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ABSTRACT Insulated conductors can improve the stability of power transmission and reduce the con-
struction space compared with traditional bare conductors. Therefore, insulated conductors are used more
and more in overhead power transmission. However, a major challenge of using insulated overhead con-
ductors (IOC) is that the ordinary protection devices are not able to detect the phase-to-ground faults and
something, such as tree branch, hitting conductor events. This may cause an accident such as power failure or
electrical fire and result in serious damage. In this paper, a new approach, which is based on DiscreteWavelet
Transform (DWT) and Long Short Term Memory network (LSTM) for detecting of IOC fault according to
partial discharge, is presented. Firstly, the original signal is denoised by DWT. Secondly, the denoised signal
is decomposed and extracted features on different layers by DWT. Finally, IOC fault is detected by LSTM.
This method can improve the detection accuracy of IOC fault which is tested on the ENET public data set
and compared with other classification methods.

INDEX TERMS Insulated overhead conductors, partial discharge, discrete wavelet transform, long short
term memory network, fault detection.

I. INTRODUCTION
Insulated conductor can improve the stability of power trans-
mission and reduce the construction space compared with
traditional bare conductors [1]–[3]. Therefore, insulated con-
ductors are used more and more in overhead power transmis-
sion [4], [5]. However, there is a major challenge in using
insulated overhead conductor (IOC).When IOC is broken and
fall to the ground or something such as a branch hits IOC,
it cannot cause overcurrent. Therefore, phase-to-ground and
phase-to-phase faults usually cannot be detected by standard
protective equipment [6]. This can create a long-term poten-
tial reliability threat in some locations where the tree and tree
branches frequently hit the conductors or continuously push
and bend the conductors. Eventually, the power line may be
damaged and broken, which causes power outage or even
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tree fire [7]. These faults can occur partial discharge (PD)
phenomenon [8], [9]. The current value of PD is very small
(about 6-10 amps) and easy to be interfered by external back-
ground noise, which is the main problem to achieve accurate
detection [10].

In recent years, deep learning algorithms, such as deep
belief network, deep neural network, convolutional neural
network, deep adversarial convolutional neural network, and
transfer network, have been gradually applied to fault diag-
nosis [11]–[15]. In 2016, Li et al proposed a convolutional
neural network (CNN) with deep architecture which is estab-
lished to extrapolate new features automatically to realize
ultra-high frequency (UHF) signals recognition in GIS [16].
In 2017, a novelmethod based onmulti-kernelmulti-class rel-
evance vector machine (MMRVM) was proposed for partial
discharge pattern recognition [17]. In 2018, Wan et al. pro-
posed an approach to detecting PD patterns in gas-insulated
switchgear (GIS) using long short-termmemory (LSTM) and
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recurrent neural network (RNN) [18], [19]. In the same year,
the stacked denoising autoencoder (SDAE) based deep learn-
ing method for PD pattern recognition of different insulation
defects of high voltage cables was presented in [20]. Based on
deep learning, the network of [21] was constructed for pattern
recognition straight forwardly. Through on site detection and
simulation experiments, image data sets of five partial dis-
charge defects are established and comparative experiments
are conducted. Adam et al. applied LSTM to identify different
types of PD activity in insulated cables, using single PD
impulses as input data. The experimental result shows that
the recognition accuracy of LSTM is slightly lower than the
random forest method, but LSTM method has the advantage
of not requiring artificial statistical features [22].

FIGURE 1. The block diagram of complete description.

The spectrum form is usually adopted in the online mon-
itoring system for partial discharge of power equipment.
As the discharge time increases and the discharge inten-
sity changes, the PD spectrum will also change accordingly.
When the PD spectrum fluctuates with time, its character-
istic parameters (such as phase, amplitude, and number of
discharges) will also change with time series. The discrete
wavelet transform (DWT) can decompose the original signal
and extract the features with different resolutions [23]–[25].
LSTM has excellent capability of time series information
mining. This paper presents a novel method that combines
DWT with LSTM of many-to-one input and output, and
increases time series details of PD activity. The method is
used to detect PD in the IOC fault. The overall framework of
the proposed method is shown as Figure 1. Firstly, the origi-
nal signal noise is reduced using wavelet method. Secondly,
the noise reduction signal is decomposed by DWT and sig-
nal features with different resolutions are obtained. Finally,
the signal features are input into the many-to-one LSTM
model, and the detection result is obtained.

Our contributions are summarized as follows:

(1) We propose an effective learning method for power
grid fault diagnosis with noisy signal. This method is
implemented by combining DWT and LSTM.

(2) The oversampling technology is proposed to solve the
problem of serious imbalance between the number of

fault samples and the number of normal samples. The
comprehensive evaluation index is designed to evaluate
the model performance.

(3) The DWT method is used to solve the problem of
the original data with large noise. It can improve the
accuracy of LSTM classifier.

(4) It is proved that the accuracy of LSTM detection model
can be improved by combining the different levels of
signal obtained from DWT decomposition. The best
combination level is obtained by designing the contrast
experiment.

This paper is organized as follows. Section II introduces the
data set. Section III describes the signal noise reduction based
on DWT. Section IV describes the signal decomposition
and feature extraction based on DWT. Section V describes
the IOC fault detection based on LSTM model. Section VI
describes the experiment, results and discussion. Section VII
concludes the paper.

II. ENET DATASET
Technical University of Ostrava (VSB) devised a special
meter to measure the voltage signal of the stray electrical
field along IOC, hoping to detect the hazardous PD activities.
In 2018, VSB released the ENET data set on Kaggle which
is the world’s largest data science collaboration platform.
The data set contains 8,711 labeled voltage signals from
four different locations. Those locations represent the deploy-
ment in the real environment (forested and hardly accessible
terrain). Each signal is voltage waveform of 50Hz, which
contains 800,000 data points and pre-marked as PD (525)
or Non-PD (8,186). Due to the large volume of the data
set, the Hadoop Distributed File System (HDFS) storage
format is used. Examples of the PD signal and the Non-
PD signal are shown in Figure 2. It can be seen that the
maximum and minimum value of Non-PD signal is about
40mv and −40mv, and the fluctuation is relatively stable.
In contrast, the maximum and minimum value of PD signal is
about 60mv and −80mv, and the signal fluctuation increases
significantly.

III. THE SIGNAL NOISE REDUCTION BASED ON DWT
As an important signal processing method, wavelet transform
has the characteristics of multi-layer and multi-resolution
analysis. By zooming and panning the wavelet function,
signal details in the time and frequency domains can be
analyzed [26]–[28]. Wavelet transform mainly includes con-
tinuous wavelet transform (CWT), discrete wavelet trans-
form (DWT) and discrete wavelet packet transform (DWPT).
CWT requires continuous integration and the calculation is
complicated. DWT is the discrete processing of CWT. Com-
bined with Mallat algorithm, computational complexity of
DWT can be reduced. The DWT expression is as (1).

y(n) =
N/2j∑
k=1

aj(k)ϕj,k (n)+
J∑
j=1

N/2j∑
k=1

dj(k)ψj,k (n) (1)
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FIGURE 2. Examples of signal records from ENET dataset.

where,ϕj,k (n) andψj,k (n) are the scaling function andwavelet
function respectively, J represents the series of wavelet
decomposition, and N represents the total number of coef-
ficients of wavelet decomposition, aj(k) and dj(k) are the
approximate coefficient part and the detailed coefficient part
respectively, which can be expressed as (2).{

aj(k) =
〈
y(n), ϕj,k (n)

〉
dj(k) =

〈
y(n), ψj,k (n)

〉 (2)

A. NOISE REDUCTION ALGORITHM BASED ON DWT
High-frequency signals with small amplitude and low-
frequency signals with large amplitude can be obtained after
signals are decomposed by wavelet. A series of wavelet coef-
ficient prediction values are obtained after mapping through
the threshold function. These prediction values are used to
reconstruct noise reduction signals. Signal noise reduction
process is shown as Figure 3. The right part shows the change
of signal waveform during noise reduction. The blue curve
represents the original signal, the red curve represents the
signal after passing through the high-pass filter, and the green
curve represents the signal after passing through DWT noise
reduction. The left part is the signal processing flow. The
noise reduction algorithm includes wavelet decomposition,
threshold quantization processing and wavelet reconstruc-
tion. First of all, input the raw voltage signal. Then determine
the number of decomposition layers, the scale equation and

wavelet threshold. As the mother wavelet of signal decom-
position, the noise signal in the original signal is filtered
out to obtain useful signals, and these useful signals are
reconstructed.

FIGURE 3. The signal noise reduction process.

In order to obtain the optimal frequency resolution and
noise reduction, Daubechies6 wavelet function is adopted.
The wavelet decomposition structure is shown in Figure 4. Y
is a discrete sequence of noisy signals, aj(k) and dj(k) are the
approximate coefficients and detail coefficients on the scale j
(j = 1, 2, . . . , n) respectively.

FIGURE 4. Wavelet decomposition structure.

The original signal can be decompose into n detail coeffi-
cients di and n approximation coefficients ai. If the threshold
of di isW , then

d̄ij =

{
0, dij ≤ W
dij −W , dij > W

(3)

where dij is the wavelet coefficient without threshold process-
ing, and d̄ij is the value after truncation processing.
The noise reduction result can be obtained from the thresh-

old processing result and the n-th construction signal. Let
ϕ(x) be a scale function of multi-resolution analysis, then

φ(x) =
∑
k

Pkϕ(2x − k) (4)
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where k is a real number, (2x − k) is a standard orthogonal
basis for multi-resolution analysis, and Pk is a scale function.

The threshold W is an important parameter in the noise
reduction process [29], [30]. Based on [31] and the average
absolute deviation, the threshold W of the decomposition
layer n is calculated as (5) and (6).

σ = 1/0.6745MAD(|di|) (5)

W = σ
√
2 log(n) (6)

The hard threshold method is used to deal with the approx-
imate and detailed coefficients, as(7).

Thard (x) =

{
x if |x| > W
0 otherwise

(7)

The two-scale equation of Daubechies wavelet is

ϕ(x) =
√
2
∑
k∈Z

Pkϕ(2x − k) (8)

where Z is the set of integers.
The steps for coefficients construction of the two-scale

equation Pk are as follows:
¬ Select a positive integer (n ≥ 2) and a polynomial:

P(y) = Pn(y)+ ynR(1/2− y) ≥ 0, 0 ≤ y ≤ 1 (9)

­ Select Q(z), let P(sin2 ω2 ) = |Q(e
i,w)|2;

® Let H̃ (z) = ( 1+z2 )nQ(z), then

H̃ (z) =

√
2
2

L∑
k=0

Pkzk (10)

where ω ∈ [0, 2π ], L is the maximum value of non-zero
data in the sequence, z is the noise signal, R, Q(z), Pn(y) is
algebraic polynomial of real coefficients, y is a real num-
ber between [0,1], and H̃ (z) is high-pass filter with linear
phase. As the number of decomposition layers n increases,
the smoothness of Daubechies wavelet increases.

B. TEST AND SIMULATION
Three-phase signal noise of normal samples and fault samples
is reduced, as shown from Figure 5 to Figure 10, respectively.
In each set of figures, three figures of the first row are all
data points of the signal, three figures of the second row are
the first 10000 data points of the signal to observe the noise
reduction details. Two figures of the first column are the orig-
inal signal. Two figures of the second column are the signal
through the high-pass filter. Two figures of the third column
are the signal after noise reduction. The noise reduction is
that keep the approximate and detailed coefficients amplitude
when it is greater than the threshold value, and 0 when it is
less than the threshold value. It can help to extract and classify
the signal features.

FIGURE 5. 0-phase signal denoise without fault (a) the original signal
(the blue curve). (b) the signal after passing the high-pass filter (the red
curve). (c) the signal after noise reduction (the green curve).

FIGURE 6. 1-phase signal noise reduction without fault (a) the original
signal (the blue curve). (b) the signal after passing the high-pass filter
(the red curve). (c) the signal after noise reduction (the green curve).

FIGURE 7. 2-phase signal noise reduction without fault (a) the original
signal (the blue curve). (b) the signal after passing the high-pass filter
(the red curve). (c) the signal after noise reduction (the green curve).

IV. FEATURE EXTRACTION BASED ON DWT
When PD activity occurs, each vibration signal contains
unique information about the particular condition of IOC. It is
called fault feature frequency signal. In practice, IOC tend to
work with non-stationary power transmission, which results
in additional aperiodic pulses. In this way, the traditional fea-
ture analysis method based on the envelopment is no longer
applicable.

Therefore, DWT is chosen to decompose the original sig-
nal and obtain signal feature with different resolutions. The
noise reduction signal is input and decomposed by DWT. The
DWT calculation equation is shown in equation (1).
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FIGURE 8. 0-phase signal noise reduction with fault (a) the original signal
(the blue curve). (b) the signal after passing the high-pass filter (the red
curve). (c) the signal after noise reduction (the green curve).

FIGURE 9. 1-phase signal noise reduction with fault (a) the original signal
(the blue curve). (b) the signal after passing the high-pass filter (the red
curve). (c) the signal after noise reduction (the green curve).

FIGURE 10. 2-phase signal noise reduction with fault (a) the original
signal (the blue curve). (b) the signal after passing the high-pass filter
(the red curve). (c) the signal after noise reduction (the green curve).

The DB4 wavelet is suitable for transient detection of
electrical signal and used as the mother wavelet function. The
DB4 function divides the signal into five detailed components
(f1, f2, f3, f4, f5) and an approximate component (A1). Five
detail components are represented as high frequency com-
ponents and one approximate component is represented as
low frequency components. The signal with fault and the
signal without fault are decomposed using DWT, as shown
in Figure 11.

V. IOC FAULT DETECTION BASED ON LSTM
LSTM is a sequence prediction model which predicts output
through information embedded in a series of time steps.

FIGURE 11. DWT decomposition (a) the results of the signal without fault
(b) the results of the signal with fault.

In recent years, researchers have applied LSTM to some
time series problems such as inventory, weather forecasts,
and machine translation [32]–[34]. In these tasks, LSTM is
usually superior to traditional machine learningmodels. Then
it is used to detect the IOC fault.

A. RECURRENT NEURAL NETWORK
Since the LSTM neural network is based on enhanced recur-
rent neural network (RNN), the RNN is reviewed firstly.
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The RNN is regarded as a group of feedforward neural net-
work (FNN), where the hidden neurons of the previous time
step are connected to the hidden neurons of the next time step.
Hidden neurons Ht are obtained by combining the weight
of the previous iteration cycle Wh with the weight of the
current input information Wx . And so on, this process will
continue to the next time iteration cycle. In this way, the
RNN can take advantage of sequential information but not
regard the signal as a combination of isolated points. The
output of the current iteration period is not only based on
the current input, but also based on the information of the
previous iteration period. The structure of the many-to-one
RNN model is shown in Figure 12.

FIGURE 12. The structure of the many-to-one RNN model.

X is the input and H is the vector of hidden layer:

Ht = tanh(WhHt−1 +WxXt ) (11)

According to the chain rule, the network loss gradient is

∂Ek
∂W
=
∂Ek
∂Hk

∂Hk
∂Hk−1

. . .
∂H2

∂H1

∂H1

∂W
=
∂Ek
∂Hk

(
∏k

t=2

∂Ht
∂Ht−1

)
∂H1

∂W
(12)

and derivative is
∂Ht
∂Ht−1

= tanh′(WhHt−1+WxXt ) ·
d

dHt−1
[WhHt−1 +WxXt ]

= tanh′(WhHt−1 +WxXt ) ·Wh (13)

Combining (12) and (13),

∂Ek
∂W
=
∂Ek
∂Hk

(
∏k

t=2
tanh′(WhHt−1 +WxXt ) ·Wh)

∂H1

∂W
(14)

According to Wh and tanh < 1, (tanh’(WhHt−1 +WxXt ) ·
Wh) may be less than 1 or greater than 1, which will cause
the gradient to disappear or explode [35]–[36]. This will
significantly affect the weight update and make it difficult
to converge. LSTM uses complicated gate control instead of
tanh activation function in the gradient flow, so it has better
stability and performance.

B. LSTM ALGORITHM
Compared with the traditional RNN, LSTM introduces a
specially designed unit that can accurately control the hid-
den state information flow from one time step to ano-
ther [37]–[39]. The structure of the LSTM is shown
in Figure 13.

FIGURE 13. The structure of the LSTM.

In Figure 13,Xt andHt are the input vector and the network
hidden state vector at the time iteration period t , respectively.
Ct is a vector which is stored in external memory unit. The
interaction among the unit state vector, the input vector and
the hidden state vector is accomplished through forgetting
gate (ft ), input gate (it ) and output gate (ot ).

The calculation of forgetting gate vector is:

ft = σ (Wf · [Ht−1,Xt ]+ bf ) (15)

where, [Ht−1, Xt ] is the concatenated vector of the previous
hidden state vector Ht−1 and the current input vector Xt ,
Wf and bf are the weight and bias of ft which are determined
by network training, σ is the sigmoid activation function.
The flow of information in the vector Ct is controlled by dot
multiplication of elements. The temporary state vector C̃t is
calculated by:

C̃t = tanh(Wc · [Ht−1,Xt ]+ bc) (16)

where Wc and bc are the weight and deviation of fc, tanh is
the tanh activation function.

The calculation of input gate vector is

it = σ (Wi · (Ht−1,Xt )+ bi) (17)

where Wi and bi are the weight and deviation of it . They are
determined by network training.

The state of new Ct in the time step t is updated,

Ct = ft ∗ Ct−1 + it ∗ C̃t (18)

The current hidden state is determined by the new state and
the write gate Ot . Similar to ft and it , Ot can be written as

ot = σ (Wo[Ht−1,Xt ]+ bo) (19)

The hidden state of current step Ht is calculated,

Ht = ot ∗ tanh(Ct ) (20)

Ht is used to calculate the output of the current time step.

VI. EXPERIMENTS AND DISCUSSIONS
A. FAULT SCENARIOS
Insulated conductors can improve the stability of power trans-
mission and reduce the construction space compared with
traditional bare conductors. Therefore, insulated conductors
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are used more and more in overhead power transmission.
However, the following two faults may occur in IOC, which
are difficult to detect:

(1) The standard protection devices used for bare
conductor systems are often not able to detect the IOC’s
phase-to-ground fault. Because of the insulation cover,
the phase-to-ground fault will not likely cause an overcurrent
when IOC breaks and falls to the ground. This can create risky
situation to people in close proximity to the fallen conductors.

(2) Something, such as tree branch, hitting the conductors
will not be detected by the upstream protection devices. This
can become a potential reliability threat in some locations
where the tree branches etc. frequently hit the conductors
due to wind or continuously push and bend the conductors.
Eventually, the power line will be damaged, causing a power
outage or starting a tree fire.

B. EVALUATION INDICATORS
Accuracy rate and error rate are two commonly used evalu-
ation indexes to measure the classification model. However,
they are not suitable for analyzing the imbalance dataset of
ENET because using accuracy and error rates requires that
each type of samples is equally important. In the ENET
dataset, it makes more important to classify less samples
type correctly than to classify more samples type correctly.
So precision rate and recall rate are more suitable for ENET
data analysis than accuracy rate and error rate. The less
samples type is recorded as positive examples and The more
samples type is recorded as negative examples. The labels of
true results and forecast results are shown in Table 1.

TABLE 1. The labels of true results and forecast results.

TP (true positive) indicates that the prediction result is
positive and it is correct. TN (True Negative) indicates that
the prediction result is negative and it is correct. FP (False
Positive) indicates that the prediction result is positive and
it is false. FN (False Negative) indicates that the prediction
result is negative and it is false.

The precision rate (P) calculation formula is

P = TP/(TP+ FP) (21)

The recall (R) calculation formula is

R = TP/(TP+ FN ) (22)

The F1-Score is the harmonic mean of Precision and
Recall.

F1 = 2×
P× R
P+ R

(23)

Matthews Correlation Coefficient (MCC) is an index used
to measure the performance of binary classification. MCC is

a correlation coefficient to describe the actual classification
and the predicted classification and defined as

MCC=
TP ∗ TN − FP ∗ FN

√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

(24)

where (TP + FN )(TN + FP) is a constant, which is defined
as

TP+ FN = PosLabelCount (25)

TN + FP = NegLabelCount (26)

κ = (TP+ FN )(TN + FP)

= (PosLabelCount)(NegLabelCount) (27)

Define

α = (TP+ FP)(TN + FN )

= (PosPr edictionCount)(NegPr edictionCount) (28)

FP ∗ FN

= (PosPr edictionCount − TP)

∗ (NegPr edictionCount − TN ) (29)

(TP ∗ TN )− (FP ∗ FN )

= (TP ∗ NegPr edictionCount)

+ (TN ∗ PosPr edictionCount)− α (30)

Then according to the accuracy definition:

TP = Pos_precision ∗ PosPr edictionCount (31)

TP ∗ NegPr edictionCount

= Pos_precision ∗ PosPr edictionCount

∗NegPr edictionCount (32)

Similarly:

TN = Neg_precision ∗ NegPr edictionCount (33)

TN ∗ PosPr edictionCount = Neg_precision ∗ α (34)

Then get:

(TP ∗ TN )− (FP ∗ FN )

= α ∗ Pos_precision+ α ∗ Neg_precision− α (35)

(TP ∗ TN )− (FP ∗ FN )

= α ∗ (Pos_precision+ Neg_precision− 1) (36)

The expression of Matthew correlation coefficient is:

MCC =

√
α

κ
∗ (Pos_precision+ Neg_precision− 1) (37)

Defining PosNegRatio =
√
α
κ
,

MCC =
1
√
κα
∗ (TP ∗ TN − FP ∗ FN ) (38)

In order to comprehensively evaluate the model perfor-
mance, the precision rate, recall rate, F1-Score, and MCC are
selected as the evaluation indexes.
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TABLE 2. Many-to-one LSTM structure.

TABLE 3. Signal feature layers.

TABLE 4. Experimental group settings.

C. FUSION LAYER SELECTION BASED ON F1-SCORE
The fusion of signal data from different layers are used
for IOC fault detection. The Many-to-one LSTM structure
is shown in Table 2. The features of each layer and their
corresponding labels are shown in Table 3. There are six
sets of comparative tests, as shown in Table 4. The signal
data of different decomposition levels are obtained by DWT
decomposition, and then they are integrated into the LSTM
model in 3D format. For each decomposition level of data,
randomly select 1000 groups of 3-phase signal as training
data. There are 80000 data points for each phase signal.When
the time step is set to 160, 80000/160=5000 data points are
taken for each phase signal. In order to reduce the input
vector dimension, the average value of 50 data points is
taken as a new data point, then each phase signal consists
of 5000/50=100 data points.

The F1-score of different fusion layers is shown as
Figure 14. It can be seen that the LSTM classifier with four
layers of features (A1, f2, f3 and f4) has obtained the best
classification results. Therefore, it is selected as the input to
the final classifier. In contrast, two layers of features cannot
capture sufficient fine-grained feature changes. Five layers
of features may amplify less meaningful feature changes
and cause overfitting, then result in reducing classification
performance.

D. THE EFFECT OF NOISE REDUCTION
AND OVERSAMPLING
In the ENET data set, there are 525 PD signal samples and
8186 non-PD signal samples. The number of two types of

FIGURE 14. The F1-score of different fusion layers.

samples is shown in Figure 15. 0 represents normal samples
and 1 represents fault samples. The data amount of normal
samples is about 16 times that of fault samples. There is a seri-
ous imbalance between normal samples and fault samples.

FIGURE 15. The number of normal samples and fault samples.

The problem of serious imbalance in data categories is
solved by using Synthetic Minority Oversampling Tech-
nique (SMOTE) which is an improved scheme based on
random oversampling algorithm. Because random oversam-
pling adopts a simple copying strategy to increase minority
samples, it is easy to generate model over simulation. The
basic idea of SMOTE algorithm is to analyze a small number
of samples and artificially synthesize new samples to add to
the data set.

1) For each sample x in the minority class, calculate its
distance to all the samples in the minority set using
the Euclidean distance as the standard, and obtain its
k nearest neighbors.

2) Determine the sampling ratio N according to the sam-
ple imbalance ratio. Randomly select several samples
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from k nearest neighbors of minority class sample x.
Assume that the selected neighbor is xn.

3) Construct a new sample which is randomly selected
neighbor xn according to the following formula:

xnew = x + rand(0, 1) ∗ |x − xn| (39)

In order to evaluate the effects of noise reduction and over-
sampling, the F1 score is used for the test. The test results are
shown in Figure 16. It can be seen that both oversampling and
noise reduction can improve the classification performance.
If oversampling is not used, the classifier will focus on normal
signals, thereby reducing the ability to identify fault signals.
Wavelet noise reduction can remove the noise information
contained in signals, which can reduce the difficulty of LSTM
feature extraction and improve the classification accuracy.

FIGURE 16. The results of noise reduction and oversampling.

FIGURE 17. The loss function changes during model training.

E. THE COMPARISON OF DIFFERENT ALGORITHMS
The loss value of the proposedmodel during training is shown
in Figure 17. It can be seen that the loss and accuracy tends
to converge when the number of iterations is about 80. In the
whole process, the loss value of the verification data set drops
faster and fluctuates less than those of the training process,
and eventually converges to 0.08, which may be caused by
less number of verification data set (training data:Validation
data = 7: 3). The accuracy of Matthew’s correlation coeffi-
cient is shown in Figure 18. It can be seen that the accuracy

FIGURE 18. The changes in accuracy during model training.

tends to converge when the training iteration reaches about
80 times. The training accuracy is slightly higher than the
verification accuracy, and reaches 0.86. The accuracy rates
of different evaluation indexes are shown in Table 5.

TABLE 5. The model accuracy.

Fuzzy neural network (FNN) combines the advantages of
neural network system and fuzzy system, and it has great
advantages in dealing with non-linearity and ambiguity. Sup-
port Vector Machine (SVM) is used to solve the problem of
data classification and belongs to a kind of supervised learn-
ing algorithm [40], [41]. XGBoost is an open source machine
learning project and has effectively implemented the GBDT
algorithm. The MLR algorithm proposes and implements a
non-linear relationship between learning features directly in
the original space. The proposed model is compared with five
classifiers (FNN, SVM,XGBoost,MLR, and LSTM), and the
results are shown in Table 6. It can be seen that the accuracy
of the proposed model is better than other models.

TABLE 6. The comparison between different algorithms.

VII. CONCLUSION
Aiming at the problem that the phase-to-ground fault and
phase-to-phase fault of IOC are difficult to detect, a method
based on combination of DWT and LSTM is proposed
through detecting partial discharge in this paper. And we get
the following conclusions.
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(1) DWT can effectively reduce the noise of original volt-
age signal, so that the signal features are more obvious.

(2) DWT is chosen to decompose the noise reduction sig-
nal and obtain signal features of different resolutions.
The DB4 wavelet is suitable for transient detection
of electrical signal and used as the mother wavelet
function.

(3) In some time series problems, LSTM is usually supe-
rior to traditional machine learning methods and can
enhance the PD recognition performance.

(4) Different algorithms are used to make a comparative
test on the ENET data-set. The results show that the
DWT-LSTM method provides the best classification
results measured by F1-Score. The proposed method
based on DWT-LSTM and partial discharge is suitable
for IOC fault detection.

In the future, we will use two methods to further improve
the accuracy of fault detection. The first method will use
bidirectional LSTM to extract the features of fault samples
and normal samples. The second method will use small sam-
ple learning, migration learning and other means to solve the
problem of rare fault samples.
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