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ABSTRACT The auxiliary classifier can improve the performance of classification networks. However,
the utility of the auxiliary detection head has not been explored in the object detection field. In this paper,
we propose an auxiliary detection head to boost the performance of one-stage object detectors. Similar
to other detection heads, the auxiliary detection head consists of a classification subnet and a regression
subnet, which are essentially two convolution layers. Thus the auxiliary detection head is computationally
efficient. Besides, the auxiliary detection head achieves implicit two-step cascaded regression. Specifically,
the auxiliary detection head uses its output boxes as anchors for further regression. Within the auxiliary
detection head, refinement of object localization corresponds to adjust the positions of its output boxes
towards ground truth boxes, which helps the network learn more robust features. At inference, the auxiliary
detection head can be removed without any adverse effect on the performance of the main detector head,
which benefits from its independence and leads to two advantages: shrink the model size and shorten
inference time. The proposed method is evaluated on Pascal VOC and COCO datasets. By incorporating
the auxiliary detection head into a state-of-the-art object detector in parallel with the main detection head,
we show consistent improvement over its performance on different benchmarks, whereas no extra parameters
are introduced at inference time.

INDEX TERMS Auxiliary detection head, two-step cascaded regression, convolutional neural networks,
object detection.

I. INTRODUCTION
Object detection has drawn a great deal of attention recently.
It is a combination of classification and localization tasks.
A detector can tell people the classes and locations of
instances in an image. Object detection has a wide range
of applications, including face detection [1], pedestrian
detection [2], ship detection [3].

Recently, the deep-learning based object detectors are
very popular and develop rapidly over a short period. Com-
pared with the traditional methods, they can extract more
robust features with the help of convolution neural networks
(CNNs). The current state-of-the-art detectors can be divided
into two types: two-stage detectors and one-stage detectors.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

The former firstly generates some region proposals, then
classify and regress those proposals. Region proposals can
be generated by an independent method [4] or a neural
network embedded in the detector [5]. One-stage detectors
eliminate proposal generation step and detect instances in
a unified network. Thus, one-stage detectors have a great
advantage in terms of computational efficiency. On the other
hand, real-time processing is significant in some applications,
which is closely linked with costs and efficiency. Therefore,
this paper mainly explores one-stage detectors.

Though one-stage detectors can run at a relatively high
speed, their performance tails two-stage detectors generally.
After all, two-stage approaches can implement bounding
box regression twice. Some methods have been proposed
to improve the performance of one-stage detectors. [6]–[8]
aggregated contextual information among different feature
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FIGURE 1. The architectures of RefineDet and Align RefineDet with ADH (ARAdet). ARAdet contains three detection
stages and each stage has two layers for classification and regression respectively. TCB is transfer connection block for
feature fusion. conv and dconv are convolution and deformable convolution respectively. A is the number of classes.
The first conv layer is for binary classification. The dashed red rectangle is ADH. One of the four detection branches is
shown for clarity.

maps to generate accurate results. [9], [10] focused on train-
ing a one-stage object detector from scratch. [11], [12] pro-
posed new loss functions for bounding box regression to
improve the performance of object detection algorithms. One
challenging problem for object detection is rough localiza-
tion. To locate objects accurately, two-step cascaded regres-
sion was proposed in [13]. The output boxes of one detection
head are transferred to another detection head for further
refinement. To the best of our knowledge, there still lacks
studies on the auxiliary detection head to enhance one-stage
detectors.

This paper aims to boost the performance of one-stage
detectors from a new prospect: auxiliary detection head. The
utility of auxiliary classifier has been discussed in [14], [15].
It has been proved that auxiliary classifiers can help the net-
work to reach a slightly higher plateau. In this paper, a simple
yet effective module named auxiliary detection head (ADH)
is proposed to improve the performance of one-stage detec-
tors. Similar to other prediction heads in a detector, ADH
consists of a classification subnet and a regression subnet,

which are essentially two convolution layers. Thus the struc-
ture of ADH is simple and ADH is computationally efficient.
Besides, ADH can achieve implicit two-step cascaded regres-
sion in one detection head. As mentioned above, the two-
step cascaded regression in [13] relies on two branches. The
anchors of one branch are initialized by the output boxes of
another branch. But ADH is an independent module and uses
its output boxes to initialize anchors for further refinement.
Within the auxiliary detection head, refinement of object
localization corresponds to adjust the positions of its output
boxes towards ground truth boxes, which aids in feature
extraction. Thus ADH is effective. The idea is depicted in the
red dashed rectangle in Fig. 1 (b).

ADH is easy to use in one-stage detectors. As an auxiliary
module, ADH can be plugged into the state-of-the-art object
detection frameworks in parallel with the existing predic-
tion branch. When ADH is added into a detector, there are
two groups of detection heads: the original detection head
and ADH. To distinguish them, the original detection head
is named the main detection head, which is used for final
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prediction. During training, ADH is jointly optimized with
the main detection head and the parameters increase a few.
However, as an auxiliary module, ADH can be omitted after
training because its output does not affect the main detection
head. This benefits from the independence of ADH. Thus,
the model size will not increase after the application of ADH
during inference, which is profitable. Experiments on Pascal
VOC and COCO datasets will demonstrate the effectiveness
of ADH. After plugging into a one-stage detector, ADH
can consistently improve its performance by non-negligible
margins whereas no extra parameters are introduced at infer-
ence time. For example, the proposed method surpasses its
baseline RefineDet by 1.8% and 1.1% AP with VGG-16 and
ResNet-101 backbones respectively on COCO. The code will
be made publicly available. The main contributions of this
paper are summarized as follows.
1) ADH is proposed to achieve implicit two-step cascade

regression in one detection head.
2) ADH can be plugged into the state-of-the-art object

detection frameworks in parallel with the existing pre-
diction branch and trained jointlywith the original detec-
tion head.

3) ADH can consistently improve the baseline by
non-negligible margins whereas introducing no extra
parameters at inference.

The remainder of this paper is organized as follows: In
Section II, related works are discussed. The proposed method
is introduced in detail in Section III. Experimental results and
comparisons are presented in Section IV. Section V draws
conclusions.

II. RELATED WORK
We present related works in three aspects: two-stage detec-
tors, one-stage detectors, and auxiliary module.

A. TWO-STAGE DETECTORS
For two-stage detectors, a region proposal generation module
is needed. [4] used selective search [16] to produce can-
didate object proposals. Afterward, [5] introduced a region
proposal network (RPN) that shared features with a detection
network to produce region proposals. [17] combined Faster
R-CNN [5] with several data augmentation methods for
marine organisms detection. [18] proposed position-sensitive
score maps to address the dilemma between translation-
invariance in classification and translation-variance in
localization. [19] improved R-FCN by applying deformable
convolution and more anchors for seafood detection and
then a remote operated vehicle (ROV) was used for capture.
[20] added a branch in Faster R-CNN [5] for predicting an
object mask in parallel with the existing prediction branch.
[21] presented a deep regionlet approach for object detec-
tion, which could select non-rectangular regions within a
bounding box. To explore the local and global features,
[22] proposed CoupleNet to couple the global structure with
local parts for object detection. [23] presented Scale Aware
Network (SAN) that mapped features from the different

scales onto a scale-invariant subspace to make the detector
more robust to the scale variation. [24], [25] aimed to explore
more contextual information. [26] proposed a novel bounding
box regression loss named KL Loss to learn bounding box
transformation and variances of coordinates. [27] introduced
Guided Anchoring scheme which generated non-uniform
anchors of arbitrary shapes. [28]–[31] designed new network
structures to extract more robust features.

B. ONE-STAGE DETECTORS
One-stage detectors do not need a step to generate region
proposals. [32] combined predictions from six feature maps
with different resolutions to detect objects of various sizes.
Later, [33] introduced additional context by adding decon-
volution layers to improve SSD, especially for small object
detection. [34] proposed reverse connection block to combine
fine-grained details with highly-abstracted information and
objectness prior to reduce the searching space of objects.
[11] designed focal loss to address the imbalance between
foreground and background classes by assigning different
weights to different examples. [35] imitated the structure
of Receptive Fields (RFs) in human visual systems and
proposed RFB net to enhance the feature discriminability
and robustness. [12] introduced generalized intersection over
union (GIoU) as a new loss for bounding box regression
to improve the performance of object detection algorithms.
[36] solved object detection in a per-pixel prediction fash-
ion without the need for an anchor. Current state-of-the-art
object objectors are fine-tuned from pretrained classification
networks, [9], [10] focused on training a one-stage object
detector from scratch. [6]–[8], [37] aggregated contextual
information among different feature maps to generate robust
features. To inherit the merits of one-stage and two-stage
detectors, [13] designed a single-shot neural network detec-
tor, called RefineDet. It contains two important modules,
anchor refinement module (ARM) and object detection mod-
ule (ODM). ARM imitates RPN to coarsely adjust anchors
and implement binary classification. The output of ARM is
used to provide a better initialization for ODM to further
refine boxes and predict multi-class labels. Later, this coarse-
to-fine manner is also explored in [38]. [39], [40] tried to
solve the misalignment problem between refined boxes and
features.

C. AUXILIARY MODULE
In [14], [15], the application of the auxiliary classifier was
explored to improve the performance of classification net-
works. PC-TDM [41] used two subnets for group activity
recognition. [42] introduced a set of auxiliary tasks to boost
the accuracy of two-stage detectors. It is worth noting that
the auxiliary tasks in [42] are different from our ADH. First
of all, the auxiliary tasks in [42] are applied for two-stage
detectors. Besides, the auxiliary branches can not be removed
after training, because their outputs are used by the main
task branch. Whereas ADH aims to improve one-stage detec-
tors and can be excluded after training. To the best of our
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knowledge, there has been no previous work about designing
an auxiliary module to boost the performance of one-stage
detectors.

III. METHOD
A. MOTIVATION
ADH is inspired by the previous auxiliary classifier and
the two-step cascaded regression. [14], [15] has proved that
auxiliary classifiers can boost the performance of classifica-
tion networks. But there is no work about the application of
auxiliary detection head in one-stage detectors. Thus we try
to design ADH.

As an auxiliary module, ADH works as an independent
module to improve one-stage detectors. During training,
ADH is optimized jointly with the main detection head. After
training, ADH can be omitted. On the other hand, ADH
achieves implicit two-step cascaded regression within itself.
ADH does not rely on the output of other prediction branches
but uses its output boxes as anchors. This novel design can
assist the network to learn more robust features and will be
demonstrated by experiments. ADH and the main detection
head share the feature extraction layers. Therefore the main
detection head can benefit from those robust features. The
idea, as shown in Fig. 1 (b), suggests that ADH uses its out-
put boxes to initialize anchors and refine these boxes again.
It is worth noting that ADH is different from ODM in [13].
In [13], coarse boxes fromARM are used to initialize anchors
in ODM for further refinement as shown in Fig. 1 (a).
Consequently, ODM relies on the output boxes of ARM.
However, ADH is an independent module and applies
its output boxes as anchors. Besides, transfer connection
blocks (TCBs) are adopted to link ARM and ODM, whereas
ADH is agnostic to the structure and needs no other connec-
tion module. ADH is plugged into the one-stage detection
framework in parallel with the main detection head. We can
regard ADH as an enhanced module and train it jointly with
the main detection head.

B. ARCHITECTURE
ADH is plugged into RefineDet [13]. Because RefineDet
proposed the two-step cascaded regression, whereas ADH
introduces the implicit two-step cascaded regression. We will
demonstrate ADH can boost RefineDet though it applies
two-step cascaded regression. In addition, RefineDet has
misalignment problem between refined boxes and features.
Inspired by [40], we use deformable convolution [43] for fea-
ture alignment. Without loss of generality, ADH can be also
used in other detectors, e.g., SSD [32]. The network architec-
tures of RefineDet and Align RefineDet with ADH (ARAdet)
are depicted in Fig. 1.

There are four prediction branches in ARAdet. One branch
contains six layers. The first two convolution layers form
ARM, which performs binary classification and provides
refined anchors to the main detection head. ARM is the same
as in RefineDet. The main detection head is composed of

the middle two deformable convolution layers. Deformable
convolution [43] is adopted for feature alignment. Note that
deformable convolution is only used in the main detection
head. For simplicity, the difference between anchors and
refined anchors are applied as offsets for deformable con-
volution. For example, Fig. 2 depicts a refined anchor and
an anchor. As 3 × 3 deformable convolution is adopted in
this paper, an offset map with 18 channels is needed. The
generation process of the offset map is simple and needs no
extra layers. Specifically, calculate the coordinates of nine
points on the anchor and its corresponding refined anchor
respectively through bilinear interpolation, then do a minus
operation for those two sets of coordinates of points accord-
ingly and get the final offset map. Note that the anchor
and its corresponding refined anchor have the same center
coordinate. Besides, one anchor is equipped with our method.
Because 3 × 3 deformable convolution can only receive one
offset map with 18 channels. If more anchors are applied,
there will be multiple offset maps and more deformable con-
volution layers are required, which is inefficient. Using more
deformable convolution layers will slow down the running
speed. The final detection results are produced by the main
detection head. ADH is formed by the last two convolution
layers. One is for classification and the other is for regression.
We attach ADH at the end of the network in parallel with the
main detection head. All detection heads are optimized jointly
during training. After training, ADH is removed because its
output does not affect the main detection head. This benefits
from the independence of ADH. As ADH employs implicit
two-step cascaded regression, it has a novel loss function,
which will be described in the next session.

FIGURE 2. A refined anchor (left) and an anchor(right).

C. LOSS FUNCTION
Thewhole loss function of ARAdet includes two parts: loss of
ADH and loss of RefineDet. The loss function of RefineDet
remains unchanged. Thus we mainly introduce the loss func-
tion of ADH. Similar to the detection head in SSD [32], ADH
consists of a classification subnet and a regression subnet.
The objective loss is a combination of localization loss (loc)
and confidence loss (conf). The loss function of ADH is
defined as follows.

L
(
p, p∗, g, g∗

)
=

1
N

(
Lconf

(
p, p∗

)
+ αLloc

(
g, g∗

))
(1)

where N is the number of matched boxes. Softmax is used for
confidence loss Lconf in this paper. The softmax results show
probability estimates over all object classes and a background
class. p and p∗ are predicted probability and true label of
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matched boxes, respectively. α is a weight to balance two
losses and set to 1 in all experiments. The localization loss is
computed by Smooth L1 [44]. Different from SSD [32], ADH
applies its output boxes as anchors and regresses to offsets
for the center, width, and height of its output boxes towards
ground truth boxes. g and g∗ are the offsets of a predicted
box and a ground-truth bounding box, respectively. g is the
output of the regression subnet in ADH. To get g∗, g need to
be decoded by the following (2).

x = gx ∗ wa + xa
y = gy ∗ ha + ya
w = wa ∗ exp(gw)

h = ha ∗ exp(gh) (2)

where xa, ya,wa, ha are the center coordinates (x,y) of
an anchor and its width (w) and height (h), respectively.
gx , gy, gw, gh are predicted offsets for center coordinates (x,y)
and width (w) and height (h), respectively. Equation (2) is the
decode equation and used to get real size boxes through the
corresponding anchor and offsets. After obtaining the output
boxes of ADH, they are employed as anchors. Then (3) is
applied to encode ground truths by those anchors.

g∗x =
x∗ − x
w

g∗y =
y∗ − y
h

g∗w = log
(
w∗

w

)
g∗h = log

(
h∗

h

)
(3)

where x, y,w, h are the center coordinates (x,y) of an output
box by ADH and its width (w) and height (h), respectively.
It is generated by (2). Equation (3) is applied to encode a
ground-truth bounding box by the result of (2). Note that
SSD uses anchors to encode ground truth bounding boxes,
whereas ADH uses its output boxes to encode ground truth
bounding boxes. Fig. 3 depicts different ways to generate g∗

in SSD andADH. Comparedwith SSD,ADH applies both the
encode and decode process. With ADH, refinement of object
localization corresponds to adjust the positions of its output
boxes towards ground truth boxes.

FIGURE 3. Different ways to encode a ground truth box in (a) SSD and
(b) ADH. en and de refer to encode and decode respectively. GT is a
ground truth box. offset is the output of ADH.

When ADH is plugged into an object detector and jointly
optimized with the original detection head, we need to com-
bine the original loss function and the loss function of ADH
as follows.

Lsum = Lori + L
(
p, p∗, g, g∗

)
(4)

where Lori denotes the original loss function of a detector, e.g.
RefineDet [13].

D. INFERENCE
As an independent auxiliary module, the output of ADH
has no use for the detection result. Thus ADH is removed
to shrink module size during inference. The main detec-
tion head is responsible to generate the detection result.
Predictions from four feature maps are merged. We then
apply non-maximum suppression (NMS) with a threshold
of 0.45 and keep the top 200 detections per image, yielding
the final detection result.

IV. EXPERIMENTS
A. DATASETS
The proposed method is evaluated on PASCAL VOC and
COCO datasets. PASCAL VOC is a popular dataset which
contains 20 classes [45]. For VOC 2007, models are trained
on union of VOC 2007 trainval set and VOC 2012
trainval set, then tested on VOC 2007 test set. COCO
is a bigger dataset for object detection. For COCO 2017,
it contains∼118k images for training, 5k for validation (val)
and ∼20k for testing without annotations (test-dev). The
proposed method is trained on the training set and reported
the performance on test-dev set. The detection result of
COCO is submitted to the public testing server for evaluation.

B. IMPLEMENTATION DETAILS
VGG-16 [46] and ResNet-101 [47] are used as the backbone
networks in our experiments, which are pretrained on the
ImageNet [48]. The settings are the same as RefineDet [13].
The last two fully connected layers of fc6 and fc7 in VGG-16
are replaced by two convolution layers. Then two extra con-
volution layers are added at the end of VGG-16. In addition,
conv4_3 and conv5_3 are scaled by L2 normalization [49].
For ResNet-101, the last fully connected layer is removed and
one extra residual block is added to the end of the truncated
Net. Four feature maps with strides [8,16,32,64] are applied
for detection. Besides, TCB in RefineDet is also used to fuse
features from multiple branches.

During training, wematch ground truth boxes with anchors
based on jaccard overlap. In some paper, anchors are also
called default boxes. The Matching process is the same as
in SSD [32]. Specifically, each ground truth is matched to an
anchor with the maximum overlap score, then anchors that
have a jaccard overlap higher than the threshold of 0.5 with
any ground truth are also set to positives, and others are neg-
atives. After matching, a majority of anchors are negatives.
To mitigate this imbalance, hard negative mining in [32] is
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applied and negatives are selected according to the classifica-
tion loss value with a ratio of 1:3 between the positives and
negatives. The same matching strategy is applied for both the
main detection head and ADH.

Average precision (AP) [50] is used as the metric to evalu-
ate the performance of detectors. AP is computed across the
intersection of union (IoU) thresholds from 0.5 to 0.95 with
an interval of 0.05. This metric tends to measure the detec-
tion results through various qualities and reflects the result
more comprehensively than using one threshold. For Pascal
VOC 2007, mAP is adopted as metric and mAP is equal to
AP 50.

The resolution of the training image is resized to
320× 320. Training and inference are performed on the same
image scale. As data augmentation is crucial for one-stage
detectors, the same data augmentation method in [32] is
applied. For Pascal VOC, models are trained for 240 epochs
with an initial learning rate of 10−3, which is divided by
10 at 160 and again at 200 epochs with a batch size of 32.
For COCO 2017, detectors are trained on the training set and
reported the performance on test-dev set. The result is
submitted to a server for evaluation. Models are trained for
130 epochs with an initial learning rate of 10−3, which is
divided by 10 at 80 and again at 110 epochs with a batch
size of 32. In addition, the warmup strategy is applied to
linearly increase the learning rate from 10−6 to 10−3 at
the first 5 epochs. Weight decay and momentum are set to
0.0005 and 0.9 respectively. All models are trained end-to-
end with stochastic gradient descent (SGD) on a Titan X
GPU. To get a faster detection speed, ADHs are omitted
during the inference phase.

C. ABLATION STUDY
Ablation studies are conducted on Pascal VOC 2007. The
trainval set are used for training thenmodels are tested on
VOC 2007 test set. For fair comparisons, all methods are
trained for 240 epochs with an initial learning rate of 10−3,
which is divided by 10 at 160 and again at 200 epochs with a
batch size of 32.

To demonstrate the versatility of ADH, we incorporate
it into three one-stage detectors, SSD [32], RefineDet [13],
and align RefineDet, in parallel with the original detection
head. The same backbone network VGG-16 is used. As the
feature fusion module can boost performance, TCBs are
adopted for the three baselines. RefineDet has a misalign-
ment problem between refined boxes and features. We use
deformable convolution for feature alignment and call it
Align RefineDet. The feature alignment method has been
described in Section III-B. Fig. 4 depicts the simplified
architectures of SSD and SSD with ADH. The only differ-
ence between them is whether the model has ADH. Fig. 5
presents the architectures of RefineDet and RefineDet with
ADH. RefineDet with ADH is obtained by adding ADH
to RefineDet. After plugging ADH into Align RefineDet,
it is ARAdet. The main detection head and ADH are opti-
mized simultaneously during training. AP is used as a metric

FIGURE 4. The architectures of (a) SSD and (b) SSD with ADH. ‘‘img’’ and
‘‘conv’’ refer to input image and backbone convolutions respectively.
‘‘TCB’’ and ‘‘SSD’’ are transfer connection block and detection head in
SSD, respectively. ‘‘ADH’’ and ‘‘RA’’ are auxiliary detection head and
refined anchors.

FIGURE 5. The architectures of (a) RefineDet and (b) RefineDet with ADH.
‘‘img’’ and ‘‘conv’’ refer to input image and backbone convolutions
respectively. ‘‘TCB’’, ‘‘ARM’’ and ‘‘ODM’’ are transfer connection block,
anchor refinement module and object detection module (ODM),
respectively. ‘‘ADH’’ and ‘‘RA’’ are auxiliary detection head and refined
anchors.

because it reflects performance with different threshold. All
models are reimplemented with Pytorch [51] on the same
platform for fair comparisons.

The results are presented in Table 3. With the help of
ADH, the performance of all three baselines is improved,
which firmly demonstrates the effectiveness of ADH. For
the three baselines, Align RefineDet achieves the best result.
RefinDet outperforms SSD due to the two-step cascaded
regression. The reason is that RefineDet has two regression
operations to achieve accurate localization. After using the
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TABLE 1. Comparison with other methods on PASCAL VOC 2007.

TABLE 2. Detection results on COCO test-dev.

TABLE 3. Effectiveness of ADH.

deformable convolution for feature alignment in RefineDet,
Align RefineDet surpasses RefineDet by 2.0% AP.

ADH promotes SSD by 1.7% AP. For RefineDet,
the improvement became less and ADH brings a 0.7%
increase of AP. For the strongest baseline aligned RefineDet,
ADH improves it by 1.5% AP. We also observe that the
improvement for a high threshold metric is more significant
than that for the low threshold metric in Align RefineDet. For
example, AP 80 and AP 90 are gained by 3.4% and 1.8%,
respectively. We emphasize that those improvements are only
introduced by ADH. The explanation is that ADH uses its
output boxes as anchors for further refinement leading the
network to learn more effective features. The main detection
head shares feature extraction layers with ADH. Thus they
can benefit from those effective features. ADH is widely
applicable across different detectors, achieving consistent
gains independently of the baseline detector strength. Among
all methods, ARAdet gets the best result. Later, it will be
tested on other datasets.

D. RESULTS ON PASCAL VOC 2007
In this section, ARAdet is compared with other methods
on the union of VOC 2007 trainval set and VOC 2012
trainval set. As ARAdet is built upon Align RefineDet

and applies two-step cascaded regression, it is mainly com-
pared with other methods that also use two-step cascaded
regression. APLNet [38] used an attention enhancementmod-
ule (AEM) to generate more semantically meaningful infor-
mation. PASSD [40] proposed offseted convolution to align
the receptive field of the convolution filters.

The results are presented in Table 1 and mAP is used as
the metric. Our reimplemented RefineDet gets a 79.9% mAP
compared with the published result 80.0% in [13]. It seems
that feature alignment does not affect RefineDet, because the
mAP of Align RefineDet is also 79.9%. ARAdet exceeds
Align RefineDet by 0.5% mAP as a result of ADH. APLNet
achieves the best result with 81.2% mAP.

We argue that ADH and feature alignment mainly boost
performance on the high threshold metric. As mentioned
above, mAP only considers a threshold of 0.5. Comparedwith
mAP, AP is more comprehensive than mAP and can reflect
the ability of detectors on various qualities. Table 4 shows
the results of AP. The baseline RefineDet gets a 50.5% AP.
After applying deformable convolution for feature alignment,
it is improved by 1.3% AP. ADH can boost performance
further. ARAdet outperforms Align RefineDet by 0.9% AP.
Thus ADH and feature alignment perform better on the high
threshold metric and are capable of accurate localization.
Besides, Table 1 also presents the model size. After training,
ADH is removed, thus ARAdet has the same size as Align

TABLE 4. Results on Pascal VOC 2007 with AP metric.
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FIGURE 6. Some qualitative detection results of RefineDet (first row) and ARAdet (second row) on the Pascal VOC 2007 test set. Detected instances
with confidence scores higher than 0.5 are shown.

FIGURE 7. Some qualitative detection results on the COCO test set. Detected instances with confidence scores higher than 0.5 are shown.

RefineDet. ARAdet is also smaller than RefineDet because
it applies one anchor per position over feature maps. Some
qualitative detection results of RefineDet and ARAdet on
the Pascal VOC 2007 test set are depicted in Fig. 6. It is
observed that ARAdet can detect instances by a smaller box
than RefineDet in some cases. Thus ARAdet gives a better
localization.

E. RESULTS ON COCO
In this section, ARAdet is compared with other methods on
COCO. Note that there are lots of methods that improve
detectors form different aspects [11], [12], [31], [35]. But
their contributions are orthogonal to ours. As ARAdet applies
two-step cascaded regression, we compare it with models that
also use two-step cascaded regression.

The results are shown in Table 2. Align RefineDet out-
performs baseline RefineDet by 0.9% AP. Thus the use of

deformable convolution for feature alignment is effective.
Since ARAdet is generated by plugging ADH into Align
RefineDet, the comparison with it can demonstrate the effec-
tiveness of ADH convincingly. ARAdet surpasses Align
RefineDet by 0.9% AP.

Compared with other methods, we also observe that
Align RefineDet is not on par with PASSD (30.3% AP
vs. 31.4% AP). One reason is that PASSD proposed off-
seted convolution layer to align the receptive field of
the convolution filters, which is more powerful than the
deformable convolution in Align RefineDet. We use ADH
to enhance align RefineDet and ARAdet is comparable with
PASSD. APLNet [38] employs an attention enhancement
module (AEM) to generate more semantically meaningful
information. But ARAdet still surpasses APLNet and gains
0.6% AP. Though PASSD gets a slightly better result than
ARAdet with VGG backbone, ARAdet outperforms PASSD
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by 0.4% AP with Resnet backbone. Hence ADH also works
excellently under a strong backbone. ADH can consistently
improve the detection accuracy no matter what kind of back-
bones are used.

ARAdet with ResNet-101 runs at nearly 36 frames per sec-
ond (FPS) with an input size of 320× 320 in inference, which
fulfills real-time processing. The inference time is evaluated
with a batch size of 1 on an NVIDIA Titan X GPU, CUDA
10.0, and cuDNN v7.6. It is hard to perform fair comparisons
due to inconsistent environments. Some qualitative detection
results on the COCO test set are depicted in Fig. 7. We
believe ADH can promote other one-stage detectors as well.

F. RESULT ANALYSIS
Experiments have demonstrated that ARAdet outperforms
Align RefineDet on different datasets. The only difference
between them is ADH. Thus ADH can boost the performance
of the baseline. We explain that ADH can help the network
learn more robust features. In SSD [32], only dozens of
anchors are positives after the matching process, because
anchors are fixed. But ADH uses its output boxes as anchors
to match ground truths. Those output boxes have a high
overlap with ground truths resulting in more positives and a
better matching result. More positives can mitigate sample
imbalance. On the other hand, the matching result is related
to the loss function directly, then the update of parameters is
affected. ADH and the main detection head share the same
convolutional features from the backbone and feature fusion
module. Thus those robust features are also helpful to the
main detection head. There is no direct relation betweenADH
and the main detection head. Because ADH is an independent
module and can be removed after training. Themain detection
head is influenced by ADH through updating parameters in
the feature extraction layers.

V. CONCLUSION
In this paper, ADH is proposed to improve the performance
of current one-stage detectors. It is a simple module that
only contains two convolution layers for classification and
regression respectively. In addition, ADH achieves implicit
two-step cascaded regression. Compared with two-step cas-
caded regression, ADH uses its output boxes as anchors.
Within ADH, refinement of object localization corresponds
to adjust the positions of its output boxes towards ground truth
boxes, which helps feature extraction. ADH can be regarded
as an enhanced module which builds upon the state-of-the-
art object detection frameworks. We can plug ADH into a
single-shot detector in parallel with the original detection
head. In the training stage, ADH is jointly optimized with
the main detection head. At the time of inference, ADH
is removed without any adverse effect on the performance
of the main detection head. Thus ADH plays a role as an
auxiliary module. This benefits from the independence of
ADH and has two advantages: shrink the model size and
shorten inference time. Experiments are carried out on Pascal
VOC and COCO datasets to demonstrate the effectiveness

of ADH. By incorporating ADH into a one-stage detector,
we show consistent improvement to its performance without
introducing any parameters at inference time.

In the future, we plan to introduce ADH into two-stage
detectors. We believe that ADH is beneficial to the research
of object detection.
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