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ABSTRACT The Back Propagation (BP) neural network has the problems of low accuracy and poor
convergence in the process of binocular camera calibration. A method based on BP neural network optimized
by improved genetic simulated annealing algorithm (IGSAA-BP) is proposed to solve these problems to
complete the binocular camera calibration. The method of combining Gaussian scale space and Harris
corner detection operator is used for corner detection. A matched algorithm of homonymous corner is
proposed by combining point-to-point spatial mapping and grid motion statistics. The pixel values of the
homonymous corner and three-dimensional coordinate values are taken as the input and output of BP neural
network respectively. The crossover and mutation probability of genetic simulated annealing algorithm
and the annealing criterion are improved, the IGSAA-BP neural network is used to calibrate the binocular
camera. The average calibration accuracy of BP neural network and IGSAA-BP neural network is 0.71mm
and 0.03mm, respectively. The average calibration accuracy of binocular camera is improved by 96%. The
iteration speed is increased by 20 times and global optimization ability is improved. It can be seen that
the IGSAA-BP neural network can improve the calibration accuracy of binocular camera and accelerate
convergence speed.

INDEX TERMS Camera calibration, genetic simulated annealing algorithm, Gaussian scale space, corner

detection, homonymous corner match, BP neural network.

I. INTRODUCTION

The three-dimensional (3D) reconstruction technology based
on binocular vision can restore the 3D contour information
of objects in a simple and convenient way [1]-[3]. In recent
years, due to the rapid development of this technology, robot
navigation, visual detection, artificial intelligence and other
industries have also changed with significant breakthroughs.
Binocular vision is different from monocular vision in that it
can obtain the depth information of the object according to
different positions in the object space [4]-[6]. In the process
of actual 3D measurement, it has the advantages of high
efficiency and accuracy. The parallax principle is used to
calculate the position deviation between the homonymous
points in two images obtained from different positions so as to
obtain the 3D information of the target object [7]-[9]. Binoc-
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ular vision technology is the foundation of many industries,
among which one of the key research fields is the calibration
of binocular camera. In the process of practical application,
the calibration accuracy and the required time are the primary
research objectives [10], [11]. Therefore, it is necessary to
improve the accuracy and reduce the time of the binocular
camera calibration.

The calibration accuracy of the binocular camera directly
affects the accuracy of the final imaging system. The tradi-
tional calibration methods of binocular camera mostly rely on
the accurate imaging mathematical model, which takes little
account of various nonlinear distortion factors in the imag-
ing process, and the calibration process is relatively compli-
cated [12]-[14]. The calibration of binocular camera deter-
mines the internal and external parameters of the imaging
system for binocular stereo vision. Compared with monocular
stereo camera, its calibration process is relatively tedious,
requiring higher requirements for algorithm optimization and
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target change. In terms of the essence of binocular camera
calibration, it is actually to obtain the mapping relationship
between camera image coordinates and 3D real world coor-
dinates. The binocular camera calibration does not neces-
sarily need to solve the internal and external parameters of
the imaging system for binocular stereo vision [15]-[18].
In recent years, many scholars have proposed binocular cal-
ibration methods based on neural network. The projection
point coordinates of two cameras are taken as input sig-
nals to match the expected values of 3D coordinates of the
network [19], [20]. Therefore, how to quickly obtain the
accurate mapping relationship between pixel coordinates and
3D physical coordinates will become one of the hot topics in
binocular camera calibration.

As a new technology in artificial intelligence field, arti-
ficial neural network has been proved to be able to approx-
imate any continuous function with any accuracy [21], [22].
Based on this feature, the mapping relationship between pixel
coordinates and the object’s 3D real world coordinates can
be directly established without determining the internal and
external parameters of the binocular camera or knowing the
relevant camera imaging model. All the nonlinear factors are
included in the neural network, which is currently used as
an implicit calibration [23]-[25]. In the study of the calibra-
tion of binocular camera based on neural network, the BP
neural network is the most common method. Its feasibility
in binocular camera calibration has been proved by An and
Zhi [26], Yao et al. [27]. Yuan et al. proposed a simple
and flexible camera calibration method based on BP neural
network as early as 2009 [28]. The projection matrix of the
camera is fitted by the weights between the network input
layer and the hidden layer. Jin et al. studied the influence of
different number of hidden layers of BP network on camera
calibration accuracy, compared and analyzed the final exper-
imental results for many times, and concluded that hidden
layers have a direct influence on the calibration accuracy [29].
It can be seen from many experimental results that the binoc-
ular camera based on BP neural network has long itera-
tion time, low accuracy and poor convergence. Holland et al.
first proposed genetic algorithm, which originated from the
imitation of Da Vinci’s theory of species evolution [30].
To solve this problem, Yao ef al. used the fast convergence
rate of genetic algorithm to optimize BP neural network and
obtained good convergence [31]. Genetic algorithm is easy
to fall into the local minimum, thus reducing the ability of
global optimization [32]. Liu et al. made a similar study
and used Particle Swarm Optimization (PSO) algorithm to
optimize BP neural network, but the final result was not ideal
because PSO algorithm was prone to premature convergence
[33], [34]. In most of the current studies, the main problem
in the application of BP neural network to the calibration
of binocular camera is that it cannot meet the require-
ments of short calibration time, high accuracy and good
convergence.

In this paper, a method based on BP neural network opti-
mized by improved genetic simulated annealing algorithm
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(IGSAA-BP) is proposed for binocular camera calibration,
which overcomes the disadvantages of BP neural network
in the process of binocular camera calibration, such as long
iteration time, low accuracy and poor convergence. The
improved corner detection and the algorithm of homonymous
corner match are proposed to solve the problem of low corner
detection rate and high rate of homonymous corner mismatch
in camera calibration process. The contributions of our work
are pointed as follows:

1. A new corner detection method based on the combina-
tion of Gaussian scale space and Harris corner detection
operator is proposed to improve the success rate of corner
detection in checkerboard images.

2. An automatic matching algorithm based on the rough
matching of point-to-point spatial mapping and the grid
motion statistics is proposed to reduce the rate of
the homonymous corner mismatch in the checkerboard
images.

3. The improved genetic simulated annealing algorithm is
to optimize BP neural network and overcome the dis-
advantages of BP neural network in binocular camera
calibration.

4. The experiments are carried out to verify the pro-
posed improved methods of corner detection, homony-
mous corner match and IGSAA-BP, so as to prove
their effectiveness in the process of binocular camera
calibration.

The paper is structured as follows: Section II describes the
hardware platform and calibration process of binocular cam-
era as well as the algorithm design and principle, homony-
mous corner match and so on in the calibration process.
In section III, the improved algorithms proposed in this paper
are verified by experiments, and the experimental results
are simply counted and analyzed. Section IV discusses the
binocular camera calibration method of IGSAA-BP neural
network. Section V summarizes the specific improvements of
the proposed methods in this paper on the calibration result
of binocular camera based on BP neural network.

Il. MATERIALS AND METHODS

A. A HARDWARE PLATFORM AND COMPONENTS OF
BINOCULAR CAMERA CALIBRATION

The experimental hardware platform for binocular camera
calibration is composed of the monitor, workstation, binoc-
ular camera and calibration target as shown in Figure 1.
The calibration target is a cube calibration block with a side
length of 9cm, and the six sides are evenly covered with a
black and white checkerboard with a side length of lcm.
As shown in Figure 1, the X, Y and Z axis is respectively
established by the three edges of the calibration block, and
the intersection of the three axes is at the origin O, so as to
construct the real 3D world coordinate system of the object.
According to this world coordinate system, the true 3D spatial
coordinates of each checkerboard corner on the cube can be
calculated.
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FIGURE 1. Calibration platform for binocular camera.

B. ALGORITHM DESIGN AND PRINCIPLE OF CORNER
DETECTION

Corner detection is an important part of binocular camera
calibration. Corner detection is to obtain pixel coordinates of
corners, so the precision of corner detection directly affects
the final calibration accuracy of binocular camera. Harris cor-
ner detection algorithm is one of the common corner detec-
tion algorithms [35]. The main principle of common Harris
corner detection algorithm for checkerboard corner detection
is as follows: The corner of the checkerboard images can be
simply considered as the intersection of two sides. Corner
recognition is usually done in a small local area or window.
If the small window is moved in all directions, the gray
gradient of the area in the window changes greatly, then it is
considered that corners are encountered in the window. If the
gray gradient of the images in the window does not change
as the window moves in all directions of the checkerboard
images, there are no corners in the window. If the gray
gradient of the images in the window changes greatly when
the window moves in one direction and does not change in
other directions, then the images in the window may be a
line segment. The change in motion here is measured by
the self-similarity of the panned window. Assuming that the
gray value of pixels at the point (x,y) of the image is I(x,y),
when the distance is shifted (u,v) at the point (x,y), the self-
similarity (E(u,v)) is:

E(u,v) = Z

(u,v)eW(x,y)

we, W u, y+v) =1, N1 (1)

where W (x, y) is a window centered on the point (x, y). I (x, y)
is the pixel value at point (x,y). w(x,y) is the weighted
function. /(x 4+ u, y 4+ v) represents the pixel gray value when
the distance is shifted (#, v) at the point (x, y). When E(u, v)
value changes in all directions in the window, it is more likely
to be the corner. For small local movement (u, v), equation (1)
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can be simplified as:

E(u,v) = [wIM [ ’: } )

M is the second-order differential matrix, and its calcula-
tion includes two processes: calculation of the differential,
and calculation of the differential value in the accumulation
window:

M = E w(x,y) I"Z Ll 3)
I L Iy2
x,y

I, and I are the partial derivatives of I(x, y). The matrix M
is diagonalized, where A| and X, represent the rate of change
of gray value in x and y directions:

A O

M= [ 0 )»2:| )
The common Harris corner detection algorithm has gray
invariance and rotation invariance, but has no scale invariance
[36], [37]. In small scale, the corner of the checkerboard
images may be considered as the edge of the checkerboard
images after being enlarged, resulting in the failure of detec-
tion of some corners. Therefore, scale invariance is crucial
for the local features of the images. To solve this problem,
an improved Harris corner detection algorithm is adopted in
this paper, which combines Gaussian scale space with Harris
corner detection operator to carry out corner detection of the
checkerboard images. Based on the common Harris corner
detection algorithm, Gaussian scale space is introduced [38].
In the original feature point space, the feature points of
other scale space are added. These additional feature points
correspond to the images of different scale spaces, which
increase the robustness of the target scale variation and make
it have a certain degree of scale invariance. Let w(x,y) take
Gaussian weight g(8,,), and the new second moment M can

be expressed as:

2
M:aﬁg(am)®[L*(x’y’5") szy(x,y,s,,)} ®)

LiLy(x,y.8,)  L3(x,y.8,)

g(8,) is the Gaussian convolution kernel of scale §,,.
Ly(x,y,8,) and Ly(x, y, 8,) represent the result of smoothing
the images with Gaussian g(§,) function. The new matrix M
adds two Gaussian scale parameters compared to the original
(8,) is called integral scale, and it is the variable that deter-
mines the current scale of Harris corner. §,, is the differential
scale or local scale. It is the variable that determines the
variation of the differential value near the corner. In fact, it can
be considered as a Gaussian smoothing parameter).

It is not convenient to judge corner by judging the values
of two variables A1 and ;. The corner detection algorithm
of checkerboard images firstly defines a set of integral and
differential scales to §,, and §, in advance. Then, the response
function R of the corner is defined to roughly judge the corner
of the checkerboard images from the position space:

R = detM — k(traceM)? (6)
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!det(M) = MA2 -

trace(M) = A + Ao

Trace (M) is the direct trace of matrix M and (detM) is the
determinant of matrix M. k is an empirical constant, which
is generally set at 0.04-0.06. Search the candidate corner of
the checkerboard images in the position space. At this time,
when R>0, it is temporarily considered to be the corner
of the checkerboard images. When R<O0, it is temporarily
considered as an edge of the checkerboard images. When R
value is very small, it is temporarily regarded as a smooth
transition region.

Since the candidate corner of the position space is not nec-
essarily the candidate corner of the scale space, we also need
to search the scale space to find the so-called characteristic
scale value of the corner. On the basis of the results of the
position space search, the search for the characteristic scale
value is mainly divided into two steps:

Given a threshold value Ty, Laplace’s response value
F(x, n)is calculated for the candidate points of each checker-
board images that have been searched in the position space,
and its absolute value is greater than the given threshold
condition:

F(x,mp) = 03 [Lee(e, ma) + LG, m)| = T (8)
(Sn = ¥YNn (9)

y 1is the local Gaussian smoothing parameter (generally
0.7~1), and 7 is the initial scale parameter.

Compare the value of F(x, ) with the Laplace response
value of the adjacent two scale Spaces to make it satisfy:

F()C, 77n) > F()C, 77n—l)
Fx,mn) > F(xX, Npt1) (10)

The scale value satisfying condition 1) and 2) is the char-
acteristic scale value of the corner. Combined with the search
results of the position space, the Harris corner that satisfies
the conditions of both the position space and the scale space
is found, that is, the corner of checkerboard images that is
finally determined. This method improves the accuracy of
checkerboard corner detection and overcomes the low detec-
tion accuracy of common Harrias corner detection algorithm.
The steps of corner detection algorithm for checkerboard
images based on the combination of Gaussian scale space and
Harris corner detection operator are shown in the Table 1:

C. ALGORITHM DESIGN AND PRINCIPLE OF
HOMONYMOUS CORNER MATCH

The homonymous corner is the one-to-one corresponding
corner in the left and right checkerboard images. Homony-
mous corner match is also an essential step for binocular
camera calibration using BP neural network. It is necessary
to match the corresponding homonymous corners on the left
and right checkerboard images and obtain their corresponding
pixel coordinates in the left and right checkerboard images
respectively. The traditional method of homonymous corner
match mainly uses the feature operators such as Scale Invari-
ant Feature Transform (Sift) and Speed Up Robust Feature
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TABLE 1. Corner detection of checkerboard images based on improved
Harrias algorithm.

Steps | Algorithm steps of corner detection of
checkerboard images

1 Search for the candidate point of corner of the
checkerboard images from the position space

2 Compute the gray gradient values I and 7, for
all pixels on the checkboard images

3 Compute the matrix M for each pixel in the
neighborhood of (x,y)

4 Compute R = det M —k(traceM )’

If R>0, It is considered as the candidate point
of corner of the checkerboard images.

6 From the scale space, we can further judge
whether the candidate point is corner of the
checkerboard images

7 For the candidate point of corner of each
checkerboard images searched through the
position space, the F'(x,#) is calculated

8 If F('x9’1n) = ’1;12 L,\tx('x> ;/ln)+Lyy(x’ ’7)1)| Z 7:

ng Feem) > Fxm, )
F(x,n,)>F(x,n,,)
the candidate point meet the requirements of
scale space.
9 The candidate point satisfying both the
position space and the scale space can be
determined to be the corner of the
checkerboard images

, it is considered that

(Surf) in Open Source Computer Vision Library (Opencv)
to detect the corner of the checkerboard images, then the
algorithm of BruteForceMatcher or FlannBasedMatcher is
used for homonymous corner match [39], [40]. Because the
pattern of checkerboard is too similar, the rate of homony-
mous mismatch is high and the matched effect is poor when
the traditional methods are used to match the homonymous
corner.

In this paper, a method combining point-to-point spatial
mapping algorithm and grid motion statistics is proposed to
match the homonymous corner of the checkerboard images,
so as to overcome the disadvantage of high rate of homony-
mous corner mismatch of the checkerboard images. The algo-
rithm of corner detection proposed in this paper is used to
detect the corner of left and right checkerboard images. On
this basis, the algorithm of homonymous corner match is
divided into two parts. In principle, it will mainly include:

Part I: The point-to-point spatial mapping algorithm is used
to roughly match the homonymous corner of checkerboard
images.

Part II: On the basis of the results of rough match in
the Part I, the grid motion statistics algorithm proposed by
Bian et al. is used to optimize the results of rough match to
reduce the rate of homonymous corner mismatch and obtain
high-quality results.
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In the Part I, a correlation coefficient matrix M, is assumed
based on the needs of point-to-point spatial mapping algo-
rithm, which is used to describe the correlation matrix of all
corners in the left and right images (only comparison between
different images, i.e. the correlation of corners of the same
image need not be calculated). Assuming that the number
of corner in the first image is m and the number of corner
in the second image is n, then the size of the correlation
coefficient matrix is mxn:

X11 X12 te X1n
Mo=|% - - xm (11)
Xml Xm2 ot Xmn

The matched window of 3x3 is built by centering on the
position p(py, py) of the pixels to be matched in the left
and right checkerboard images. In the same way, the tar-
get function is established to measure the correlation of the
matched window by constructing the matched window of
neighborhood at the position of the target pixel p’(px +d,
Py)- A correlation coefficient £(p, d) is defined to describe
the correlation between the corners of the two checkerboard
images. The interval range is [—1, 1] (The greater the value of
the correlation coefficient, the better its correlation will be):
(12), as shown at the bottom of the next page.

I1(x, y) represents the pixel value at point(x, y) in the sub-
graph of the left checkerboard image. I (Px» py) and I x +
d, py) represent the average of the position of the pixel to
be matched and the target pixel, respectively. d represents
the distance between the position of the queried pixel in
the right image and the position of the p, in the horizontal
direction. W, represents a matching window with coordinates
of matched pixels as the center (Generally, it is a 33 matched
window). If £(p, d) = —1, it means that the two matched win-
dows are completely unrelated. On the contrary, if £(p, d) =
1, it means that the two matched windows are highly cor-
related. On this basis, several important parameters such as
correlation coefficient threshold (z), distance ratio threshold
(r) and corner distance threshold (g) in the algorithm are
set. The main body of the algorithm for homonymous corner
match of the checkerboard images based on point-to-point
spatial mapping is shown in the following Table 2:

After rough matching of point-to-point spatial mapping,
the rough matched results are relatively poor, and there are
some mismatched corners. At this time, the Part I of homony-
mous corner match: the grid motion statistical algorithm is
used to optimize the rough matched results, and the wrong
matching is quickly eliminated, and the high-quality results
are obtained. According to the grid motion statistics algo-
rithm proposed by Bian et al. [41], the results of mismatching
after rough matching are eliminated. The main steps of the
algorithm for optimizing the results of homonymous corner
match based on the grid motion statistics are as follows:

1) Find the nearest corner in the right image corresponding
to each corner in the left image after the rough matched
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TABLE 2. Rough matching algorithm for corner based on point-to-point
spatial mapping.

Steps | The body of the rough matched algorithm for

corner based on point-to-point spatial mapping

1 Compute ¢ and relevance of matching windows of
two checkerboard images

2 Find the position (m, n) of the maximum value in
M of the left and right images. (Row m, column n)
in the M, .

Meanwhile, the value (m, n) in M _is set as -1.

3 Save the maximum value /1,

best

4 Find the maximum value 7/ in row m of the

(ax,,)

current M, and the maximum value [ in

(@)
column n.
Set the values of 7+ rand ¢q.

6 If two corners in the left and right images
satisfy 1-1,,, <(1-1,, )xr, -1, <=1, )xr

est ax,) (ax,)

and Dis , < q , the rough matching between the two
corners is successful.

7 Record this pair of corners, and set all elements in
the row m and column n to -1 in the M.

8 Repeat the process until the maximum value in the
M does not exceed ¢, .

step of point-to-point spatial mapping algorithm in the
Part .

2) Divide the left and right images into multiple grids. After
the grid is divided, each grid is regarded as a small
neighborhood.

3) If the two corners after rough matching can be matched
correctly, a small area near the two corners can be
regarded as corresponding to the same 3D position. All
the matched corners in each grid need to be counted only
once, instead of counting each corner separately.

4) Set the threshold value z for the number of corner in
the divided grid. According to the smoothness of the
motion, the correctly matched pair of corners near the
correctly matched corner should be larger than the cor-
rectly matched pair near the incorrectly matched corner.

5) The number of correctly matched corners near corner
C after rough matching is calculated as N, - N, and
threshold z are used to determine whether the corner is
correctly matched.

6) If N, > z it is considered to be a correct match;
otherwise, it is considered to be a wrong match, and the
wrong match is deleted and rematched.

D. CALIBRATION OF BINOCULAR CAMERA BASED ON
NEURAL NETWORK

1) PRINCIPLE AND STRUCTURE DESIGN OF BINOCULAR
CAMERA CALIBRATION BASED ON TRADITIONAL BP NEURAL
NETWORK

BP neural network adopts the training method of supervised
feedforward neural network. The main principle of using BP
neural network for binocular camera calibration is as follows:
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FIGURE 2. Design of binocular camera calibration structure based on BP
neural network.

Based on the pixel coordinates of the corner of the checker-
board images of the binocular camera, the 3D coordinates
of the network output of the corresponding corner of the
checkerboard on the calibration block are calculated in the
forward. The weight of the network is adjusted and optimized
by the difference between the output of the network and the
actual output of the three-dimensional coordinates.

Suppose that the input and output dimensions of BP neural
network are m, and n, respectively. The number of hidden
neurons and training samples are Nq and N, respectively. The
weight between the input layer and the hidden layer of the
neural network is Wj;, and the weight between the output layer
and the hidden layer is Wy;. In this study, BP neural network
is used to calibrate binocular camera. The specific calibration
design of binocular camera based on BP neural network is
shown in Figure 2. The BP neural network used in this study
has three layers, including the input layer, the hidden layer
and the output layer. The input layer contains four neurons,
which are the coordinates of the horizontal and vertical pixels
of the corner in the left and right checkerboard images. The
output layer contains three neurons, representing the true 3D
world coordinates of the corner corresponding to the 2D pixel
coordinates of the input. The number of hidden layer neurons
in this study is 9 (In general, if the number of neurons in the
input layer is n, the number of neurons in the hidden layer is
2n+1). Set the maximum number of iterations (My = 1000),
the number of training samples (N, = 1000) and the accuracy
of the given training target (¢ = 0.0001).

2) PRINCIPLE OF BINOCULAR CAMERA CALIBRATION
BASED ON BP NEURAL NETWORK OPTIMIZED BY
TRADITIONAL GENETIC SIMULATED ANNEALING ALGORITHM
The binocular camera calibration based on BP neural network
can establish the mapping relationship between the coordi-

nates of 2D pixels and the coordinates of 3D real objects
without complicated imaging model. However, BP neural
network tends to fall into the minimum value and cannot
reach the global optimal value. As the BP neural network
randomly selects the threshold and weight, the convergence
speed is slow, which leads to the low accuracy and slow
speed of binocular camera calibration. To solve the above
problems, BP neural network is optimized by traditional
genetic simulated annealing algorithm (TGSAA-BP) [42],
[43]. When TGSAA is used to optimize BP neural network,
genetic algorithm is mainly used as the core frame. Annealing
operation is introduced in the process of genetic variation
operation. TGSAA can find the optimal threshold and weight
of BP network in the calibration process of binocular cam-
era through the survival of the fittest through population
and genetic operators. Firstly, genetic algorithm is used to
generate the initial population. Then selection, crossover,
mutation and other operations are carried out to generate new
individuals. Finally, each new individual is annealed to obtain
a new population. The whole process is cycled until the pre-
set algorithm end condition is reached. The optimal threshold
and weight are assigned to BP neural network as the initial
threshold and weight of BP network.

3) PRINCIPLE AND PROCESS OF BINOCULAR CANERA
CALIBRATION BASED ON BP NEURAL NETWORK OPTIMIZED
BY IMPROVED GENETIC SIMULATED ANNEALING
ALGORITHM

In the process of binocular camera calibration, genetic algo-
rithm improves the optimization ability of initial threshold
and weight of BP neural network to some extent. At the
same time, the risk of the calibration results falling into
local extremum is increased. The simulated annealing algo-
rithm is not easy to fall into the local optimal solution,
but its convergence speed is relatively slow. In this study,
the genetic algorithm is combined with simulated annealing
algorithm, which improves the performance of BP network
in the process of camera calibration, but the effect is not
ideal. In this paper, the disadvantages of genetic algorithm
and simulated annealing algorithm in the process of cam-
era calibration are analyzed, and some improvements are
proposed. In this way, the convergence and global optimiza-
tion of the genetic simulated annealing algorithm can be
improved. Thus, it further provides the optimal weight and
threshold for BP neural network, improves the performance
of BP neural network, and finally improves the accuracy
and speed of camera calibration. In this study, aiming at the
disadvantages of the traditional genetic simulated annealing
algorithm in optimizing the BP neural network for binocular

> (e, y) = Li(px, py) - (b(x +d,y) — L(px +d, py))

x,yeW)

£(p.d) =

12)

> () = hipepy)? - Y (b +d.y) = D(px +d. py)?

x,yeW,
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camera calibration, the following improvement measures are
taken from the following three aspects: fitness, crossover and
mutation probability and annealing algorithm.

a: FITNESS STRETCH OF GENETIC ALGORITHM
During the binocular camera calibration test, the inverse of
the sum of the squares of the errors between the actual 3D
coordinates and the predicted 3D coordinates finally output
by the BP neural network is used as the fitness value. In the
later stage of genetic algorithm, the individual difference is
small and is easily limited to local minimum. In this study,
the fitness stretching method is used to improve the com-
petitiveness between individuals to overcome this problem.
At this point, the fitness F' of the ith individual is shown in
(13):
fi
F= % (13)
> exp(4)
i=
f; represents the fitness of the ith individual before
improvement. 7 represents the current temperature of the
simulated annealing algorithm.

b: ADAPTIVE IMPROVEMENT OF CROSSOVER AND
MUTATION PROBABILITY

The crossover probability of genes determines the diversity of
the population studied, while the mutation probability deter-
mines whether the genetic algorithm can find the global opti-
mum [44]. In the traditional genetic algorithm, the crossover
and mutation probability of the gene in the chromosome is
a constant value set in advance, which can only be manually
adjusted. This process is very complicated, it is difficult to
reconcile their best value. At present, many researches have
proposed the completely adaptive genetic algorithm, which
has the advantages of adaptive adjustment to the mutation and
crossover probability of genes and does not depend on human
operation [45]. However, this algorithm increases the risk of
falling into local extremum and cannot find the global optimal
solution accurately. In this study, the relationship between
maximum fitness f;, and average fitness f;, of the population is
defined as shown in (14). The traditional adaptive crossover
probability P; and mutation probability Pp, in (15) and (16)
are improved by using different degrees of population fitness
concentration and dispersion.

9 = arcsin(&) (14)
Jm
0
2x1—60 < r
P = a0 (15)
X —2x1—60 > —
T 6
0 T
26—60 > —
P, = moT,0 (16)

X2 — 2)@;9 < 3

where x| and x; are the adaptive adjustment parameters of
the population. Compared with the linear adaptive change
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of the traditional genetic algorithm, the crossover and muta-
tion probability are improved in this study so that it can
carry out nonlinear adaptive change. It can be seen from
equations (15) and (16) that, when 6 < %, as 0 decreases,
the diversity of the camera data population increases. At
this time, according to the adaptive increase of the crossover
probability value, the crossover between individuals can
be completed more fully, and high-quality individuals can
be generated continuously. The adaptive value of mutation
probability is reduced, the probability of good individuals
being destroyed is reduced, and the convergence speed of
the whole algorithm is accelerated. On the contrary, when
6 > %, with the increase of 6, the crossover between
genes is reduced and the convergence of the algorithm is
accelerated. The adaptive probability of variation is increased
to reduce the risk of the algorithm falling into local min-
ima and improve the ability of global optimization. This
improvement directly reduces the time of binocular camera
calibration and improves the accuracy of binocular camera
calibration.

¢: IMPROVEMENT OF SIMULATED ANNEALING ALGORITHM
CRITERION
In the process of binocular camera calibration, the conver-
gence speed of the traditional simulated annealing algorithm
is slow, and the diversity of camera calibration data popu-
lation cannot be guaranteed under the traditional Metropolis
criterion [46]. In view of these problems, this study is based
on the evolution degree of the corresponding individuals in
the new and old populations, and the Metropolis criterion is
improved. The individuals in the new population are modified
according to different conditions to increase the diversity of
individuals and speed up the algorithm convergence to reduce
the camera calibration time and improve the calibration accu-
racy. The simulated annealing algorithm is improved from the
following two aspects:

(i) Definition of mutation probability (P;) of old and new
individuals

fnew(i) - fald(i)
)

where K is the fixed parameter, fy,(i) is the fitness of the
ith individual of the new population, and f;;4(7) is the fitness
of the ith individual of the old population. T is the current
temperature.

(ii) Establish rules for the replacement of old and new
individuals

The fitness values of the corresponding individuals in the
new and old populations are compared. When the fitness
values of the new individuals are greater than the fitness
values of the old individuals, the new individuals are stored
as the next generation of the new population. On the contrary,
all the genes in the new individual are swapped with random
probability to produce the new individual, and the new indi-
vidual produced at this time is stored as the next generation
of the new population with P;.

P = (17)
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FIGURE 5. Corner detection based on checkerboard images: (a) Results of
corner detection by using Surf corner detection algorithm; (b) Results of
corner detection by the common Harris corner algorithm; (c) Results of
corner detection based on improved Harrias corner detection algorithm.

d: THE CALIBRATION PROCESS OF BINOCULAR CAMERA
BASED ON BP NEURAL NETWORK OPTIMIZED BY IMPROVED
GENETIC SIMULATED ANNEALING ALGORITHM

The calibration of binocular camera based on BP neural
network optimized by IGSAA can be divided into five
parts: Parameters initialization module of genetic simulated
annealing algorithm, structure module of BP neural network,
improvement module of genetic simulated annealing algo-
rithm, weight and threshold optimization module of BP neu-
ral network based on IGSAA, training and testing module
of BP neural network based on camera images. The flow
chart of the BP neural network model optimized based on the
improved genetic simulated annealing algorithm (IGSAA-
BP) is shown in Figure 3. It is specified that the initial
temperature of the simulated annealing algorithm is To =
100°, the current temperature is T, and the end temperature
18 Trin.

Ill. EXPERIMENTS AND RESULTS

The hardware platform of binocular camera calibration
shown in Figure 1 is used to take images of calibra-
tion blocks. The left and right camera images are saved
correspondingly, and the checkerboard images obtained
through the binocular camera are shown in Figure 4. These
images prepare for subsequent checkerboard corner detection
and match.
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FIGURE 6. The distribution diagram of det(M) and trace(M).

A. EXPERIMENTS OF CORNER DETECTION BASED ON
CHECKERBOARD IMAGES

At present, there are many methods for corner detection, but
most of them are not satisfactory when applied to corner
detection of checkerboard images. As shown in Figure 5 (a),
traditional Surf feature point detection algorithm is used to
detect the corner of the checkerboard images. It can be seen
from the effect of corner detection circled by black circle
in Figure 5 (a) that part of the edges of the checkerboard
images are detected as corners, and there are problems of
repeated detection and low detection accuracy at the real
corners of the checkerboard images. As shown in Table 3,
the success rate of corner detection of the checkerboard
images by this method is about 60%, which cannot meet the
requirements of the homonymous corner match. The common
Harris corner detection algorithm is also often used for corner
detection of calibration blocks such as checkerboard, but
as shown in Figure 5 (b), its actual detection effect is not
satisfactory. As can be seen from Table 3 and Figure 5 (b),
many corners of the checkerboard images cannot be detected.
The algorithm can only detect some corners of the checker-
board images, and the success rate of corner detection is only
about 50%.

After the introduction of Gaussian scale space to improve
common Harris algorithm, the relationship between det(M)
and trace(M) as shown in Figure 6. It can be seen more clearly
that the number of corners and edges can be roughly judged
according to the response function R of corners, and the
function of response function of corners can be understood
more clearly. The corner effect of the checkerboard images
detected by the improved Harris corner detection algorithm
is shown in Figure 5(c). It can be seen from Figure 5(c)
that compared with Surf corner detection and common Harris
corner detection, the accuracy of corner detection has been
greatly improved. From the data of corner detection shown
in Table 3, it can be seen that the accuracy of corner detection
using the improved Harris checkerboard corner detection
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TABLE 3. The results of corner detection of three different algorithms.

Name of Number of Number of Success rate of
algorithm corners in the corners corner detection
checkerboard detected
images
Surf 100 62 62%
Common Harrias 100 54 54%
Improved Harrias 100 100 100%

algorithm can reach 100%, which greatly reduces the error

rate of corner detection.

B. EXPERIMENTS OF HOMONYMOUS CORNER MATCH
BASED ON CHECKERBOARD IMAGES

As a calibration object for binocular camera, the checker-
board is helpful to improve the calibration accuracy. The
pattern of checkerboard images has a high similarity, so as a
camera calibration object, it also has a high mismatching rate
of homonymous corner. In this study, two different traditional
methods of homonymous corner match are adopted to realize
homonymous corner match of left and right checkerboard
images. The specific data of homonymous corner match is
shown in Table 4. The first method mainly uses the tra-
ditional BruteForceMatcher algorithm in Opencv to match
the homonymous corner in the left and right checkerboard
images, and the final matched effect is shown in Figure 7 (a).
It can be seen from Figure 7(a) that the matched algorithm
of BruteForceMatcher can be used to complete homonymous
corner match of the checkerboard images, but it still pro-
duces a large number of mismatches of the homonymous
corner. According to the data in Table 4, the success rate of
the homonymous corner match is only about 60%, and the
process of the homonymous corner match takes about 3.6s.
The second method uses the FlannBasedMatcher matched
algorithm in Opencv to realize the homonymous corner
match, and the final matched effect is shown in Figure 7 (b).
It can still be seen from the data in Table 4 that the success rate
of homonymous corner match by using FlannBasedMatcher
matched algorithm is about 65%, which is 5% higher than the
first method. The whole matched process takes 3.8s, which
increased by about 6%. From the results of experiments, it can
be seen that the two traditional matched methods used in this
paper can not meet the actual requirements.

FIGURE 7. Traditional method of the homonymous corner match:

(a) Results of homonymous corner match based on BruteForceMatcher
algorithm; (b) Results of homonymous corner match based on
FlannBasedMatcher algorithm.
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FIGURE 8. The results of the homonymous corner match algorithm are
presented in this paper: (a) Rough matching of the homonymous corner
based on point-to-point spatial mapping; (b) Improved matching of the
homonymous corner points based on point-to-point spatial mapping and
motion grid statistics algorithm.

Aiming at the problem of high mismatched rate of homony-
mous corner, this paper proposes a matched algorithm

combining point-to-point spatial mapping algorithm and grid
motion statistics algorithm to solve the problem. In the first
step, the spatial mapping algorithm of points and points is
used to carry out rough matching to the homonymous corner.
The final rough matched effect is shown in Figure 8 (a). It can
be clearly seen from Figure 8 (a) that mismatches still occur in
some homonymous corners. According to the statistical data
in the Table 4, the success rate of the homonymous corner
match is about 85%, and the whole matched process takes
about 1.6s. In order to further improve the success rate of the
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homonymous corner match, the second step is carried out:
the grid motion statistics algorithm is adopted to eliminate
the mismatched corners in the first step and make a second
match. The final matched result is shown in Figure 8 (b).
By combining Table 4 with Figure 8 (b), it can be seen
that the success rate of homonymous corner match is up to
100%. At this time, a good effect is achieved. The whole
process requires 1.8s. In terms of the time of homonymous
corner match, the matched time of the method proposed in
this paper is about 3.4s, which is about 5% less than that
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TABLE 4. Results of the homonymous corner MATCH of different

methods.

Name of algorithm Pairs of Sucessful pairs Matched Time
homonymous of homonymous  success (s)
corners in the corner rate
checkerboard
images

BruteForceMatcher 100 61 61% 3.6

FlannBasedMatcher 100 67 67% 3.8

Point-to-point spatial 100 84 84% 1.6

mapping

Our research 100 100 100 3.4

CinSbration prediction results of binocular camera based on BP neural network

TABLE 5. 2D pixel coordinates and 3D coordinates of the homonymous
cornerS(Part of the data).
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Group Left camera Right camera Real 3D coordinates of
image (pixel) image (pixel) the calibration object
(cm)
u v u v X y z
1 525.02 4112 50523 2654 3 3 4
2 536.18 194.65 533.37 181.05 2 0 3
3 55526 6574 53857 4965 3 2 4
4 584.43  88.63 57529 7238 3 1 4
5 53041 26832 527.54 25531 2 0 2
6 457.55 54127 41834 530.69 0 3 0
7 687.22 109.54 678.06 9245 4 0 4
8 657.34 39536 649.78 37645 4 0 0
9 602.36  262.10 59833 246.04 3 0 2
10 654.29 84.58  640.87 66.12 4 1 4

of the traditional matched algorithm. However, based on the
success rate of the matched algorithm, the success rate of the
algorithm proposed in this study is about 40% higher than that
of the traditional matched algorithm.

C. CALIBRATION EXPERIMENTS OF BINOCULAR CAMERA
BASED ON NEURAL NETWORK

Based on the left and right checkerboard images, the checker-
board corner detection is carried out and the corresponding
homonymous corner match is carried out. The 2D pixel coor-
dinate values corresponding to the homonymous corner is
extracted and the actual 3D coordinate values corresponding
to the corner is calculated. The pixel coordinates and 3D
coordinates of the final extracted part of the homonymous
corners are shown in Table 5.

1) EXPERIMENTS OF CALIBRATION ACCURACY OF
BINOCULAR CAMERA

a: EXPERIMENTS ON CALIBRATION ACCURACY OF
BINOCULAR CAMERA BASED ON TRADITIONAL BP NEURAL
NETWORK

The pixel coordinates and actual 3D coordinates of
1000 groups of homonymous corners in the checkerboard
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Predicting samples
FIGURE 9. Test of calibration accuracy of binocular camera based on
traditional BP neural network.

images are selected as the training set of BP neural network.
1000 sets of experimental data are trained and 10 sets of data
are imported into the test set to predict the 3D coordinate of
binocular camera calibration using BP neural network (i.e.,
the prediction of calibration accuracy). The predicted and
actual values of the 3D coordinates of the obtained corner are
shown in Figure 9. The red curve in the Figure 9 represents
the actual 3D coordinate values of the corner, while the blue
curve represents the predicted 3D coordinate values of the
corner. As can be seen from Figure 9, the trend of the two
curves is basically the same, but there are obvious differences
between them. It can be observed that there is a certain error
between the predicted values and the actual values of the 3D
coordinates of the corner, that is, the calibration accuracy
is low when the traditional BP neural network is used for
binocular camera calibration.

b: EXPERIMENTS ON CALIBRATION ACCURACY OF
BINOCULAR CAMERA BASED ON TGSAA-BP NEURAL
NETWORK

In part a), the traditional BP neural network can be used to
calibrate binocular camera, and its calibration accuracy is
relatively low, and there is a large gap between the actual
values and the predicted values of 3D coordinates of the
checkerboard corner. Therefore, on this basis, the TGSAA
is introduced to optimize the BP neural network, so as to
improve its calibration accuracy. As shown in Figure 10,
compared with Figure 9, the comparison between curves can
be seen more clearly. The BP neural network optimized by
the TGSAA improves the accuracy of camera calibration
obviously. The gap between the true 3D coordinates and the
predicted values of the corner of the checkerboard images is
gradually reduced, and it has been greatly improved com-
pared with that before the optimization within the visible
scope of the naked eye. However, it can still be seen from
Figure 10 that there is still a certain gap between the real 3D
coordinate values and the predicted values of corner, and the
accuracy of its calibration still needs to be further improved.
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FIGURE 10. Test of calibration accuracy of binocular camera based on TGSAA-BP neural network.

2) EXPERIMENTS ON CALIBRATION ACCURACY OF
BINOCULAR CAMERA BASED ON IGSAA-BP NEURAL
NETWORK

In order to further improve the calibration accuracy of binoc-
ular camera to meet the final requirements of the experiment,
the algorithm is improved on the basis of the TGSAA. BP
neural network can be better optimized, so as to achieve
higher calibration accuracy of binocular camera. After the
improvement of the TGSAA, the predicted values of the
obtained 3D coordinates is shown in Figure 11. It can be seen
from Figure 11 that the curves of the actual values and the
calibrated predicted values of 3D coordinates fit perfectly.
The IGSAA has achieved a good effect, so as to optimize
the BP neural network and further improve the calibration
accuracy of binocular camera.

3) EXPERIMENTS OF CALIBRATION ITERATION SPEED OF
BINOCULAR CAMERA

The time spent in the calibration experiment of binocular
camera is analyzed from the number of convergent iteration
of BP neural network. The fewer iterations of BP neural
network, the better its convergence and the less time needed
for binocular camera calibration. The iteration target value in
the calibration process of binocular camera is set to 0.0001,
and the training test is conducted with 1000 sets of data from
the training set. As shown in Figure 12 (a), the number of iter-
ations of the binocular camera calibration experiment based
on BP neural network is 1860. As shown in Figure 12(b),
the number of iterations for binocular camera calibration
based on the TGSAA-BP neural network is 475. Compared
with the traditional BP neural network, the convergence rate
of the TGSAA-BP neural network is improved by 3 times.
On this basis, in order to further accelerate the convergence
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speed and reduce the calibration time of binocular camera,
the TGSAA is improved. On the basis of the TGSAA-BP
neural network, the quadratic optimization is carried out.
As shown in Figure 12(c), the final iteration number of the
binocular camera calibration based on IGSAA-BP neural
network is 85. Compared with Figure 12(b), the number of
iterations is reduced by 82%. Compared with the binocular
camera calibration based on the traditional BP neural net-
work, the iteration speed is increased by about 20 times. In the
process of calibration experiment, the BP neural network is
optimized and a good result is obtained.

4) ANALYSIS OF CALIBRATION RESULTS OF BINOCULAR
CAMERA

The calibration errors before and after BP neural network
optimization are tested by 1000 training sets. In this exper-
iment, the average error between the 3D actual coordinate
values of the training set and the predicted coordinate values
is adopted, that is, the mean value of the 3D coordinate errors
of X, Y and Z. the mean error of calibration test for 60 training
sets randomly selected is shown in Figure 13. It can be seen
from the Figure 13 that the calibration accuracy of the binocu-
lar camera based on IGSAA-BP neural network is the highest
and good results have been achieved. Comparing the results
before and after optimization, the accuracy of the camera cal-
ibration is the lowest when the traditional BP neural network
is used before optimization. Its average error range is between
0.3mm and 0.7mm, which is large and relatively unstable.
The calibration accuracy of TGSAA-BP neural network is
around 0.1-0.4mm, and its stability has been significantly
improved. The calibration accuracy of the binocular camera
based on IGSAA-BP neural network is about 0.02-0.06mm,
and the error range is relatively concentrated and stable. It can
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TABLE 6. Prediction error of calibration of 3D coordinates for binocular
camera.

Prediction error based on
IGSSA-BP neural network

Group Prediction error based on BP

neural network (mm)

(mm)
X y z X y z
1 0.60 1.12 0.63 0.01 0.01 0.06
2 0.71 0.93 0.41 0.05 0.09 0.02
3 0.73 0.62 0.85 0.07 0.02 0.05
4 0.82 0.96 0.36 0.02 0.03 0.04
5 0.58 0.52 0.71 0.03 0.03 0.01
6 1.12 0.34 0.54 0.01 0.02 0.03
7 0.75 0.36 0.98 0.06 0.03 0.01
8 0.52 0.84 1.05 0.04 0.06 0.03
9 0.91 0.16 0.41 0.01 0.02 0.01
10 1.28 0.45 0.58 0.05 0.04 0.06

be seen that the IGSAA has achieved good results in the
optimization of traditional BP network and greatly improved
the calibration accuracy of binocular camera.

Based on the analysis of the X, Y and Z coordinate errors
of the 10 test sets, the 3D coordinate errors of the binocular
camera calibration using traditional BP neural network and
IGSAA-BP are shown in Table 6. As can be seen from
Table 6, the error of each coordinate by using IGSAA-BP
neural network is obviously smaller than that using traditional
BP neural network. In the process of camera calibration,
the total mean error of the predicted values of 3D coordinate
using traditional BP neural network is 0.71mm. The total
mean error of the predicted 3D coordinates using the IGSAA-
BP neural network is 0.03mm. Compared with traditional BP
neural network, the calibration accuracy of IGSAA-BP neural
network improved by 96%.

The calibration errors of X, Y and Z coordinates are fitted
on the surface. According to Figure 14, it can be seen that
the error of calibration prediction accuracy using IGSAA-BP
neural network is more concentrated. In the coordinates of
X, Y and Z, the average accuracy of calibration prediction
using IGSAA-BP neural network is 0.036mm, 0.034mm and
0.025mm respectively. The average accuracy of calibration
prediction of traditional BP neural network in X, Y and Z
coordinate is 0.79mm, 0.63mm and 0.64mm respectively.
Compared with the traditional BP neural network, the calibra-
tion accuracy of X, Y and Z coordinate with IGSAA-BP neu-
ral network is improved by 95%, 94% and 96% respectively.
As can be seen from Figure 14 (a), about 60% of the errors
in the camera calibration prediction results based on tradi-
tional BP neural network are concentrated in the blue region,
and the error range is about 0.3mm-0.7mm. Compared with
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FIGURE 13. Average accuracy of binocular camera calibration based on
training set.

traditional BP neural network, the error range of IGSAA-BP
neural network in Figure 14 (b) is more concentrated and the
error is smaller, ranging from 0.02mm to 0.06mm.

As shown in Figure 15, with the increase of evolutionary
algebra, the fitness value of the optimal individual increases
in a stepped manner. IGSAA-BP network is superior to
TGSAA-BP neural network in global optimization of binoc-
ular camera calibration. The fitness value of 125 is found
when the TGSAA-BP neural network converged for 4 times
to 15 generations. The fitness value 185 is found when the
IGSAA-BP neural network converged four times to 25 gen-
erations. It can be seen that the IGSAA has significantly
improved the optimization ability in camera calibration test.
The IGSAA has strong climbing ability and is not easy to fall
into local optimization. It can be seen from the Figure 15 that
the IGSAA rises in a stepped manner, resulting in multiple
conversions. Finally, the IGSAA-BP network gets rid of the
local convergence and shows strong adaptability.

IV. DISCUSSION
Black and white checkerboard is a common calibration object
for camera calibration. How to quickly and accurately detect
the corner of the checkerboard, extract the accurate 2D pixel
coordinates and complete the homonymous corner match in
the left and right checkerboard imagess is the problem that
the current research is concerned about. Traditional corner
detection and matched methods have poor robustness. Inter-
ference (such as slight occlusion) can cause the checkerboard
corner detection to fail. The checkerboard images with a large
tilt angle will also lead to the failure of corner detection.
The checkerboard images are similar to each other, so the
probability of a false match is much higher than that of normal
images.

As early as 2012, Andreas Geiger et al. used the energy
growth algorithm to detect and match the corner of the
checkerboard images to solve these problems [47]. This
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FIGURE 14. 3D coordinate accuracy prediction of binocular camera calibration based on test set:
(a) The prediction error of 3D coordinates based on traditional BP neural network; (b) The
prediction error of 3D coordinates based on IGSAA-BP neural network.

method is robust and does not need to specify the size of
checkerboard in advance. However, this method requires a
large amount of calculation. At the same time, when the
checkerboard images is polluted, the checkerboard lattice
cannot be grown. The corner detection and matched algo-
rithm proposed in this study overcomes the problem of
low accuracy and large computation. However, this method
requires the positions and shapes of the left and right
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camera images to be similar when matching the checkerboard
images.

BP neural network is one of the important methods for
camera calibration. The accuracy of camera calibration based
on BP neural network is discussed. In 2010, Jing et al
used BP neural network to complete the calibration of CCD
camera [48]. The final calibration accuracy is around 1.2mm,
which is not up to the actual calibration requirements. On the
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FIGURE 15. The curve of fitness and evolutionary algebra.

basis of BP neural network, Jiang et al. proposed using ant
colony algorithm to optimize BP neural network [49]. This
method improves the calibration speed of the camera, but
does not improve the calibration accuracy. Munoz Rodriguez
et al. introduced the genetic algorithm to optimize the BP
neural network, and finally obtained the accuracy around
0.lmm [50]. Compared with the traditional BP neural net-
work, the calibration accuracy has been greatly improved.
At the same time, the stability of genetic algorithm is not
satisfactory because it is easy to fall into the problem of local
optimization. The calibration method of IGSAA-BP neural
network adopted in this study can reach about 0.02mm in
calibration accuracy. Compared with the traditional BP neural
network has a great improvement, at the same time to improve
the global optimization ability. The convergence speed is
accelerated and the calibration time is reduced.

The calibration of binocular camera based on neural net-
work depends on a large amount of data. Relatively speaking,
under the same circumstances, when the amount of data in
the training set is larger, the final calibration accuracy will be
higher. Due to the limitation of experimental conditions, some
experimental data are selected in this paper, so the actual
calibration accuracy can be further improved.

V. CONCLUSIONS

In this paper, an improved genetic simulated annealing algo-
rithm is proposed to optimize BP neural network in the appli-
cation of binocular camera calibration. Firstly, the corners
of the left and right checkerboard images are detected by
combining Gaussian scale space and Harris corner detection
operator. On this basis, the method of combining point-to-
point spatial mapping algorithm and grid motion statistics
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is used to match the homonymous corner and obtain the 2D
pixel coordinates of the homonymous corner. Finally, the suc-
cess rate of the homonymous corner match reaches 100%.
Then, according to the improved adaptability of crossover
and mutation probability and annealing criterion, the genetic
simulated annealing algorithm is improved. The improved
genetic simulated annealing algorithm is used to optimize
the BP neural network to calibrate the binocular camera. The
average calibration accuracy of traditional BP neural network
is 0.7Imm. The average calibration accuracy of BP neural
network optimized by improved genetic simulated annealing
algorithm is 0.03mm. Compared with the traditional BP neu-
ral network, the calibration accuracy is improved by 96%.
The iterative speed of binocular camera based on BP neural
network optimized by improved genetic simulated annealing
algorithm is 20 times higher than that of the traditional BP
neural network. The global optimization capability of the
whole calibration process is improved.

ABBREVIATION
Back Propagation (BP)
Particle Swarm Optimization(PSO)
Scale Invariant Feature Transform (Sift)
Speed Up Robust Feature (Surf)
Improved genetic simulated annealing algorithm (IGSAA)
Traditional genetic simulated annealing algorithm (TGSAA)
BP neural network is optimized by improved genetic sim-
ulated annealing algorithm (IGSAA-BP)
BP neural network is optimized by traditional genetic sim-
ulated annealing algorithm (TGSAA-BP)
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