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ABSTRACT The difficulty in teaching control theory is that the lecturer must not only provide all the
theoretical concepts but also visualize the control system in time and frequency domains. In control system
courses, the visualizations are usually provided with roughly sketches on whiteboards and thus might be
difficult to understand. In this paper, a Deep Learning (DL) based pipeline is proposed that is capable to
recognize Handwritten Feedback Control Architectures (HFCAs) on the whiteboard and to transform them
into Matlab R© for visualization and analysis of control systems interactively. The proposed DL pipeline
consists of 5 main steps that take up the frameworks of deep learning, pattern recognition and image
processing. The main challenges of constructing such a pipeline are the uncertainties resulting from the
lecturer’s handwriting quality and lighting conditions in the classroom, which can be seen as inter- and intra-
quality uncertainties. Therefore, we employed and trained deep Convolutional Neural Networks (CNNs) to
recognize the HFCAs with a high performance. In the training of deep CNNs, we integrated the transfer
learning approach with the deep CNN ResNet-50. To capture the inter- and intra- quality uncertainties, we
constructed an image dataset of HFCAs collected from control system lecturers, who have different levels
of experience, in a small-sized classroom under different lighting conditions. We provide all the details on
the design of the DL based pipeline and present experimental results to show that the pipeline is a powerful
tool to visualize HFCAs in real-time by using the advantages of Matlab R©.

INDEX TERMS Control theory, deep learning, image processing, MATLAB, pattern recognition,
ResNet-50, visualization.

I. INTRODUCTION
Teaching control theory is difficult as there are many the-
oretical concepts to be addressed. The main difficulty that
students face is visualizing and understanding the relationship
between the time and frequency domain parameters of a
control system [1]–[3]. Therefore, the visualization of control
systems is crucial to demonstrate the role of mathematics
in control system design [1]. As this problem is not new,
various approaches have been proposed to provide innovative
techniques to enhance the students’ motivation and improve
their comprehension of control theory. For instance, interac-
tive software tools are presented for teaching control systems
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in [4]–[8]. Besides, remote & virtual control laboratories are
developed to provide students with a hands-on experience of
control systems [9]–[12].

In most of the control system design courses, the main
focus is usually on Feedback Control Architectures (FCAs)
that are composed of controllers and Transfer Functions (TFs)
structured within single/multi loop configurations [13]. In
Fig. 1, the most commonly handled FCAs are shown and their
descriptions are provided in Table 1. The teaching approach
of control system design is usually performed in a three-
fold approach. Firstly, the lecturer defines one of the FCA
(shown in Fig. 1) and then analyses it in the time and/or
frequency domain. Finally, the lecturer provides the students
with theoretical background on controller design approaches
such as graphical (Bode and Root-Locus plots) or automatic
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TABLE 1. Descriptions of FCAs defined in [14].

(LQR and IMC tuning) tuning methods [13]. To design
and analyze FCAs, Matlab R© provides an excellent envi-
ronment; especially its SimulinkTMand the Control System
ToolboxTM[14]. The FCAs that are shown in Fig. 1 can be
easily analyzed and designed via the user interface of the
Control System DesignerTMas they built-in structures.

Teaching control system design is usually performed in
an old-fashion style with a whiteboard. The lecturer basi-
cally defines on of the FCAs on the whiteboard as shown
in Fig. 2. Although whiteboards are easy to use, we believe
that this results with the following bottlenecks in teaching
control:

• The visualization of the control system (in the frequency
and time domain) is poor since it is (almost always)
roughly sketched and not scaled as it can be seen from
Fig. 2. The visualization is even sometimes impossible
for high-order control systems.

• The sensitivity to system parameter variations and con-
troller parameters is hard to illustrate during lecture in
real-time.

• The reference tracking and disturbance rejection perfor-
mances are hard to show during lecture in real-time.

• The graphical and automatic tuning methods cannot be
directly employed in real-time.

Besides, the lighting conditions in the classroom (as it can
be seen from Fig. 2) and more importantly the lecturer’s
handwriting quality result with difficulties in grasping the
concepts of control theory since the students have to put an
extra effort to understand/ recognize the handwritings on the
whiteboard. These issues can be seen as uncertainties that can
be categorized in following forms:

FIGURE 1. Illustration of the FCAs.

• Inter-quality uncertainty: The variation amongst the
quality of the lecturers’ handwritings. The quality of
the lecturer depends heavily on the experience of the
lecturer in writing on the whiteboard.

• Intra-quality uncertainty: The variation of the quality
of the lecturers’ handwriting over time. The quality of
a lecturer’s handwriting might degrade over a three-
hour course due to tiredness. Moreover, the lighting
conditions might change in that period and thus cause
reflections on the board.

Similar versions of the aforementioned uncertainties have
been widely encountered in handwritten flowchart and char-
acter recognition [15]–[17]. In the handwritten diagram
detection literature, most of the studies deal with ink-input
devices and use the spatial information of pen strokes in their
recognition method [17]–[21]. There are also a few studies
using image processing techniques to recognize handwritten
diagrams [22]–[24].

In the last decade, we have witnessed that Deep Learn-
ing (DL) based pattern recognition systems have been
successfully employed in various areas [25]–[27]. In the
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FIGURE 2. Illustration of a HFCA with a poor time domain visualization
on a whiteboard.

literature, Deep Convolutional Neural Networks (CNNs)
have been usually employed in this context since they can
extract refined features from a low-level input image/vector
and thus can successfully recognize the object in the image.
The deployment of Deep CNNs demonstrated significant
performance improvements in pattern recognition such as in
character recognition [27]–[29], document recognition [30],
face recognition [31] and image recognition [32].

In this paper, we proposed a DL based the pipeline that
is capable to recognize Handwritten FCAs (HFCAs) on the
whiteboard and to transform them into Matlab R© for visu-
alization and analysis of FCAs. The main design challenge
of the proposed DL based pipeline are the aforementioned
uncertainties, namely Inter- and Intra- quality uncertainties.
In this context, the pipeline takes up and uses the frameworks
of DL, pattern recognition and image processing to provide
an efficient solution. In the pipeline, we used and employed
DL methods to successfully recognize the HFCAs and the
handwritten characters. We preferred the transfer learning
approach to construct deep CNNs based on ResNet-50 with
datasets constructed from five control system lecturers. The
proposed DL based pipeline takes the HFCA (shown in the
right of Fig.1) as an input and recognizes the FCA class
(shown in the left of Fig.1) via a deep CNN structure. Then,
the recognized HFCA is further processed to extract the TF
blocks by using image processing methods. The characters
of the extracted TFs are recognized and labeled with another
deep CNN structure. After generating symbolic expressions,
continuous time TF representations are generated that are
compatible with Matlab R©. The visualization and analysis of
theHFCA is then straightforwardly performed via the Control
System DesignTMToolbox and Simulink of Matlab R© in real-
time. We present various results to show the efficiency of
the proposed DL based pipeline. The main features of the
proposed DL based pipeline are:

• The novel DL based pipeline that is capable to recog-
nize HFCAs on the whiteboard and transform them into
Matlab R© in real-time.

• The proposed DL based pipeline is a powerful tool to
visualize HFCAs in the time and frequency domain as it
uses the advantages of Matlab R©.

• The inter-quality uncertainty, the variation amongst the
quality of the lecturers’ handwriting, and intra-quality
uncertainty, the variation of the quality of the lecturers’
handwritings over time and lighting conditions, are han-
dled and captured with deep CNNs.

• The proposed DL based pipeline is a powerful tool to
analyzeHFCA as it can illustrate the effects of parameter
and structure updates/changes in real time when the
HFCA is modified.

• Lecturers can use the developed DL based pipeline as
complement to their control system courses as it is capa-
ble to provide visualizations of control systems in real-
time.

The paper organized as follows. Section II presents informa-
tion on deep CNNs and the integration of transfer learning
with ResNet-50. Section III presents the proposed DL based
pipeline and provides detailed information and explanation
of its components. Section IV presents the observations
driven from the real-time experiments. Finally, conclusion
and future works are given in Section V.

II. DEEP CONVOLUTIONAL NEURAL NETWORKS
We firstly provide a brief information on CNNs for classi-
fication tasks. Then, we present the integration of transfer
learning with ResNet-50.

A. BRIEF OVERVIEW ON CNNs
CNNs are feedforward networks which consist of mostly
convolutional layers and pooling layers with one or more
fully connected layers at the end [33]. A simple CNN struc-
ture is illustrated in Fig. 3. On the other hand, Deep CNN
architectures are constructed by stacking large number of
convolutional, pooling and fully connected layers together.

The convolutional layers can be seen as feature extractors
since they learn feature representations of their inputs. Fea-
tures are extracted by convolving inputs with the learnable
weights of the layer. In its learning progress, a convolutional
layer updates its weights to select more descriptive features.
The convolved results are pass through an activation function
such as the Rectified Linear Unit (ReLU) [27], [34]. The
output of the kth convolutional layer yk is as follows:

yk = f (yk−1 ∗ wk ) (1)

where wk represents the weights of the kth layer, f represents
the activation function, ∗ denotes the 2D convolution opera-
tion and yk−1 is the previous layer’s output. If the kth layer
is the first convolutional layer, then yk−1 is the input image
x. More detail on how convolution operation is conducted in
convolutional layers can be found in [34].

Pooling layers act as the downsampler in the CNN. They
are usually placed between consequent convolutional layers
in order to reduce the dimensions of the input feature maps
without introducing new learnable parameters. By doing so,
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FIGURE 3. Illustration of a shallow CNN architecture.

the network becomes more invariant to small changes in the
input images [30]. Pooling layers downsamples the feature
maps by selecting local regions from its input and returning a
single element for each region. The pooling operation can be
accomplished with max or average pooling layers [33].

The fully connected layers in CNNs flatten the outputs of
the previous layers and then applies weights to predict the
correct labels. The final fully connected layer in classification
tasks provides probabilities for each class. It is standard to use
the softmax operator to classify the image to a label [35].

B. RESNET-50 AND TRANSFER LEARNING
In our proposed pipeline, we designed deep CNNs by inte-
grating transfer learning approach with ResNet-50.

ResNet-50 is a pre-trained deep CNN architecture which
is trained for object detection task on the ImageNet dataset
[36]. ResNet-50 has 50 layers with a total number of 23.6
million trainable parameters. What differs ResNet-50 from
other CNNs is that it is constructed with a series of bottleneck
blocks consisting of stacked convolutional layers with skip
connections where a Batch Normalization (BN) and ReLU
follows each convolutional layer as illustrated in Fig. 4 [36].

For new pattern recognition tasks, the transfer learning
approach is widely employed as training of a deep CNNs,
like ResNet-50, from scratch is computational expensive and
time-consuming [34], [37]. We would like to underline that
the transfer learning approach of ResNet-50 gives the oppor-
tunity to use the pre-trained feature extraction layers and fine-
tune the ResNet-50 with a smaller size dataset that contains
patterns of our handled multi-class recognition problem.

In this study, in transfer learning of ResNet-50, only the
classification layer of the ResNet-50 network is replaced and
learned. Let us define a classification layer as follows:

O = softmax(wf · X + bf ) (2)

where X is the output of the second to last layer of ResNet-
50 andw = [wf , bf ] defines the learnable parameters, namely
weight and bias. The output size of the classification layer is
equal to the total number of classes (Q). We have used the
cross entropy as the loss function with L2 regularization that
is defined as:

L = −
1
Q

Q∑
q=1

[
yq log ŷq +

(
1− yq

)
log

(
1− ŷq

)]
+ λ

wTw
2

(3)

FIGURE 4. A block of a bottleneck: An example.

where λ is the regularization term, ŷq is the predicted label
and yq is the target label. We preferred to use the Stochas-
tic Gradient Descent with Momentum (SGDM) as the opti-
mizer for the sake of its simplicity and efficiency in training
time [34].

III. THE DL BASED PIPELINE
In this section, we present the structure and steps of the DL
based the pipeline. An overview of the DL based pipeline is
given in Fig. 5 that is summarized with following steps:

Step-1: Recognizing the structure of the HFCA with DL.
Step-2: Detecting TF blocks using image processing.
Step-3: Segmenting and recognizing the characters with

DL.
Step-4: Constructing symbolic expressions from the rec-

ognized characters to construct continuous time TFs in
Matlab R©.

Step-5:Generating the recognized continuous time HFCA
in in Matlab R©.

In Step-1 and Step-3 of the proposed DL based pipeline,
the following two pattern recognition problems are defined.

• HFCA Recognition (HFCAR)
• Handwritten Character Recognition (HCR)

In HFCAR and HCR problems, as it can be seen from Fig. 1
and Fig. 2, the main challenge arises from the quality of
the lecturer’s handwriting and lighting conditions. To han-
dle such uncertainties, i.e. to model the inter- and intra-
quality uncertainty, we used the transfer learning approach
of ResNet-50 and constructed deep CNN as described
in Section II.B.

In order to train the deep CNN, we constructed an image
dataset collected from lecturers of control systems courses in
a small sized classroom environment in the presence of differ-
ent lighting conditions.We collected HFCAs fromfive lectur-
ers that work in the Department of Control and Automation
Engineering, Istanbul Technical University and have different
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FIGURE 5. Overview of the proposed DL pipeline.

levels of experience in teaching. One lecturer is an Assistant
Professor with an experiences of more than 15 years, one of
them is an Associate Professor with an experience of more
than 10 years, one of them is a Senior Researcher with an
experience of more than 3 years while two of them are Young
Researchers with experiences of less than 2 years in teaching
control systems. We asked each lecturer to draw the each
FCA at least 10 times during different times of the day (i.e.
different lighting conditions) and also let them to define the
TFs within the each FCAs.

The DL based pipeline is implemented in Matlab and
CUDA environments on a PC that includes Intel Core i7
3.3GHz CPU, 32GB RAM and NVIDIA GTX 1080 TI GPU.
The implementation of DL has been done with the Deep
Learning ToolboxTMto have an easy integration with Control
System ToolboxTMand SimulinkTMof Matlab R©.

In the latter, we provide detailed description of the steps of
DL based pipeline shown in Fig. 5. For illustrative purposes,
the steps of pipeline are illustrated on an example HFCA
which is shown in Fig. 6.

A. HANDWRITTEN FEEDBACK CONTROL ARCHITECTURE
RECOGNITION WITH DEEP LEARNING
The first task to be accomplished in the proposed DL based
pipeline is to solve the HFCAR problem to identify one of the
FCAs shown in Fig. 1 (i.e. Q = 6 classes). We constructed
a HFCA dataset with 306 RGB images with a resolution of
4032×3024 which were captured from an actual whiteboard.
The dataset is labeled manually with the classes and is then
split as 216 images (36 per class) for training, 36 images
(6 per class) for validation and 54 images (9 per class) for
testing.

The multi-label HFCAR problem is solved with a ResNet-
50 based CNN as described in Section II.B. In learning of
the deep CNN, all images are resized to a resolution of
224 × 224 without any further pre-processing. Furthermore,
we employed the online data augmentation method to create

FIGURE 6. An example HFCA (i.e. FCA-1).

TABLE 2. Performance of deep CNN for HFCAR.

artificially modified versions of images to increase the size of
training dataset by slightly rotating and scaling each image at
each training epoch. The DL hyperparameters are set as: 100
epochs, minibatch size of 1, and a learning rate of 10−3 with
a drop rate factor of 0.1 at every 10 epochs.

The best and mean training, validation and testing accura-
cies over 5 experiments are tabulated in Table 2. The mean
training and validation accuracy values are given in Fig. 7
(only the first 3000 iterations are given). It can be concluded
that the performance of the deep CNN is statisfactory as it
resulted with mean testing accuracy value of 89.25%.

B. TRANSER FUNCTION BLOCK DETECTION
After recognizing the class of the HFCA, we extracted the TF
blocks in the image that are enclosed with rectangular shapes.
We used the following rectangle detection algorithm to obtain
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FIGURE 7. HFCAR mean (a) loss values (b) accuracy values.

the location and dimension information of the TF blocks in
the HFCA.
• Binarization: In order to deal with faded fonts and
light reflections like in Fig. 6, a convolution operation
is employed with the following n by n kernel kij:

kij =

1/n i =
n− 1
2

, j =
n− 1
2

−1 else
(4)

If a pixel’s intensity value is darker when compared to
its n by n neighborhood, the result of the convolution
operation has a positive value. We defined a positive
threshold value D to determine the binary version of the
input image. By trial and error, we found that a 15× 15
kernel with D = 15 is suitable value for our purposes.
The binary version of Fig. 6 is given in Fig. 8a.

• Character and noise removal: The edges of the FCA
in Fig. 8a are then obtained by finding the biggest con-
nected component with 8 connectivity (i.e. connected
component with highest pixel count). All remaining
components, which are noise and/or character related,
are removed from the binary image. The resulting seg-
mentation of the HFCA image is shown in Fig. 8b. Note
that it is very likely that the lecturer might not connect
all the blocks perfectly. Thus, a dilation operation was
also applied to close such disconnections.

• Filling: To find the regions in Fig. 8b, the canny edge
algorithm is deployed to remove the outermost edge loop
that wraps the whole diagram. Then, amorphological fill
algorithm is employed to the remaining image and then

FIGURE 8. (a) Binary image (b) Character, noise removed image (c) Filled
image (d) Final image.

the regions that are candidate TF blocks are extracted.
Result of filling operation is given in Fig. 8c.

• Rectangle extraction: The rectangular shapes are
extracted by employing connected component analysis
to the filled image. Then, we perform shape analysis
by calculating the circularity and rectangularity of each
component. The Circularity measure (C) is defined as:

C =
4πA
P2

(5)

where A is the area and P is the perimeter of the region
in terms of pixels. The Rectangularity measure (R) is
defined as:

R =
A

LmajorLminor
(6)

where Lmajor is the length of the major axis and Lminor
is the length of the minor axis of the region. We defined
a connected component as a rectangular shape that sat-
isfies the following criteria:

C ≤ 0.9

0.7 ≤ R ≤ 1.5 (7)

In Fig. 8d, we show the connected components that
satisfy the criteria which are labeled as TF blocks.

C. HANDWRITTEN CHARACTER RECOGNITION WITH
DEEP LEARNING
The characters inside the extracted TF blocks are firstly
segmented and then recognized. The input image is cropped
by using the extracted Region Of Interest (ROI) and thus
the resulting image inherits only the characters inside the
extracted TF block as shown in Fig. 9a. Then, to find each
character, a segmentation method using the connected com-
ponents analysis is performed as shown in Fig. 9b. Afterward,
the characters are cropped and reshaped into images with
224× 224 resolution.
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FIGURE 9. (a) extracted TF block image (b) segmented TF block image (c) labelled TF block image (d) labeled numerator and denominator (e) TF in Matlab.

TABLE 3. Performance of the deep CNN for HCR.

The characters to be recognized are digits (0-9), arithmetic
operators (‘+’, ‘-‘, ‘x’, ‘∗’), round and square bracket pairs,
and the ‘s’ and ‘.’ characters, which makes in total Q = 20
classes. In the dataset construction for HCR, we used the
whole constructed HFCA dataset containing 306 samples
by first extracting TF blocks then segmenting characters
via the aforementioned approach. It is worth to underline
that we have observed that lighting conditions had much
bigger impact on small images and therefore we decided to
extract the characters from the binary version of the HFCA
images.

Each extracted character is labelled manually by the
authors. An example of the used character images is shown in
Fig. 10. Moreover, we would like to point out that the dataset
is enriched with extra handwritten character images collected
from the lecturers to end up with evenly distributed samples
for each class. The HCR dataset has 3920 images in total
which is split as 155 images per class for training, 32 images
per class for validation and 9 images per class for testing.

TheHCRproblem is solvedwith a deepCNN that is trained
as described in Section II.B with hyperparameter settings of
50 epochs, minibatch size of 4, and a learning rate of 10−3

with a drop rate factor of 0.1 at every 10 epochs. We also
employed online data augmentation in the learning.

The best and mean training, validation and testing accu-
racies over 5 experiments are given in Table 3. The mean
training and validation accuracy values are illustrated in Fig.
11 (only the first 500 iterations are given). It can be seen that
the learning performance of the ResNet-50 based deep CNN
is statisfactory since it resulted with mean accuracy of more
than 96%. As it can be seen from Fig. 9c, the trained deep
CNN is capable to successfully label the characters of the
segmented TF image.

FIGURE 10. Example character images.

D. SYMBOLIC EXPRESSION CONSTRUCTION
We present firstly how we constructed the symbolic expres-
sion from the labeled images. Then, by extracting the coef-
ficients of these symbolic expression, we convert them to
representations that are compatible with Matlab R© .

A single input-single output TF is defined as a ratio of
two polynomials, i.e. numerator and denominator. To find the
coefficients of these polynomials, we first build an equation
string using the recognized characters as shown in Fig. 9c,
and then construct a symbolic expression from that string.

A visual summary of symbolic expression construction
process is given in Fig. 9d to Fig. 9e. To distinguish the
numerator and denominator polynomials of the recognized
TF, the characters labeled with the class ‘‘-’’ are firstly
examined. To differentiate whether this label represents the
subtraction or fraction operator, we simply checked if there
is another labeled character above and below of its position.
If this condition results in a non-empty set, then we concluded
that the labeled character is a fraction symbol that separates
the numerator and denominator of TF as shown in Fig. 9d.
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FIGURE 11. HCR mean (a) loss values (b) accuracy values.

Then, the remaining characters are allocated as elements of
the sets defining the numerator and denominator part of TF
with respect to their position. In this step, we have also
handled exponent characters in the polynomials. A character
is labeled as an exponent if it is positioned (slightly) above
of its preceding character. As shown in Fig. 9d, the first
character labeled as ‘‘2’’ is an exponent, because of its relative
vertical position to the first occurring ‘‘s’’ character. Thus, we
add a caret character (^) between the base and the exponent
characters.

Once all the characters are allocated in order, the character
sets of the numerators and denominators are turned into
strings and then are merged with a division symbol to obtain
a string expression of the TF image. This string expression
is then transformed into a symbolic expression to define TF
representation in which the ‘‘s’’ character becomes the only
symbolic variable. Finally, the coefficients of the symbolic
expressions of the numerator and denominator are extracted
to define TFs in Matlab R©.

E. FEEDBACK CONTROL ARCHITECTURE GENERATION IN
MATLAB R©

Here, we explain how we generate the recognized HFCA
in Matlab R©. Once the deep CNN trained to solve HFCAR
problem recognizes the FCA class, the extracted TF represen-
tations of the image have to be matched with their appropriate
slots in the FCA. To accomplish such a goal, we firstly assign
the extracted TFs that have similar vertical positions in the
image to the same path using the center coordinates of the
extracted TF blocks that are calculated via their ROI informa-
tion. Then we name and match them with the corresponding
TFs (such as G(s), C(s), H(s) . . . ) defined in the FCAs through

their horizontal positions in the image. Note that, we defined
a path as a horizontal route a signal can follow in FCAs (i.e.
feedforward or feedback path).

In order to provide a clear understanding, let us explain
the matching and naming of the TFs on the FCA-1 structure
for illustrative purposes. As it can be observed from Fig.1a,
the FCA-1 has two paths including a feedforward path with
3 TFs (F(s), C(s) and (G(s)) at top and a feedback path with
a single TF (H(s)). If a HFCA is recognized as FCA-1 and
all the TFs are extracted in the image frame, then we end up
with 3 TFs aligned and a single TF near the upper and lower
half of the image, respectively. In the FCA-1, since we know
that the prefilter F(s) is the first TF in the feedforward path,
we name and match the extracted TF with smaller horizontal
coordinate at the upper path as the TF F(s), while the next
one to its right as the compensator TF C(s) and the rightmost
one as the plant TF G(s). The remaining extracted TF is
directly matched and named as the TF that defines the sensor
dynamics H(s) since the feedback path of FCA-1 contains a
single TF. In a similar manner, the rest 8 FCAs are matched
with the extracted TFs in proposed DL based pipeline. Now,
the FCA constructed from HFCA can be directly processed
and analyzed in Matlab R© since all the TFs of FCA are
defined in the workspace of Matlab R©.

In order to analyze the FCAs via the Control System
Designer AppTMof Matlab R©, we define a Matlab object in
which the recognized FCA class is defined with the extracted
and matched TFs and then import it to the graphical user
interface of the application. As shown in Fig. 12, the user
can now not only visualize the control system in the time and
frequency domains but also tune the compensator C(s).

It is also worth to mention that the DL based pipeline
automatically generates a SimulinkTMdiagram as shown in
Fig.12d which can be directly used for simulation purposes.
To accomplish such a goal, we created template Simulink
files in advance for all the FCAs in which all TFs are named
as defined in Table 1. In the template Simulink files, the sim-
ulation time and solver options are defined with the default
settings of SimulinkTM. Once the HFCA is recognized, the
corresponding Simulink file is automatically opened and the
matched TFs are loaded into the file.

IV. REAL-TIME PERFORMANCE OF THE DL BASED
PIPELINE
We performed a series of experiments in order to evaluate the
performance of the DL based pipeline in a small-sized class-
room. The real-time performance of the DL based pipeline
can be observed from the video file provided as a multimedia
file to this paper. We can conclude from the provided results
that the DL based pipeline

• can handle Inter-quality uncertainty as it is capable to
recognize FCAs from different users in real-time.

• can handle Intra-quality uncertainty as it is capable to
recognize FCAs from in the presence of various lighting
conditions in real-time.
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FIGURE 12. (a) Matlab command window (b) Simulink diagram (c) Root-locus and Bode plots (d) Step response.

• is an efficient tool to visualize HFCAs in the time and
frequency domain as it uses the advantages ofMatlab R©.

• is a powerful tool to analyze HFCA as it can update the
structure and parameters in real time when there is a
change in HFCA.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we provided a DL based pipeline that provides
the opportunity to the lecturers/ researchers to visualize and
analyze HFCAs during a lecture by transforming the HFCA
into Matlab R© in real-time. To accomplish such a goal, the
frameworks of deep learning, pattern recognition and image
processing have been integrated in a novel pipeline. We
provided all the details necessary information to construct
the proposed DL based pipeline. In the pipeline, we inte-
grated deep CNNs to solve the pattern recognition problems,
HCAR and HCR, in order to capture and handle the intra-
quality and inter-quality uncertainties that mainly occur due
to handwriting quality of the lecturers and lighting condi-
tions. We provided real-time experimental results conducted
in a small-sized classroom and clearly showed that the DL
based pipeline is a powerful tool to recognize HFCAs and to
visualize as it directly uses the advantages of Matlab R©. It is
also worth to underline that the developed DL based pipeline

is capable to transform the HFCAs on the whiteboard into
Matlab R© in real-time and thus is capable to update the FCA
generated inMatlab R© if there is a modification in the HFCA.

We think that the DL based pipeline has the potential to
ease the difficulty in teaching control systems as real-time
visualizations of control systems and simulations are gener-
ated as the lecturer is sketching FCAs during the lectures. As
for our future work, we plan the inclusion of discrete-time
HFCAs, only the character ‘‘z’’ has to be included as a label
in HCR problem, and continuous and discrete time state space
models.

We believe that the proposed DL based pipeline can be also
employed in further application areas such as grading hand-
written homework of students which has also the potential to
lessen the burden of lectures in grading them. On the other
hand, students can also use the DL based pipeline in a similar
manner in order to visualize HFCAs in their lecture notes.
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