstructed data has the same statistical characteristics as
the real data. In Figure 10, with the academic building as the
research object, this section shows the cumulative distribution
function (CDF) of real data and reconstructed data. It can
be seen that the CDF of the real data and the reconstructed
data almost overlap. It can be concluded that the super-
resolution reconstruction method can reconstruct data with
correct marginal distribution.

(ii) Spatial correlation: In order to further verify the recon-
struction quality, this section calculates the spatial correlation
coefficient of academic building, boys dormitory, girls dormi-
tory and restaurant at the same time, as shown in Figure 11.
It can be seen that even if the reconstruction models of each
building are trained separately, the spatial correlation of the
reconstructed data is consistent with the real data.

5) NOISE ROBUSTNESS
In practical applications, the data has a slight deviation
after being polluted by noise during the communication pro-
cess. In this article, the duration of each electrical image
is 64 hours. In order to verify the noise robustness of the
proposed method, it is set that the communication instability
occurs for 1 hour every 24 hours and causes a noise deviation
of 10%, 20%, and 30%. In addition, consider a more serious
situation, which is that communication instability continues
throughout the whole period and causes 10%, 20%, and
30% noise deviation. Take the academic building data set for
simulation.

The evaluation of reconstruction accuracy considering
noise pollution is shown in Table 5. It can be seen that in
the case of a 10%, 20%, 30% noise deviation every 24 hours

VOLUME 8, 2020 85265



F. Li et al.: Improved GAN-Based Super Resolution Reconstruction for Low-Frequency Measurement of Smart Grid

FIGURE 9. Results of super resolution reconstruction (time series).

FIGURE 10. Results of CDF.

for 1 hour, the proposed method can obtain high quality and
good stability evaluation results. It shows that the proposed
method can effectively overcome the local noise in the data
communication process and has strong local noise robustness.
In addition, in the case of continuous 10%, 20%, and 30%
noise deviations throughout the period, although the recon-
struction accuracy of the proposedmethod shows a downward
trend, it still has higher PSNR and SSIM in the case of 10%
and 20% noise. It shows that the proposed method also has
strong noise robustness in the whole period.
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FIGURE 11. Heat map of the spatial correlation coefficient.

TABLE 5. Evaluation of reconstruction accuracy considering noise
pollution.

D. THE GENERALIZATION OF THE MODEL IN THIS PAPER
BETWEEN DIFFERENT DATA SETS IN THE SAME REGION
In this section, the electrical measurement data of different
buildings in the same geographic location are trained sep-
arately. After that, study the generalization of the trained
model to the electrical measurement data of other buildings.
Specifically, this case uses datasets from four buildings in
the same school, including academic building, boys dor-
mitory, girls dormitory, and restaurant. To the best of our
knowledge, the previous case has trained the reconstruction

TABLE 6. Evaluation of reconstruction accuracy for different datasets at
the same location.

models for the datasets of the four buildings. In order to
study the generalization of the reconstruction model between
different datasets in the same region, this section cross-inputs
the test sets of four buildings into the four reconstruction
models. The generalization ability testing results are shown
in Figure 12. It can be seen that the reconstruction model
of academic building has a good performance (i.e., a good
generalization ability) when datasets for girls’ dormitory are
used as the testbed but poor results for boys’ dormitory and
dinning datasets. Similar observations can also be obtained
when we look into the generalization ability of girls’ dor-
mitory reconstruction model to academic building’s datasets,
boys’ dormitory model to dinning’s datasets and dinning’s
model to boys’ dormitory datasets. This demonstrates that
electricity consumption behaviors in academic building and
girls dormitory are similar and closely-correlated, as well as
those in the boys dormitory and restaurant.

To understand the deeper reason, PSNR and SSIM is the
above generalization ability test are calculated as shown
in Table 6. It can be seen that the test datasets of girls’
dormitory have higher PSNR and SSIM on the academic
building’s reconstruction model than on the others, while the
same conclusions can also be drawn from the test of academic
building’s data on girls’ model and the mutual test of boys’
dormitory and restaurant models/datasets. This again implies
a similar data structures and justifies the super-resolution
reconstruction method can generalize between different data
sets with similar structural relationships in the same region.

E. VERSATILITY OF RECONSTRUCTION MODELS
FOR DATA SETS IN DIFFERENT REGIONS
At the beginning of this section, we separately train super-
resolution reconstruction models with datasets from differ-
ent geographic locations. Immediately afterwards, the test
sets of different geographic locations are input into each
trained reconstruction model. In the end, according to the
reconstruction results, we evaluate the versatility and gen-
eralization of the proposed method in different geographic
locations. In Table 7, the model trained with AMPds2 has
higher PSNR and SSIM on the AMPds2 test set. Similarly,
models trained with IHEPCds have higher PSNR and SSIM
on the IHEPCds test set. However, when used to test other
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FIGURE 12. Results of super resolution reconstruction for different
datasets at the same location (electrical image).

FIGURE 12. (Continued.) Results of super resolution reconstruction for
different datasets at the same location (electrical image).

TABLE 7. Evaluation of reconstruction accuracy for datasets at different
locations.

geographic datasets, the PSNR and SSIM of the trained
I-BLEND, AMPds2, or IHEPCds models are relatively low.
The results show AAthat the proposed method is applica-
ble to the reconstruction of datasets in different geographic
locations and can achieve satisfactory reconstruction results.
However, the proposed method lacks generalization between
datasets in different geographic locations. It is speculated that
the user and electricity consumption behaviors of datasets
in different geographic locations have obvious differences,
resulting in no similar potential distribution between data
sets in different geographic locations. To our knowledge, it is
contrary to the fact that GAN essentially reconstructs data by
mining the potential distribution of data [18].

V. CONCLUSION
In this paper, a generative adversarial network based super-
resolution reconstruction method for low-frequency electri-
cal measurement data of smart grid is proposed. The main
advantages are as follows.

1) A method for transforming electrical measurement data
into electrical images is designed so that the GAN can
effectively learn the potential distribution of electrical mea-
surement data with the help of image processing techniques.
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It realizes the effective combination of electrical field and
image field.

2) The Wasserstein distance is introduced into the GAN
model to avoid the disappearance of the gradient of the GAN,
which improves the training stability.

3) Three designs are involved, including a generator based
on deep residual network, a discriminator based on deep
convolutional network, and a perceptual loss function, and
simulation shows that they result in high reconstruction accu-
racy and restore rich high-frequency detail.

4) The proposed method is a data-driven based unsuper-
vised training method with no need to model the electrical
measurement data. The trained reconstruction model can be
generalized to different datasets in the same geographical
location. In addition, the proposed method is also universal
for datasets from different geographical locations.

In order to further enhance the generalization ability
between different geographic datasets, we will consider to
establish a broad and common knowledge map by mining
the knowledge representation of electrical data in different
regions, and realize the key knowledge interaction among
data in different regions through transfer learning.
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