
Received April 20, 2020, accepted April 30, 2020, date of publication May 6, 2020, date of current version May 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992512

Design of Smart Home Implementation Within
IoT Natural Language Interface
TAE-YEUN KIM 1, SANG-HYUN BAE 2, AND YOUNG-EUN AN 3
1SW Convergence Education Institute, Chosun University, Gwangju 61452, South Korea
2Department of Computer Science and Statistics, Chosun University, Gwangju 61452, South Korea
3College of General Education, Chosun University, Gwangju 61452, South Korea

Corresponding authors: Sang-Hyun Bae (shbae@chosun.ac.kr) and Young-Eun An (yean@chosun.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT), Korea
Government, under Grant 2019R1F1A1041186.

ABSTRACT To process continuous sensor data in Internet of Things (IoT) environments, this study
optimizes queries using multiple MJoin operators. To achieve efficient storage management, it classifies
and reduces data using a support vector machine (SVM) classification algorithm. A global shared query
execution technique was used to optimize multiple MJoin queries. By comparing each kernel function of the
SVM classification algorithm, the system’s performance was evaluated through experiments according to
the selected optimal kernel function and changes in sliding window size. Furthermore, to implement a smart
home system that can actively respond to users, classified and reduced sensor data were utilized to enable
the intelligent control of devices inside the home. The sensor data (e.g., temperature, humidity, gas) used
to recognize the current conditions of an IoT-based smart home system and corresponding date data were
classified into decision trees, and the systemwas designed using five sensors to intelligently control priorities
such as ventilation, temperature, and fire and intrusion detection. The experiments demonstrated that themul-
tiple MJoin technique yields high improvements in performance with relatively few searches. In this study,
the sigmoid was selected as the optimal kernel function for the SVM classification algorithm. According to
the SVM classification algorithm results, based on changes in the sliding window size, the average error rate
was 2.42%, the reduction result was 17.58%, and the classification accuracy was 85.94%. According to the
comparison of the classification performance of SVMand other algorithms, the SVMclassification algorithm
exhibited a minimum 9% better classification performance. Thus, compared to existing home systems, this
algorithm is expected to increase system efficiency and convenience by enabling the configuration of a more
intelligent environment according to the user’s characteristics or requirements.

INDEX TERMS Application, Internet of Things (IoT), sensor data, smart home system, SVM algorithm.

I. INTRODUCTION
The purpose of the modern Internet of Things (IoT) is to
provide services based on intelligent systems considering
user convenience and accuracy. Researchers are conducting
various studies on creating smart environments, such as smart
homes, smart grids, and industrial IoT environments [1].
Typically, IoT-based smart home technologies include
IoT features that go beyond conventional network tech-
nologies. The devices within the home automatically estab-
lish relationships with other devices, to improve domestic
lifestyle services [2], [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Honghao Gao .

A variety of IoT technologies are required to construct
intelligent systems in locations that require continuous
management, such as IoT-based smart home systems, or to
support remote control and monitoring services and create
environments that are suitable to the user through commu-
nications between devices.

In particular, as the degree of sensor usage increases, a
technology that processes real-time sensor data is considered
a necessary component of an IoT environment to provide ser-
vices that are customized for the user. Because various types
of IoT data in an IoT environment are nonlinear and inconsis-
tent owing to the time-series data characteristics and variety
of sensor detection methods, the data have atypical proper-
ties [4]. Numerous sensors are needed to collect data in an

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 84929

https://orcid.org/0000-0002-1644-1869
https://orcid.org/0000-0002-3859-8365
https://orcid.org/0000-0003-3072-3800
https://orcid.org/0000-0001-6861-9684

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

IoT environment, and an efficient processing method for
the sensor data collected through a sensor network is nec-
essary [5]. In a conventional home IoT system, the user
changes the environment manually by controlling smart
devices that are connected to the same network via a mobile
device [6], [7]. However, recent IoT-based home systems use
a method that operates devices intelligently according to the
threshold values defined to control the environment.

Such IoT-based home systems must intelligently select
devices to perform tasks according to changes in the environ-
mental data within the home, and they must transmit warning
messages to the user before dangerous situations occur within
the home, so that the user can deal with them [8].

However, conventional IoT-based home systems operate
passively according to the changes in environmental data
within the home, and therefore the user must manually select
devices by themselves. Because user intervention cannot be
freely performed, it is difficult to change a device’s status at
the desired time. For example, sensors with low rates of use
can lead to data waste and power loss when tasks are executed
according to rules set by the developer without accounting for
specific characteristics of a user [9]–[11].

This study uses multiple MJoin operators to efficiently
process sensor data (stream data) in an IoT environment.
A global shared query execution techniquewas used for query
optimization, and the SVM classification algorithm was used
to classify and reduce the data to enable efficient storage
management. Thus, multiple MJoin operators are used for
the establishment of a global shared query execution plan
and to mitigate the window update and rooting problems
associated with join operation results. Moreover, an efficient
multi-query optimization and processing technique is used
for the stream data environment of IoT [12]. This study also
evaluates the system performance through experimentation
according to the changes in the sliding window size as well
as the optimal (sigmoid) kernel function of the SVM classifi-
cation algorithm for efficient storage management. Finally,
to implement a system that can actively respond to users,
classified and reduced sensor data were utilized to enable
intelligent control of devices inside the home [13].

II. RELATED RESEARCH
IoT environments are composed of three technologies: sens-
ing technology, which measures changes in the environment;
interface technology, which performs or links certain features
through people, things, and services; and network infrastruc-
ture technology, which creates networks between sensors and
services [14]–[16].

These technologies provide a variety of environments,
including remote control, which operates according to the
user’s needs, and automatic control, which recognizes people
and provides custom services [17], [18]. This chapter ana-
lyzes conventional systems that use automatic and remote
control to create intelligent smart home systems, as well as
the requirements for IoT.

A. IoT AUTOMATIC CONTROL SYSTEM
Automatic control uses control devices, machines, and com-
puters to automatically perform control operations [19].
Tasks are configured automatically without user intervention.
Automatic control services can increase the efficiency of
device usage in an environment using several IoT devices
simultaneously, and the importance of these services is
becoming clear [20].

Automatic control systems are used in many fields, includ-
ing smart homes, which provide customized environments
via devices in the home; self-driving cars, which drive by
themselves without operation by a human; and healthcare for
user health management and disease prevention.

B. IoT REMOTE CONTROL SYSTEM
Remote control involves the indirect control of a device with-
out a person directly operating the device using a communi-
cations network. Currently, as the demand for remote con-
trol is increasing, IoT has evolved into an environment that
can easily be controlled by the user without any knowledge
of IoT.

Remote control systems are used to remotely read the
usage of gas, water, and electrical energy in a household. They
are also used in industrial sites and smart buildings, which
require continuous management. In addition, remote control
can use the user’s smart devices to operate devices within a
home or perform tasks as required by the user.

In cloud-based IoT framework structures, the app layer
is divided into the IoT sub and non-IoT sublayers. In the
IoT sublayer, structured and unstructured data are created
by sensors and devices. In the non-IoT sublayer, the user’s
remote requests are transmitted to the cloud.

The cloud processes these requests in a handler and trans-
mits them to a manager to share them with other apps. In this
manner, the processing time in large-scale systems can be
reduced by skipping the processing step when user requests
stored in the cloud are used. This approach also provides
custom services that can remotely control devices in systems
that have similar IoT environments [21].

C. ANALYSIS OF THE REQUIREMENTS OF IoT SYSTEM
The systems developed thus far to control IoT-based envi-
ronments are able to measure the sensor data and statuses of
devices to automatically create environments that are pleasant
without user intervention.

In addition, they can remotely check and control the status
of an environment in real time [22]. These systems measure
the statuses of devices and sensor data and transmit these
to the server. Because the server processes these events in
batches, this has the drawback of processing high-priority
events after finishing the events that are currently being pro-
cessed [23], [24].

Context awareness/monitoring and remote control are
needed to satisfy the requirements of IoT systems [25]. These
requirements are as follows.

84930 VOLUME 8, 2020

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

1) CONVENIENCE
Settings and selections by the user must be minimized, so that
the user can simply experience the provided service.

2) ACCURACY
System operations must not diverge from the user’s inten-
tions, and there must be no malfunctions owing to system
problems.

3) OPERATIONAL CHANGES
Device operations must change, and the system must provide
services that operate according to changes in the surrounding
environment (classified by the usage date and time) and the
home’s internal status (order of priority).

4) USER INTERVENTION
The user must be free and able to intervene in the system at
the desired time during operations.

III. SYSTEM CONFIGURATION AND DESIGN
Join queries are required to process comprehensive data that
are acquired from not just one sensor, but multiple sensors,
as in the case of an IoT environment. Previous studies on
stream data have proposed techniques for establishing query
execution plans for join queries with regards to the cost
and storage space efficiency. Join operators include operators
based on hash tables, windows, and both hash tables and
windows [26], [27].

Of these, hash table-window join operators are the most
suitable processing method for high-capacity data streams,
because they can operate with limited memory and provide
a quick matching speed. The MJoin operator was proposed
as a hash table-window join operator that can select multiple
inputs, in view of the fact that the results of joining several
data include more comprehensive content [28]. This study
used the hash table-window operator multiple MJoin to opti-
mize queries.

In addition, the system was implemented such that it could
provide an intelligent environment by activating task events
according to the classified and reduced sensor data and set-
ting the priorities of operations with a focus on the user.
Conventional home systems transmit commands to objects
that are connected to the same network if a threshold value
related to the task is reached. The objects execute the tasks,
but the system does not consider multiple tasks that occur
simultaneously [29].

As such, this has the disadvantage of executing unneces-
sary tasks and wasting electricity. In this manner, systems in
an IoT environment must process not just singular data, but
multidimensional data simultaneously. Therefore, they must
process stream data more quickly and set priorities among
tasks such that high-priority tasks are processed.

The IoT-based smart home system transmits data that have
been measured by the sensors to the server and uses the
multiple MJoin operator to optimize queries.

Furthermore, it uses the SVM classification algorithm to
classify and reduce data, and the classified and reduced data
are saved in the TinyDB. Real-time and non-real-time tasks
are differentiated in the server. Real-time tasks are provided to
the user, and then saved in the MainDB. Non-real-time data
are saved in the MainDB and provided if requested by the
administrator.

In addition, the priorities among tasks are set such that the
number of simultaneous tasks can be reduced by suspending
existing tasks when a higher-priority task occurs, to reduce
unnecessary and wasteful electricity usage while providing
intelligent services to the user.

Figure 1 illustrates the proposed system’s configuration.

A. SENSOR PROCESSING AND DATA STRUCTURE
To process the sensor data of the IoT-based smart home
system, the input stream data are collected from each sen-
sor. After scanning the TinyDB, preliminary clustering is
performed. When the scan is complete, the stream data
are saved. Multiple MJoin query is performed on the data,
and it is saved. Then, the stored data are classified by the
SVM classification algorithm, and the data are reduced.

An Arduino (Uno) module is used as the processor board,
and five sensors are used to acquire streams (temperature,
humidity, gas, vibration, and detection) for sensor data pro-
cessing. The data to be used in the analysis all originate from
the same environment. Therefore, they are combined into
one packet and transmitted. Each packet generates additional
traffic and consumes energy. Therefore, a single packet is
used to process a query [30].

The packet’s total length is 36 bytes, including 10 bytes for
the fixed header, 6 bytes for the sensor node ID and channel,
and 20 bytes for the buffer. Of these values, the first 12 bytes
of the buffer are designed to contain the actual sensing values
in 2-byte units in the order of temperature, humidity, gas,
vibration, and detection.

To smoothly control the sensor flow, the system requires
the sensor data generated by the sensors and user task com-
mands. The system checks the frequency and time of the
sensor data and generates the results data. The results data
are classified according to which of the various tasks a sensor
corresponds to and are saved in the database according to the
date and time.

As a basis for checking the month, week, and day, it must
be possible to analyze the sensors’ usage periods by month,
week, and day, because they vary slightly according to the
various environments and situations.

Based on the usage rates of the sensors analyzed by month,
week, and day, sensors with low usage rates are changed to
a standby or drop state. When the sensors are in the standby
state, they do not generate data, which reduces data waste.

Furthermore, in the drop state the user directly turns the
sensor’s power off, which can reduce electricity waste. The
user can control each sensor. The data occurring in the sensors
of the TinyDB database are saved in the database. The system
refers to this database to perform AP tasks.

VOLUME 8, 2020 84931

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

FIGURE 1. System configuration.

Users use applications to set the sensor threshold value
range, and a device can be controlled by checking the sensor
data. The range values set in the database are loaded and
referred to when performing tasks.

The sensors consist of temperature, humidity, gas, detec-
tion, and vibration sensors in the home. The temperature
sensors were designed to be combined with the gas sensors
such that they can handle dangerous situations. In addition,
tasks performed with several sensors are digitized and stored
in the database. Based on the sensor data, the system provides
a convenient IoT environment by performing tasks in which
the events that are related to the tasks are suitable for the
situation or environment. Based on the sensor data range set
by the user and the database data, the user analyzes the data in
the application to control the sensors. Sensors with low usage
can be placed in a standby state, and a sensor’s state can be
changed to be operational again.

B. WINDOW DEFINITION AND STREAM PATTERN
CONDITION PROCESSING
Window processing of stream data refers to the division of
incoming data into window units in real time. Here, the inter-
val and size used to define a window for the window opera-
tions are the values saved in a database by a user. The window
interval is the range over which the window moves by a
specified distance over the data stream, and the ‘‘size’’ is the
unit in which data are aggregated.

After window processing, the data segments divided by
windows are processed according to the pattern condition.
‘‘Pattern condition’’ refers to the classification method for

generating a training data set by the user. The stream patterns
in this study are divided into five: a filtering pattern for
removing outliers, an increase or decrease pattern, a pattern
for detecting values above or below a threshold, a processing
pattern applied after calculating the sum and average of the
data in a window, and a pattern to be compared with the user-
designated pattern.

To recognize all user-defined patterns, these five divisions
(or parts) were classified considering the user’s understand-
ing and the computational complexity involved in the process.
Because any part can be defined by a user when a pattern is
executed, each part is classified based on the most universal
and easy to understand criteria to facilitate system use. Addi-
tionally, quick processing is required to classify incoming
data in real time. Therefore, parts are separated by complexity
to prevent long computing time and efficiently classify stream
data.

Table 1 shows an overview of the definitions for the five
classified patterns.

1) FILTERING PATTERNS FOR ELIMINATING OUTLIERS
The pattern for removing outliers is used to remove incorrect
data. When data are input from a sensor, the value of the
data is influenced by the environment. Thus, the likelihood of
incorrect data being generated increases if the device operates
in a harsh environment or in a remote location. In addition,
bad data can be generated from sensor malfunctions. Bad data
contained in training data can impact the accuracy of training
results. Therefore, the user must store threshold values in
the database so that values above or below the threshold are

84932 VOLUME 8, 2020

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

TABLE 1. Stream pattern definition.

excluded before generating the training data set. The system
in this study allows the user to decide whether or not to filter
outliers.

When filtering is performed, the resulting data (without
outliers) are used for processing other pattern conditions
and for generating the training data set. When filtering is
not performed, the training data set is created using all the
generated data.

2) INCREASING OR DECREASING PATTERN
The increase or decrease pattern condition extracts a win-
dow in which the data values tend to increase or decrease.
An increasing pattern data set can be used for detecting
increases in fine dust concentration or sudden increases in
blood pressure.

Accordingly, this study defined three detailed conditions
for generation of the increasing training data set: a series of
values in a window constantly increases, an increase occurs
based on a comparison of the first value and end value in a
window, and an increasing trend is shown overall even if the
values in the middle of the window decreased. For the third
condition, two sub-conditions must be met: first, an increase
must have occurred based on a comparison between the first
and last values (i.e., the second condition above). Second,
the user stores a deviation value and its frequency in the
database, and the degree of decrease is in a value falling
within the stored deviation.

Figure 2 shows three example windows representing the
increase conditions.

Similar to increasing pattern, the decreasing pattern was
also divided into three conditions. Continuous decrease was
divided into two cases: a decrease based on a comparison
of the first value and end value in a divided window and

FIGURE 2. Example of window data by increasing condition.

FIGURE 3. Example of window data by decreasing condition.

an overall decreasing trend even if the values in the mid-
dle increased. For the third decrease condition, opposite to
the third increase condition, a decrease must have occurred
based on a comparison of the first value and end value, and
the degree of increase is a value within the interval and its
frequency allowed by the user. The decreasing pattern can be
used to extract data sets that only exhibit decreasing trends,
such as decreasing body temperature or atmospheric oxygen
concentration.

Figure 3 shows examples of the decrease condition.

3) ABOVE AND BELOW VALUE DETECTION PATTERN
In the pattern for detecting values above or below a threshold,
if a value above the threshold is detected, then a window
with a value larger than the user-specified value among
the data values in the window is extracted. Further, if a
value below the threshold is detected, then a window with
a value lower than the stored value is extracted. Here,
the frequency of values above or below the threshold in the
window is also stored in the database, and the window is
extracted to evaluate a data stream that exceeds the stored
frequency

4) A PATTERN FOR PROCESSING THE SUM AND AVERAGE
IN THE WINDOW AFTER CALCULATION
When operation of the values in a window is needed, the sum
and average of the values are calculated to determine the
pattern to use, after which the window corresponding to the
condition stored by the user is extracted. The user stores a
number in the database that is used as the criterion as well as
the condition for comparison (greater than, less than, greater
than or equal to, less than or equal to, or equal to). Only the
window whose calculated sum or average value meets the
comparison condition with the criterion value is extracted.
In this case, it is compared with the pattern specified by the
user and is then extracted.

VOLUME 8, 2020 84933

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

5) A PATTERN TO BE COMPARED WITH A USER
DESIGNATED PATTERN
The user first specifies a pattern in the database and then the
window that meets the classified criterion is extracted. There
are four different conditions that are used for comparisons.

The first condition is to extract a window that matches the
stored pattern, which can be used to obtain information on
how many times a match with a given pattern occurs within a
given time.

The second condition is to extract a window in which an
intersection value exists. Here, a window is extracted if it has
a value that intersects with a pattern; this applies if the stored
pattern value exists regardless of the time sequence. This
condition can be used to track the flow of values generated
in a certain pattern.

The third condition is to find a window containing value(s)
other that of the stored pattern, which can be used to find
windows indicating dangerous or unusual values.

The last condition is for conducting a correlation analysis.
A correlation analysis is conducted between the stored pattern
and the values of an incoming window, and the result is
calculated. Based on the correlation analysis result, such as a
total or average operation pattern in the window, a window is
extracted if the result meets the condition for the value stored
by the user (based on a greater than, less than, greater than or
equal to, less than or equal to, or equal to comparison).

C. MULTIPLE QUERY PROCESSING WITH MULTIPLE
MJOIN
To obtain comprehensive data from the sensor network,
the join operation must be performed based on a specific
time or location, and its results must be obtained. In this
study, a query plan was established using the MJoin hash
table-window join method. MJoin is a method for efficiently
joining data streams that frequently change. It is an extension
of the symmetrical hash algorithm, such that the processes
of multiple streams are available. It repeatedly checks for the
existence of tuples that have the same key in all hash tables
for each input tuple.

Normal binary join-based join queries have a problemwith
blocking, because they establish a query execution plan in the
form of a binary tree. In a data stream environment, a poten-
tially unlimited amount of data is continuously inputted into
the system, and therefore a query execution plan that experi-
ences blocking will exceed the system’s memory limitations
and require input stream sampling or load shedding.

MJoin has been proposed as an efficient join processing
technique for multidimensional stream data that diverge from
this kind of join-based form and can accept multiple streams
as input. MJoin was developed using the traditional sym-
metric hash join. In other words, unlike the conventional
symmetric hash join, MJoin can accept multiple inputs.

Therefore, it does not pass the intermediate results to
the next operator and produces the join results for multiple
streams.

Figure 4 illustrates the MJoin processing structure.

FIGURE 4. Processing structure of MJoin.

If a new tuple arrives from the input stream S1, then this
tuple is inserted into the hash table for S1, and the hash table
for the next input stream is examined. If the newly inputted
tuple matches all the values in the other hash table, then the
results are produced.

In this study, after identifying the containment relation-
ships among MJoin operators, a global shared query execu-
tion plan was established.

The multiple MJoin technique optimizes multiple MJoin
operators considering multiple-input support provided only
by MJoin operators, an optimized evaluation sequence, and
tuple usage to implement a sliding window in a data stream
environment. In addition, the processing result of the join
operator can be reused as input for the parent join operator.
In this environment, an index-based purging tuple that solves
the window update problem for the join operation result is
used. Finally, to solve the routing problem of the resulting
join operation tuple (hereafter referred to as the join oper-
ation tuple), the dead vector technique, and dead tuples that
propagate newly added dead values to the parent join operator
are used. Similar to purging tuples, dead tuples are used when
performing an index-based search to identify which windows
are not satisfied by the join operation tuple.

The problem of establishing an optimal global shared
query execution plan for multiple MJoin operators is
NP-hard. Furthermore, owing to the data stream environment
of IoT, an approximation technique that can approach the
optimal solution at high computational speed is required, and
the following conditions must be satisfied:

� Satisfactory performance must be achieved, even with a
reduced search space and few searches conducted.

� The characteristics of the MJoin operators must be suffi-
ciently reflected.

� A sliding window constraint that allows only limited
memory to be used in a data stream environment must be
reflected.

First, owing to the characteristics of MJoin rather than
to the set of all possible query execution plans, the search
space can be greatly reduced by searching based on a single
query. Second, excessively splitting the operators can result in
performance degradation. Increasing the number of operators
increases contextual exchange and tends to violate the opti-
mized probing sequence. It is instead preferable to establish

84934 VOLUME 8, 2020

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

a global shared query execution plan so that the number of
returned operators is equal to or less than the number of inde-
pendently executed MJoin operators. Third, the scale of per-
formance improvement increases as more operators with high
processing costs are shared. That is, rather than processing
multiple high-cost operators separately, it is more beneficial
to process them simultaneously. With these requirements in
mind, the cost model of the joint operator in this paper is
defined as follows.

Suppose that a given MJoin operator uses n values of input
R = {R1,R2, . . .Rn}, where the input speed and window
size of each R1 is ri,Wi, and the selectivity factor of the join
operation is f. With these parameters, the cost model can be
defined as in Equation 1.

CR1,R2,R3...Rn =
∏
all

selectivities

f ·
n∑

k=1

rk ·
n∏

i = 1
i 6= k

Wi

 (1)

In addition, the window size for each join operation result
can be predicted using Equation 2. This equation can be used
to measure the cost of the parent join operator.

Cparent =
∏
all

f ·
n∏
i=1

Wi (2)

Finally, the sliding window constraint must be taken into
account. The join operators can be shared and processed
simultaneously, even if the windows defined in each query
differ. When an operator is shared, it will contain the largest
window size, meaning that it can store more tuples after the
operator is shared than if being processed as an independent
operator.

Suppose that there are m shareable queries Qi(1 < i < m),
the shared MJoin operator has k input streams Rj(1 < j < k),
each query Qi uses the window size Wij for each input Rj,
and the largest window size defined for all queries for each
Rj is W ∗j . With these parameters, the processing amount
is reduced when the operations are shared by meeting the
condition stated by Equation 3.

m∑
i=1

k∏
j=1

Wij ≥

k∑
j=1

W ∗j (3)

Based on the above, the multiple MJoin optimization algo-
rithm that approximates and establishes the optimal global
query execution plan of multiple MJoin operators is imple-
mented as shown in Figure 5. Each query is represented by
one operator, and each operator can be represented by a set
of input streams.

As indicated in the multiple MJoin optimization algorithm,
one query, that is, oneMJoin, is selected at every step. In each
step, if a plurality of the most shared sets is selected, then the
set with the highest processing cost among these is selected.
If the selected set does not meet the sharing condition, then

FIGURE 5. The multiple MJoin optimization algorithm.

the algorithm excludes the selected set and proceeds to the
next step. If the selected set meets the sharing condition, then
the part containing the elements of the selected set is searched
for within all given sets (including the selected set), and
that part is replaced with the selected set. Thus, all common
elements are replaced by one element. Finally, sets with only
one element are excluded from the next step because a set
having one element signifies that the query execution plan
has already been completed. These tasks are repeated until
all queries are excluded.

Each time a tuple is removed or routing information is
added by a window update in a raw data stream, all join oper-
ation tuples related to this tuple must be reflected to correctly
perform a window update and routing. To accomplish this,
an index assignment scheme is used. That is, by assigning an
index, it is possible to identify fromwhich tuples each tuple is
generated or, conversely, which tuples each tuple generated.
This requires that two types of index information, PrevID and
PostID, are written in each tuple.

In addition to assigning an index, routing information is
added to display more detailed location information for each
tuple. Routing can be considered as a task that assesses
which queries are satisfied and which are not satisfied by
the join operation tuples based on the window defined for
each input in each query when the join operator is shared.
Therefore, branch information must be calculated before the
join operation tuple is sent outside the operator.

The dead vector technique was originally proposed for the
shared processing of join operations and select operations.
When executing a select operation, the join operation is
executed while recording the match information in the dead
vector of the tuple without removing the tuple. The original
dead vector is merged into the generated tuple and routing
is executed using that information. In this study, the dead

VOLUME 8, 2020 84935

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

vector is used to write the routing information in the tuple in
advance, and after the join operation, the information is used
to branch to each query.

Each time a tuple is removed from a raw stream tuple or
a new dead vector is added to a tuple, the result tuple of
the related parent join operator must also be affected. This
study used the generation of purging tuples and dead tuples
to carry out this task. These two tuples are used to apply a
variation of the negative tuple technique; they differ in that
the negative tuple technique executes a value-based search,
whereas the purging tuple and dead tuple execute an index-
based search. Another difference is that the join operation is
not repeated to generate the purging tuple and dead tuple.

� Generation of Purging Tuples
Each tuple keeps information regarding which tuples were

generated by and which tuples were generated based on the
index values. Using this information, when a tuple is removed
during window updates, the tuple(s) associated with it should
also be deleted. The purging tuple is created for this purpose.
The purging tuple, which is used only to delete tuples and
does not participate in actual join operations, has index infor-
mation, and a special flag indicating that the current tuple is
a virtual tuple.

� Generation of Dead Tuple
If a new value is added to the dead vector of a raw stream

tuple, then the same value must be added to the dead vector of
the join operation tuple generated from this tuple. This study
proposes the dead tuple as a tuple that carries this information
and can add values to the dead vector. If the dead tuple is
transferred to the parent join operator, the PostID value of
the dead tuple is obtained, the index hash table is used to
find the tuples with the same PrevID in the join context table,
and the dead vector with the dead tuple is combined with the
matching tuples.

The purging tuples and dead tuples perform an index-based
search to remove these tuples or add new dead vector values.
If the PrevID of a tuple is included in the PostID possessed
by a purging tuple or dead tuple, then the tuple is removed
or a new dead vector value is added. If this search is exe-
cuted without a separate data structure, then all tuples in
the join operator are evaluated based on the index. In this
study, an index hash table is built within the join operator
to more quickly perform index-based searches. The index
hash table is constructed based on the PrevID of tuples in the
corresponding join operator, which enables quick searching
for the desired PrevID when purging tuples and dead tuples
are used.

When purging tuples and dead tuples are generated and
sent to the parent join operator, the PostID of the purging
tuple and dead tuple is read in the parent join operator, and
the tuples corresponding to this value must be removed or a
new dead vector must be added.

The validation algorithm for join operations presented
in Figure 6 is a tuple validation algorithm using the index
assignment, dead vector, purging tuple, and dead tuple tech-
niques discussed thus far.

FIGURE 6. The validation algorithm for join operations.

D. SVM CLASSIFICATION ALGORITHM
The data are classified and reduced to efficiently manage the
stream data storage while taking the IoT environment into
account. Various learning algorithms exist, but the data used
in this study are temperature, humidity, gas, vibration, and
detection data, and the structure of these data is nonlinear.

As such, this study used the SVM classification algorithm,
which has a multilayer perceptron structure and can solve
nonlinear discriminant problems.

The SVM classification algorithm, which is based on
learning theory, finds the solution by always converting the
problem into a convex quadratic problem, which ensures a
globally optimal solution. Because of this, it yields an excel-
lent performance in the field of pattern recognition [31].

The algorithm used in this study is a dual SVM classifica-
tion algorithm, and it classifies whether the given data are in a
certain range. The data in the range are saved in the database,
and those that are not are automatically deleted, to increase
the efficiency of the database. The SVM classification algo-
rithm is a method that finds a classification hyperplane that
suitably separates the two groups [32].

The SVM classification algorithm has better scalability
than conventional linear classification algorithms, and always
yields an excellent performance, unlike neural network classi-
fication methods, which produce different performances each
time they are trained [33].

The basic principle of SVM starts with linearly separable
problems. Given the input dataXi in dimension d , the problem
of classifying the training data into binary out values such as
– l and+ l is considered. To define a model for classifying the
two groups, a hyperplane can be defined as a linear discrim-
inant function. Here, a support vector indicates a sample that
has a close relationship with the boundary that determines the
classification rule.

In the case that data are not linearly separable, such as sen-
sor data, the nonlinear mapping ∅ is used to convert the data to

84936 VOLUME 8, 2020

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

TABLE 2. SVM kernel representative types.

a dimension that is higher than the input vector’s dimension
and can be linearly classified. Then, linear classification is
performed.

In the nonlinear mapping, a kernel function is used
to convert the N -dimensional input space data to a
high-dimensional feature space (Q dimensions) so that it can
be linearly classified. Equation 4 shows the kernel function
and determination function.

K (x, y) = ∅ (x) · ∅ (y)

f (x) =
n∑
i=1

aiyiK (x, xi)+ b (4)

The SVM classification algorithm does not perform tasks
such as finding the classification hyperplane and minimizing
the sampling error. Rather, it increases the classification accu-
racy for new data by maximizing the classification margin.
Because the SVM classification algorithm was developed
for binary classification, it faces considerable difficulty in
solving problems that include several classes in an actual
environment.

To solve these problems, the one-against-all and one-
against-one techniques have been proposed. The one-against-
one technique consists of k(k-1)/2 SVMs, where k is the
number of input classes.

The training speed is fast, because the training data consist
only of data that have two affiliations, and the amount of train-
ing data used for each training session is small. To improve
the training performance, the one-against-one technique was
used to perform experiments, and the SVM classification
algorithm was configured as shown in Table 2.

The SVM classification algorithm creates a hyperplane
that generates many maximum margins for each feature of
the given training data. In the test stage, mapping is performed
on a multidimensional space that is divided by the hyperplane
created in the training stage, and new data are classified.

The representative kernel functions of the SVM classifica-
tion algorithm used to train the SVM classification algorithm
are listed in Table 3, where γ,C, and d are the parameters
that determine the form of the kernel function. In the SVM
classification algorithm, it is important to select both the
appropriate kernel function for the given task and various
parameters in the SVM kernel function. Both of these pro-
cesses have a decisive impact on the efficiency and accuracy
of SVM classification. A grid search (GS) algorithm was

TABLE 3. Kernel representative types of SVM classification algorithm.

used for parameter optimization. GS tests discrete values at
reasonable intervals within a given range to find the opti-
mal parameters. The optimal kernel function is the one that
achieves the highest accuracy. In addition, a prediction of
how well the model performs classifications is necessary.
To objectively measure the final performance, this study used
the polynomial, radial basis function (RBF), and sigmoid
kernel functions under tenfold cross validation.

E. IoT-BASED SMART HOME SYSTEM
The IoT-based smart home system distinguishes the sen-
sor data that have been classified and reduced by the
SVM classification algorithm and sets the priorities among
tasks. This was designed to operate tasks and devices accord-
ing to the environmental changes within the home. It was also
designed such that the classified and reduced sensor data can
be transmitted to the server, and events can be processed using
threshold values.

The in-home status can be monitored by applications,
and administrators can remotely control devices or receive
messages when dangerous situations occur. In this man-
ner, the system can provide an intelligent service with
enhanced convenience, because it reduces the manual work
performed by the user in response to changes in the in-home
environment.

The smart home system transmits the sensor data to the
Arduino (Uno) module. The transmitted sensor data are clas-
sified and reduced after the query is processed, and then saved
in the TinyDB.

In the server, the system determines whether the sensor
data are being used by extracting the sensor data and envi-
ronment information (device data and date), and the system
recognizes the situation. Tasks are set according to the rec-
ognized situation, and the priorities are set according to the
values selected by the equipment and provided to the devices.

The MainDB stores the classified and reduced sensor data
and device statuses following real-time or non-real-time pro-
cessing, the usage date and time data, the member data for
distinguishing administrators, and the administrator tokens
for transmitting notification messages during dangerous sit-
uations. The application can be used by the administrator
to monitor the current status within the house and remotely
control devices when needed.

VOLUME 8, 2020 84937

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

FIGURE 7. Temperature & humidity decision-making tree.

The sensor data measured to recognize the smart home
system’s status (temperature, humidity, and gas) and the date
data were classified into each task using a decision-making
tree. The date data were classified into seasons and tasks, and
the sensor data were used to set the devices.

Figure 7 shows the proposed decision-making tree for
sensor data (temperature and humidity).

The system determines whether the temperature sensor
values have been inputted and begins classification. If the
temperature sensor values have been inputted, then classifi-
cation begins, and the current date is used to classify times
into the first and second halves of the year. If the temperature
sensor value has not been inputted, then classification does
not begin, and the standby state is maintained. If classifi-
cation into the first and second halves of the year has been
completed, then the current month is set as the classification
standard for determining the season.

After the season has been classified, the current tempera-
ture value is compared with the seasonal threshold value, and
the task operation is determined. If the task has begun, then
a device that will operate during the season’s task is selected
and transmitted to the automatic relationship-setting module.

Like the temperature sensor, the system also determines
whether the humidity sensor value has been inputted and
begins classification. After the system completes classifica-
tion into the first and second halves of the year and into
seasons, the humidity sensor value is compared with the
seasonal threshold value. The task operation is determined,
and the devices are selected.

Figure 8 shows the decision-making tree for the gas sensor
data. When the gas values measured by the sensors have been
inputted, it is determined whether the threshold value has

been exceeded and a gas leak has been detected. When a gas
leak is detected, the gas leak warning message implemented
by Firebase Cloud Message (FCM) is sent to the user. After
the gas leak is detected, the temperature sensor’s value is
received as input. If the temperature sensor value exceeds the
threshold value, then a fire is detected, and a fire alert message
is sent to the user.

In this manner, the system determines whether sensor data
(temperature, humidity, and gas) have been inputted, and
begins classification. In the decision-making tree of each
sensor, the season is classified by the data and sensor values,
and the task is classified according to the season.

The reason that the season is classified using a
decision-making tree is that the selected devices and device
operations must change according to the environmental
changes within the home, and the types of active devices and
tasks are different for each season. The task operations are
determined to set the device and its status by comparing the
classified task’s threshold value with the current sensor value.
By setting threshold values for each season, the environment
within the home can be maintained as the seasons change

In addition, five sensors are used to intelligently control
the priorities for ventilation, temperature, fire, and intrusion.
The relationships between the devices are set to prevent errors
and bottlenecks resulting from operating the selected devices
simultaneously.

The statuses of the devices selected via device classifica-
tion are updated in the device database, and then the devices’
statuses are compared in the relationship-setting module.
Simultaneous operation of the devices can be prevented by
setting their priorities and operating them sequentially [34].

Figure 9 shows the priorities for the tasks.

84938 VOLUME 8, 2020

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

FIGURE 8. GAS decision-making.

FIGURE 9. The priorities for the tasks.

The smart home system was designed such that an
application could be used to monitor and control the sta-
tuses of devices, as shown in Figure 10. When the user
changes a device status, the selected device’s status data

are transmitted to the server and saved in the Devices
table. For the saved data, a device control command is
transmitted to the Arduino (Uno) module via the Wi-Fi
shield [35].

VOLUME 8, 2020 84939

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

FIGURE 10. Smart home system using application.

The Arduino (Uno) module executes the command accord-
ing to the change in the device’s status. If the user wants
to include the device’s operation in the task again and exe-
cute it, then the device’s status is changed to standby via
the application’s remote control, and the operation can be
performed through the connected task. As such, the user can
intervene at the desired moment and control the device’s
operation, and therefore user-customized services can be
provided [36], [37].

IV. EXPERIMENT AND IMPLEMENTATION
To evaluate the performance of the system proposed in
this study, a control environment was created from an
Arduino (Uno) module, a Wi-Fi shield, and five sensors
(temperature, humidity, gas, vibration, and detection). The
system employed Windows as the operating system.

The CPU was an Intel i5-4460, and the system had 8 GB
of RAM. A MySQL database was used for both the sensor
data and Arduino remote control data. An Advance Power
Management (APM) Setup was used to communicate the
measured data.

A. MULTIPLE MJION QUERY PROCESSING OPTIMIZATION
In the multiple MJoin technique, by sharing operators, a join
tree is formed, and purging and dead tuples are used for
window updating and routing of the join operation results in
the tree.

In this experiment, we assumed 20 input streams using
various environmental sensors for the optimization of multi-
ple Mjoin query processing. Given that various sensor data
are generated without noticeable delay in an Internet-of-
things (IoT) environment, we conducted experiments on the
optimization of the multiple Mjoin query processing. This
experiment involved 20 types of information flow into a

single system. There are 20 types of sensors, such as for tem-
perature, humidity, gas, and vibration, spread across several
spaces in the sensor network environment of IoT. In addition,
we determined a total of 1 million tuples sent by each stream.
Although the input rate is set to 1000 tuples per second,
it takes 1000 seconds to receive the content of all streams,
which is sufficient when conducting the experiment. Note that
one stream with a total of 1 million tuples is considered to be
composed of an infinite amount given that its size cannot be
determined in a real environment. A total of onemillion tuples
were defined as 300 tuples per second. An example is a sensor
network environment wherein 300 sensors are spread over
several spaces to collect one type of information and each
sensor collects a large amount of information per second.

The key attribute values in all tuples were integers ranging
from 0 to 1000. These key attribute values were generated at
the same frequency across all tuples. The generation sequence
was randomized; key attribute values in the sliding window
were changed each time, thereby continuously varying the
selection rate of the join operators.

Multiple queries were applied to the generated input
streams to execute multiple join operations; each query could
be applied to a maximum of 20 different input streams.
Note also that because a single input stream can be present,
at most once in each query, it can occur as many times as
the maximum number of queries. To refine the experiment,
the skewness of the input streams that appeared over several
queries was reflected. In this experiment, the Zipf distri-
bution was used to apply asymmetry to the input streams
in all queries. Furthermore, in each query, one tuple from
among 500, 1000, and 1500 tuples was randomly selected
as the window for each input stream, and each window was
generated with an even distribution. These three windows
were used to create cases in which the sharing condition used

84940 VOLUME 8, 2020

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

TABLE 4. Experimental variables for input streams and queries.

FIGURE 11. Comparison of establishment time according to number of
queries (so = 0.5).

in the multiple MJoin technique was not satisfied. In this
experiment, we used only the window based on the number
of tuples. This is because the proposed method does not use
a timestamp although the window based on time is used for
window updates and routing for the tuple as a result of the
combined operation.

Table 4 lists the experimental parameters used in this
experiment.

1) A-1. THE COMPARISON REGARDING THE TIME
REQUIRED TO ESTABLISH THE GLOBAL SHARED
QUERY EXECUTION PLANS
In the comparison regarding the time required to establish the
global shared query execution plans, the experimental param-
eter SO was set to 0.5. Figure 11 shows the optimization
time and operator assignment time for executing independent
MJoin and multiple MJoin when the asymmetry of the input
streams in each querywas 0.5. The time to establish the global
shared query execution plan is measured as follows.

Assuming that the allowable time to perform opera-
tor assignment for numerous queries entered by the user
is tassign and that the calculation time by the algorithm
in Figure 5 is toptimizing, the establishment time of the global
shared query execution plan, the multiple-query setup time,
is tassign + toptimizing.
Because the optimization algorithm of multiple MJoin

has the effect of reducing the number of operators, it takes
slightly less time than the original operator assignment used
to execute independent MJoin. However, as indicated in the
multiple MJoin 11 example, the operations for additional

FIGURE 12. Average throughput comparison.

optimization increase as the number of queries increases,
thereby increasing the required time.

2) A-2. THROUGHPUT OF MJION AND MULTIPLE MJOIN
TECHIQUES
Figure 12(a) shows the average throughput when SO is fixed
at 0.5 with variations in the number of queries. The measure-
ment unit for average throughput is defined as follows.

Assuming that the total number of result tuples that
all queries send out from i seconds to i + 1 seconds is
throughput i, the total measured time is ttotal , and assuming
that the total number of queries is Q, the average throughput
for each query AT is

∑ttotal
i=0 throughput i/(ttotal · Q).

As the number of queries increases, the throughput of the
multipleMJoin technique is observed to increase compared to
independentMJoin. This is attributed to the rise in probability
that more operators can be shared as the number of queries
increases.

Figure 12(b) shows the average throughput when the
number of queries is set to 100 with variations in the input
asymmetry. As the input asymmetry increases, the com-
mon parts within the multiple queries also increase, leading
to greater sharing, therefore improving the relative average

VOLUME 8, 2020 84941

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

FIGURE 13. Average tuple usage comparison.

throughput of the multiple MJoin technique. Consequently,
if the number of queries and asymmetry of the input stream
increase, then the cases in which the queries share a contain-
ment relationship increases, thereby increasing the operators
shared in the multiple MJoin technique.

The two graphs in Figure 12 show no large throughput
improvements after the number of queries or input asymmetry
reaches a certain level. This is because the operators are
already sufficiently shared given a certain number of queries
and level of input asymmetry.

3) A-3. TUPLE USAGE OF MJOIN AND MULTIPLE MJOIN
TECHNIQUES
Figure 13 shows the average tuple usage when SO is set
to 0.5 and the number of queries is varied and when the num-
ber of queries is set to 100 and SO is varied. Themeasurement
unit for tuple usage is as follows.

Assuming that the number of tuples in one join
operator opi is st i and that the total number of all join
operators is optotal , then the number of tuples maintained in
the memory by all join operators registered in the system at a
given point in time is

∑optotal
i=1 st i.

As the number of queries increases and as the input
asymmetry increases, the relative tuple usage by the mul-
tiple MJoin technique gradually decreases. As explained
by the previous experiment, this is because more operators

FIGURE 14. Average throughput: A FG B FG C VS
(
A FG B

)
FG C .

are shared as the number of queries and input asymmetry
increase. The reduction in tuple usage when operators are
shared is ensured by the sharing condition defined in this
study.

4) A-4. ADDITIONAL COSTS OF THE MULTIPLE MJOIN
TECHNIQUE
Because operators are not shared when independent MJoin
is executed, all window updates are executed only for the
raw stream, and routing is not required. Hence, no additional
calculations are needed for purging tuples and dead tuples.
However, in the multiple MJoin technique, by sharing oper-
ators, a join tree is formed, and purging tuples and dead
tuples are used for window updating and routing of the join
operation results in the tree. These two processes may offset
the benefits gained by sharing operators and were, therefore,
evaluated.

Figure 14 shows the results of using purging tuples when a
join tree of A FG B FG C(MJoin) and (A FG B) FG C is formed
in an environment using a window with 1000 tuples for all
inputs. Slightly higher throughput than MJoin is exhibited
when applying purging tuples because the A FG B calculation
to be executed in MJoin each time the join tree is formed is
already cached. Thus, the additional computational cost of the
purging tuples is not large enough to offset the computational
gain obtained by sharing operators. Dead tuples are also used
in situations in which operators are shared, and it is clear that
the additional computational cost of the dead tuples alone is
not large enough to offset the gain achieved by processing
multiple operators at once. This is because dead tuples are
generated in proportion to the existing number of shared
operators.

Thus, despite the use of purging tuples and dead tuples
in the multiple MJoin technique, this method exhibits vastly
superior throughput and lower memory usage compared to
independent MJoin, as well as relatively low additional com-
putational costs introduced by the addition of purging tuples
and dead tuples.

The multiple MJoin technique has the following
characteristics.

First, the time required to establish a global shared query
execution plan in the data stream is substantially reduced.

84942 VOLUME 8, 2020

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

The multiple MJoin technique conducts searches based only
on a query and fully accounts for the constraint placed on
the sliding window, enabling the establishment of a query
execution plan appropriate for a data stream environment.
The experimental results demonstrated that the multiple
MJoin technique achieves high improvements in performance
because it conducts relatively few searches.

Second, an accurate window updating technique under the
shared query execution plan was proposed. When a global
shared query execution plan is established, MJoin is split
and transformed into a tree or graph, leading to problems
in window updating for the operation result tuples. This
paper proposed an index-based search applicable to both
time-based and tuple count-based windows. Moreover, this
study extended the index assignment scheme and situation
data structure inside the join operator. Given this framework,
a purging tuple technique was proposed that maintains win-
dow update accuracy and supports conducting only a few
searches.

Third, an accurate routing technique under the shared
query execution plan was proposed. Routing is closely related
to window updating for the join operation tuples. As such,
the index information used in the window update is utilized
for searching. This also allows the dead attribute required
for routing, thereby supporting fast routing for the operation
results. The dead tuple technique adds routing information
to the join operation results and is very similar to the purging
tuple technique. Because an index-based search is performed,
the routing information is correctly added to the correspond-
ing tuple. Numerous queries must be processed in an IoT
environment. Systems accessed by many users require faster
data stream processing. In this respect, the multiple MJoin
technique is expected to enable faster processing in such
environments.

5) A-5. SUMMARY
Multiple Mjoin consumes a large amount of time to set up
query execution plans when compared to an independently
executed Mjoin. It can be applied to real environments so that
it can generate significant effects in terms of sacrificing the
initial short time by considering the subsequent throughput.
However, since the initial set-up time cannot process all
inputs, they should be placed in the system buffer. Otherwise,
all tuples inputted during this time should be removed. That
is, a relatively short set-up time acts as a factor in improving
the quality of the results. The multiple Mjoin technique can
be evaluated as a more suitable technique in terms of a data
stream environment given that it shows a shorter set-up time
than the conventional optimization method.

Through various experiments, we confirmed that the mul-
tiple Mjoin technique had a better performance and used less
tuples than the independently executed Mjoin. Although the
probability that operators are shared is very small, consider-
ing that the number of queries is few or that the skewness
of the input stream is low, it can nevertheless guarantee the
same or better performance than the independently executed

TABLE 5. Confusion matrix.

TABLE 6. Polynomial confusion matrix.

Mjoin. The reason is that the query execution plan is set up
based on the queries of the multiple Mjoin technique.

Moreover, the performance and tuple usage of multiple
Mjoin can be directly affected by the shared ratio of oper-
ators. When more queries are used and the input asymmetry
becomes larger, the throughput increases and the total number
of tuples used decreases because more operators are shared.
However, if the number of queries and input skewness of a
certain level is exceeded, we cannot expect a large increase
in the processing improvement rate. The reason is that the
number of tuples used and the degree of input asymmetry
significantly influence operator sharing. Moreover, once it
exceeds a certain level, conditions are met wherein many
operators can be shared.

B. SVM OPTIMAL KERNEL FUNCTION SELECTION
This study analyzed SVM kernel functions and parameters to
achieve optimal performance for the SVMclassification algo-
rithm. Table 5 lists several performance measurements that
can be derived using true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) values in the con-
fusion matrix of the test set results. Using Table 5, the kernel
function achieving the highest accuracy was selected among
the SVM kernel functions. Accuracy in this case expresses
how closely the actual value after SVM training matches the
predicted value of training.

Tables 6, 7, and 8 show the confusion matrices of the poly-
nomial kernel, RBF kernel, and sigmoid kernel functions,

VOLUME 8, 2020 84943

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

TABLE 7. RBF confusion matrix.

TABLE 8. Sigmoid confusion matrix.

respectively. The polynomial kernel function achieved an
accuracy of approximately 94% when d was 6 or higher. The
RBF kernel function achieved the highest accuracy of 96%
when γ was 0.1, and as γ increased, the accuracy gradually
decreased. In the sigmoid kernel function analysis, the ranges
of γ and C were each set to 0.1–0.9, and a GS was performed
at intervals of 0.1 within this range. The accuracy increased as
γ approached 0.1; however, the best accuracy was achieved
when γ was equal to 0.2. Furthermore, the highest accuracy

TABLE 9. Error rate according to window size change.

of 100% was achieved by the sigmoid function when γ
was 0.2 and C was 0.1. Hence, the sigmoid kernel function
was selected as the optimal kernel function for the SVM
classification algorithm.

C. PERFORMANCE EVALUATION ACCORDING TO THE
CHANGES IN THE SLIDING WINDOW SIZE
The experiment measured the accuracies of queries in
the TinyDB. A total of 10 nodes were used, including one sink
and nine intermediate nodes. Every 5 s, the data calculated for
temperature, humidity, gas, vibration, and detection were sent
to the stream data storage.

MJoin queries were performed on the collected data during
stream data management, and the data were saved in the
TinyDB via the SVM algorithm’s data classification and
reduction process.

It was necessary to measure the error rate, because the
experiment used irregular data, which reflected the real
world, rather than a linear relationship. The experiments
conducted in this study measured the error rate according to
changes in the sliding window size. The root mean square
error (RMSE), mean absolute error (MAE), and mean abso-
lute percentage error (MAPE) were used to measure the
error rates of the experiment. These errors are defined in
Equations 5, 6, and 7, respectively.

REMS =

√√√√1
n

n∑
i=1

(Zt − Ft)2 (5)

MAE =
1
n

n∑
t=1

|Zt − Ft | (6)

MAPE =
1
n

n∑
t=1

∣∣∣∣Zt − FtZt

∣∣∣∣× 100% (7)

In these equations, n is the number of samples used to fit
the data, Zt is the actual value at time t, and Ft is the predicted
value for each model.

Table 9 presents the results of measuring the error rate
according to changes in the window size. The average RMSE
was 2.42%, MAE was 2.19%, and MAPE was 11.57%.
According to the evaluation criteria for MAPE in Table 10,

84944 VOLUME 8, 2020

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

TABLE 10. Evaluation of Mean Absolute Percentage Error (MAPE) value.

TABLE 11. Reduction result according to window size change.

TABLE 12. Classification accuracy result according to window size
change.

11.57% indicates a relatively accurate prediction, demon-
strating the accuracy of the system proposed in this study.

Tables 11 and 12 show the reduction ratio and classification
accuracy, respectively, according to changes in the window
size. In the experimental data of this study, each stream’s ratio
was the same, and only the window size was varied as the
measurements were taken. In total, 15,593 data groups were
used, and the window size was divided into 1000, 2000, 3000,
4000, and 5000 according to the number of tuples. The SVM
algorithm was used to reduce the data.

In the experiment results, the storage space was reduced
by a maximum of 18.7% when the window size was divided
by 5000, which was found to be the most efficient. As the
window size became larger, this reduction increased. Further-
more, the classification accuracy was highest at 88.6%, when
the window size was divided by 3000.

This paper also compared the performance of the
SVM classification algorithm with other algorithms. In the
SVM classification algorithm, optimal kernel functions were
used for the other algorithms and subsequent experiments
were conducted. As shown in Figure 15, Decision Tree, Naive

FIGURE 15. Classification performance comparison by classification
algorithm.

Bayes, SVM, k-nearest neighbor, and multi-layer perceptron
algorithms yielded accuracies of 72.83%, 70.98%, 85.94%,
74.43%, and 76.85%, respectively. The experimental results
demonstrate that the SVM algorithm using the optimal kernel
achieves at least 9% higher classification accuracy than the
other algorithms.

D. IMPLEMENTATION OF IoT-BASED SMART HOME
SYSTEM
Finally, the classified and reduced sensor data were
used to implement the IoT-based smart home system.
Figure 16 shows the results of implementing the IoT-based
smart home system. This was designed such that a warning
message can be sent when a dangerous situation occurs,
so that the user can respond.

The system application is an important module, which
allows the administrator to monitor and remotely control the
device statuses and sensor data that are measured by the
Arduino (Uno) module. This was designed to allow control
even in environments using old versions of Android, and to
classify the minimum amount of data that the administrator
must receive within the home so that it is easy for the user
to use.

The user can use the application to observe the current
operating statuses of devices and to change these. The current
operational statuses of device stored in the database are sent
to the application, and changes in device operations can be
observed.

The user can use these monitoring features to find unnec-
essary tasks being performed by the devices within the home.
In addition, the user can use the application to set three device
statuses: On, Off, and Wait. When On is selected, the device
operates even when a linked task is being performed, because
the user’s control commands are given priority over the task
commands. When Off is selected, the user’s commands are
again given priority, and the device’s operations are paused.

The Wait status changes the device’s status such that man-
ual control of the device by the user is paused, and the device
is included in the task and operates automatically. In this

VOLUME 8, 2020 84945

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

FIGURE 16. The implementation result of smart home system based on
internet things.

manner, the user can receive customized services from the
automatically operating system.

When the gas sensor value exceeds the threshold value,
the system determines that a gas leak has occurred in the
home and transmits a warning message created by FCM to
the user. After a gas leak is detected, the temperature sen-
sor values are extracted and compared with the temperature
threshold value to determine if there is a fire.

If a fire is detected, then a fire warning message is sent
to the user so that they can deal with the fire. By providing
the user with this two-stage dangerous situation notification
system, the user can quickly respond to dangerous situations
that occur within the home.

The data are used to perform the task and device classifi-
cation of each sensor into quarters and seasons, and the tasks
are selected.

The sensor’s threshold values are used to determine the
task operations. This is to prevent interference and collisions
between tasks, because the relationships between the selected
devices are set automatically, and they operate in sequence.
In addition, this is to classify the tasks of the temperature
and humidity sensors by season, and to select the operating
devices that are included in the tasks.

Table 13 shows the tasks corresponding to each sensor.
The temperature sensor’s tasks consist of temperature tasks

and window tasks for each season. The window tasks set a
relationship according to the temperature sensor’s tasks, and
they open and close windows.

The humidity sensor’s tasks consist of humidity tasks
for each season. The gas sensor’s task is the window task.

TABLE 13. Each sensor task.

TABLE 14. Temperature sensor task devices.

This involves opening and closing the windows according to
whether or not gas is present.

In the task priorities, the window tasks have the highest
priority. When these tasks begin, a message stating that win-
dow operations are complete is sent, and then the task with
the next highest priority is performed.

In addition, when a gas leak is detected all currently oper-
ating devices are paused, and the window opening task is per-
formed. In this manner, tasks are performed in sequence by
classifying tasks and setting their relationships and priorities.
In addition, interference between tasks, collisions between
devices, and bottlenecks can be minimized.

Table 14 shows the classification of devices corresponding
to the temperature sensor task.

By classifying devices corresponding to tasks for each
season and completely excluding the operation of devices that
are not used each season, device malfunctions and electricity
waste can be minimized. Spring and fall tasks have large
daily temperature ranges and large differences between the
first and last temperature. Therefore, all devices utilized for
temperature adjustment tasks are used.

Table 15 shows the device classification of the humidity
sensor.

Like the temperature sensors, the humidity sensors also set
the devices differently that are included in tasks according
to the season. The temperature and humidity sensors com-
pare their values with the threshold values for each season

84946 VOLUME 8, 2020

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

TABLE 15. Humidity sensor task devices.

and begin the tasks and select and operate the devices that
correspond to these tasks.

By setting the task priorities, the tasks that are being
performed and their priorities can be compared, and
higher-priority tasks can suspend existing tasks, while
lower-priority tasks can be performed after existing tasks.

In this manner, the user can freely intervene while tasks
are being performed to change the statuses of devices and
perform manual control. By doing so, user-customized ser-
vices can be provided to the user, and the user can experience
greater convenience via tasks that operate accurately accord-
ing to the season.

V. CONCLUSION
Current systems in IoT environments use a large amount of
various sensor data. The types of sensors vary, because smart
devices are used differently according to the location, and
methods for using the sensors also vary according to their
purposes. However, most existing studies have focused on
cooperation between devices or task efficiency, and there
is a tendency for these systems to have manual operations,
because they have not created an environment with sensors
or other media.

Smart home systems must be able to create relationships
between various sensors attached to devices within the home
and link them to efficiently perform tasks such as energy
management, cooling, heating, and ventilation. Various sen-
sor data must be collected, and monitoring services must be
provided to the user.

To process fast and continuous stream data collected
from sensor networks in an IoT environment, the hash
table-window join operator multiple MJoin was used to opti-
mize queries, and the SVM algorithm was used to classify
and reduce data for the purpose of efficiently managing
stream data storage. A global shared query execution tech-
nique for the query optimization of multiple MJoin was used,
and experiments verified that it yielded notable improve-
ments in performance with relatively few searches. This study
evaluated the system performance through experimentation
according to changes in sliding window size and the selected
optimal kernel function of the SVM classification algorithm
through evaluations of different kernel functions for effi-
cient storage management of the stream data. Based on the
performance evaluation results, the sigmoid kernel function
was selected as the optimal kernel function for the SVM
classification algorithm. According to the SVM classification

algorithm results based on changes in sliding window size,
the average error rate was 2.42%, the reduction result was
17.58%, and the classification accuracy was 85.94%. Based
on the comparison of the SVM classification performance
with that of other algorithms, the SVM classification algo-
rithm achieved a minimum 9% better classification perfor-
mance than the other classification algorithms evaluated.

In addition, this study has proposed an IoT-based smart
home system that can use the classified and reduced sensor
data to intelligently control devices within the home.

The results of experiments on the classification and reduc-
tion techniques proposed in this study demonstrated that
when the window size was divided by 5000, the storage
space was reduced by a maximum of 18.7%, which was the
most efficient. It was found that as the window size became
larger, this reduction increased. The classification accuracy
was highest at 88.6% with the window size divided by 3000.

In this study, we conducted experiments by arbitrarily
assuming 20 IoT environment sensors to optimize the mul-
tiple Mjoin query processing. Given that various sensor data
are generated without noticeable delay for a home system in
the IoT environment, a method that can efficiently process
a large amount of sensor data is necessary. Therefore, based
on comparison of the conventional Mjoin and multiple Mjoin
methods, we proposed a method of optimizing the query
processing of stream data. In addition, to address the situation
of the smart home system based on the IoT, we classified
the sensor data (temperature, humidity, and gas) measured
through the Arduino module and date data into tasks using
a decision tree. Then, we set up the devices using the sensor
data. Furthermore, we designed the system to intelligently
control the priorities for ventilation, temperature, fire, and
break-in using five sensors. Considering that the designed
system was implemented using only the limited sensor data
measured through the Arduino module, several areas did not
reflect all the environments of the home system in the IoT
environment. Thus, in the future, if we use the classified
and reduced sensor data proposed in this study using various
environmental sensors, the efficiency and convenience of the
system are expected to increase because we will be able to
configure an environment with a more intelligent system than
the conventional home system, thus meeting users’ require-
ments.

In future research, it will be necessary to study a more effi-
cient sensor data-processing algorithm, which takes the pro-
cessing time into account. Future studies will also expand on
and refine the classification statuses of the decision-making
tree proposed in this study. In addition, future studies will
use this system in a variety of IoT environments other than
a home system, to create more convenient and efficient
IoT environments regardless of location.

REFERENCES

[1] M.-Z. Song, ‘‘A study on business types of IoT-based smarthome: Based
on the theory of platform typology,’’ J. Inst. Internet, Broadcast. Commun.,
vol. 16, no. 2, pp. 27–40, 2016, doi: 10.7236/JIIBC.2016.16.2.27.

VOLUME 8, 2020 84947

http://dx.doi.org/10.7236/JIIBC.2016.16.2.27

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

[2] S. Yoon and J. Kim, ‘‘A study on the user’s value of the smart home service
in the Internet of Things technology,’’ Int. J. Future Gener. Commun. Netw.,
vol. 10, no. 6, pp. 65–80, Jun. 2017, doi: 10.14257/ijfgcn.2017.10.6.07.

[3] M. Alaa, A. A. Zaidan, B. B. Zaidan, M. Talal, and
M. L. M. Kiah, ‘‘A review of smart home applications based on Internet
of Things,’’ J. Netw. Comput. Appl., vol. 97, pp. 48–65, Nov. 2017, doi:
10.1016/j.jnca.2017.08.017.

[4] M. J. Lee, J. S. Lee, and Y. S. Han, ‘‘Adaptive priority queue-
driven task scheduling for sensor data processing in IoT environments,’’
J. Korea Multimedia Soc., vol. 29, no. 9, pp. 1559–1566, 2017, doi:
10.9717/kmms.2017.20.9.1559.

[5] Y. Yin, J. Xia, Y. Li, Y. Xu, W. Xu, and L. Yu, ‘‘Group-wise itinerary
planning in temporary mobile social network,’’ IEEE Access, vol. 7,
pp. 83682–83693, 2019, doi: 10.1109/ACCESS.2019.2923459.

[6] W. Lee, S. Cho, P. Chu, H. Vu, S. Helal, W. Song, Y.-S. Jeong,
and K. Cho, ‘‘Automatic agent generation for IoT-based smart house
simulator,’’ Neurocomputing, vol. 209, pp. 14–24, Oct. 2016, doi:
10.1016/j.neucom.2015.04.130.

[7] Y. Yin, L. Chen, Y. Xu, J. Wan, H. Zhang, and Z. Mai, ‘‘QoS prediction
for service recommendation with deep feature learning in edge computing
environment,’’Mobile Netw. Appl., vol. 25, no. 2, pp. 391–401, Apr. 2020,
doi: 10.1007/s11036-019-01241-7.

[8] P. P. Ray, M. Mukherjee, and L. Shu, ‘‘Internet of Things for disas-
ter management: State-of-the-Art and prospects,’’ IEEE Access, vol. 5,
pp. 18818–18835, 2017, doi: 10.1109/ACCESS.2017.2752174.

[9] W.-Y. Lee, H.-M. Ko, J.-H. Yu, and K.-B. Sim, ‘‘An implemen-
tation of smart dormitory system based on Internet of Things,’’
J. Korean Inst. Intell. Syst., vol. 26, no. 4, pp. 295–300, Aug. 2016, doi:
10.5391/JKIIS.2016.26.4.295.

[10] D. Mulfari, A. L. Minnolo, and A. Puliafito, ‘‘Wearable devices and IoT
as enablers of assistive technologies,’’ in Proc. 10th Int. Conf. Develop.
eSystems Eng. (DeSE), Jun. 2017, pp. 14–19, doi: 10.1109/DeSE.2017.51.

[11] J.-H. Lee, ‘‘Energy-efficient clustering scheme in wireless sensor net-
work,’’ Int. J. Grid Distrib. Comput., vol. 11, no. 10, pp. 103–112,
Oct. 2018, doi: 10.14257/ijgdc.2018.11.10.09.

[12] H. Gao, Y. Duan, L. Shao, and X. Sun, ‘‘Transformation-based process-
ing of typed resources for multimedia sources in the IoT environment,’’
Wireless Netw., pp. 1–17, Nov. 2019, doi: 10.1007/s11276-019-02200-6.

[13] T.-Y. Kim, S.-H. Bae, and Y.-E. An, ‘‘A study on intelligent smart home
system in Internet of Things (IoT) environment,’’ Int. J. Internet Things
Appl., vol. 3, no. 1, pp. 1–6, 2019.

[14] D.-W. Song, K.-S. Kim, and S.-K. Lee, ‘‘An relational analysis
between humidity, temperature and fire occurrence using public
data,’’ Fire Sci. Eng., vol. 28, no. 2, pp. 82–90, Apr. 2014, doi:
10.7731/KIFSE.2014.28.2.082.

[15] J. Geng and Z. He, ‘‘Innovation and development strategy of logistics
service based on Internet of Things and RFID automatic technology,’’ Int.
J. Future Gener. Commun. Netw., vol. 9, no. 12, pp. 251–262, Dec. 2016,
doi: 10.14257/ijfgcn.2016.9.12.23.

[16] H. Yang, ‘‘The novel modern Internet of Things system structure optimiza-
tion methodology based on information theory and communication signal
transmission model,’’ Int. J. Future Gener. Commun. Netw., vol. 9, no. 9,
pp. 119–132, Sep. 2016, doi: 10.14257/ijfgcn.2016.9.9.11.

[17] P. Kumar and U. C. Pati, ‘‘IoT based monitoring and control of appli-
ances for smart home,’’ in Proc. IEEE Int. Conf. Recent Trends Elec-
tron., Inf. Commun. Technol. (RTEICT), Bangalore, India, May 2016,
pp. 1045–1050, doi: 10.1109/RTEICT.2016.7808011.

[18] S. Kwon, D. Park, H. Bang, and Y. Park, ‘‘Real-time and parallel seman-
tic translation technique for large-scale streaming sensor data in an
IoT environment,’’ J. KIISE, vol. 42, no. 1, pp. 54–67, Jan. 2015, doi:
10.5626/JOK.2015.42.1.54.

[19] C. Imtar, U. Muhammad, F. Arshad, and U. K. Wajid, ‘‘Towards the
development of an efficient and cost effective intelligent home system
based on the Internet of Things,’’ Int. J. Comput. Sci. Inf. Secur., vol. 14,
no. 6, pp. 343–350, 2016.

[20] K. Nair, J. Kulkarni, M. Warde, Z. Dave, V. Rawalgaonkar, G. Gore, and
J. Joshi, ‘‘Optimizing power consumption in iot based wireless sensor
networks using Bluetooth low energy,’’ in Proc. Int. Conf. Green Comput.
Internet Things (ICGCIoT), Oct. 2015, pp. 589–593, doi: 10.1109/ICG-
CIoT.2015.7380533.

[21] C. K. Dehury and P. K. Sahoo, ‘‘Design and implementation of a novel
service management framework for IoT devices in cloud,’’ J. Syst. Softw.,
vol. 119, pp. 149–161, Sep. 2016, doi: 10.1016/j.jss.2016.06.059.

[22] M. Tao, K. Ota, and M. Dong, ‘‘Ontology-based data semantic man-
agement and application in IoT- and cloud-enabled smart homes,’’
Future Gener. Comput. Syst., vol. 76, pp. 528–539, Nov. 2017, doi:
10.1016/j.future.2016.11.012.

[23] W. Lee, S. Cho, P. Chu, H. Vu, S. Helal, W. Song, Y.-S. Jeong,
and K. Cho, ‘‘Automatic agent generation for IoT-based smart house
simulator,’’ Neurocomputing, vol. 209, pp. 14–24, Oct. 2016, doi:
10.1016/j.neucom.2015.04.130.

[24] T. Tachibana, T. Furuichi, and H. Mineno, ‘‘Implementing and evalu-
ating priority control mechanism for heterogeneous remote monitoring
IoT system,’’ in Proc. Adjunct Proc. 13th Int. Conf. Mobile Ubiquitous
Systems: Comput. Netw. Services-MOBIQUITOUS, 2016, pp. 239–244,
doi: 10.1145/3004010.3004040.

[25] H. Gao, Y. Xu, Y. Yin, W. Zhang, R. Li, and X. Wang, ‘‘Context-
aware QoS prediction with neural collaborative filtering for Internet-of-
Things services,’’ IEEE Internet Things J., early access, Dec. 2, 2019, doi:
10.1109/JIOT.2019.2956827.

[26] R. M. Duarte, A. R. Du Bois, M. L. Pilla, G. G. H. Cavalheiro, and
R. H. S. Reiser, ‘‘Comparing the performance of concurrent hash tables
implemented in haskell,’’ Sci. Comput. Program., vol. 173, pp. 56–70,
Mar. 2019, doi: 10.1016/j.scico.2018.06.004.

[27] E. Brun, A. Guittet, and F. Gibou, ‘‘A local level-set method using a hash
table data structure,’’ J. Comput. Phys., vol. 231, no. 6, pp. 2528–2536,
Mar. 2012, doi: 10.1016/j.jcp.2011.12.001.

[28] Y. Zhu, V. Raghavan, and E. A. Rundensteiner, ‘‘A new look at gen-
erating multi-join continuous query plans: A qualified plan generation
problem,’’ Data Knowl. Eng., vol. 69, no. 5, pp. 424–443, May 2010, doi:
10.1016/j.datak.2009.11.001.

[29] J. Lee, E. Lee, and D.-K. Baik, ‘‘Simulation and performance evaluation of
the self-adaptive light control system,’’ J. Korea Soc. Simul., vol. 25, no. 2,
pp. 63–74, Jun. 2016, doi: 10.9709/JKSS.2016.25.2.063.

[30] J. Yu, J. Li, Z. Yu, and Q. Huang, ‘‘Multimodal transformer with
multi-view visual representation for image captioning,’’ IEEE Trans.
Circuits Syst. Video Technol., early access, Oct. 15, 2019, doi:
10.1109/TCSVT.2019.2947482.

[31] J. Yu, B. Zhang, Z. Kuang, D. Lin, and J. Fan, ‘‘IPrivacy: Image pri-
vacy protection by identifying sensitive objects via deep multi-task learn-
ing,’’ IEEE Trans. Inf. Forensics Security, vol. 12, no. 5, pp. 1005–1016,
May 2017, doi: 10.1109/TIFS.2016.2636090.

[32] M. Ziȩba, J. M. Tomczak, M. Lubicz, and J. Swia̧tek, ‘‘Boosted SVM
for extracting rules from imbalanced data in application to prediction of
the post-operative life expectancy in the lung cancer patients,’’ Appl. Soft
Comput., vol. 14, pp. 99–108, Jan. 2014, doi: 10.1016/j.asoc.2013.07.016.

[33] Z. Yang and Y. Xu, ‘‘A safe sample screening rule for Laplacian twin
parametric-margin support vector machine,’’ Pattern Recognit., vol. 84,
pp. 1–12, Dec. 2018.

[34] J. Yu, Z. Kuang, B. Zhang, W. Zhang, D. Lin, and J. Fan, ‘‘Leveraging
content sensitiveness and user trustworthiness to recommend fine-grained
privacy settings for social image sharing,’’ IEEE Trans. Inf. Forensics
Security, vol. 13, no. 5, pp. 1317–1332, May 2018.

[35] S. Ahmad, S. Malik, and D.-H. Kim, ‘‘Comparative analysis of simulation
tools with visualization based on realtime task scheduling algorithms for
IoT embedded applications,’’ Int. J. Grid Distrib. Comput., vol. 11, no. 2,
pp. 1–10, Feb. 2018, doi: 10.14257/ijgdc.2018.11.2.01.

[36] Y. Yin, L. Chen, Y. Xu, and J.Wan, ‘‘Location-aware service recommenda-
tionwith enhanced probabilistic matrix factorization,’’ IEEEAccess, vol. 6,
pp. 62815–62825, 2018, doi: 10.1109/ACCESS.2018.2877137.

[37] J. Yu, M. Tan, H. Zhang, D. Tao, and Y. Rui, ‘‘Hierarchical deep
click feature prediction for fine-grained image recognition,’’ IEEE
Trans. Pattern Anal. Mach. Intell., early access, Jul. 30, 2019, doi:
10.1109/TPAMI.2019.2932058.

TAE-YEUN KIM received the B.S., M.S., and
Ph.D. degrees from the Department of Com-
puter Science and Statistics, Chosun University,
Gwangju, South Korea, in 2002, 2005, and 2015,
respectively. From 2012 to 2015, he was a Senior
Researcher with Shinhan Systems Corporation.
He is currently working as a Professor with
Chosun University, South Korea. His research
interests include artificial intelligence, bioinfor-
matics, smart grid computing, and the IoT.

84948 VOLUME 8, 2020

http://dx.doi.org/10.14257/ijfgcn.2017.10.6.07
http://dx.doi.org/10.1016/j.jnca.2017.08.017
http://dx.doi.org/10.9717/kmms.2017.20.9.1559
http://dx.doi.org/10.1109/ACCESS.2019.2923459
http://dx.doi.org/10.1016/j.neucom.2015.04.130
http://dx.doi.org/10.1007/s11036-019-01241-7
http://dx.doi.org/10.1109/ACCESS.2017.2752174
http://dx.doi.org/10.5391/JKIIS.2016.26.4.295
http://dx.doi.org/10.1109/DeSE.2017.51
http://dx.doi.org/10.14257/ijgdc.2018.11.10.09
http://dx.doi.org/10.1007/s11276-019-02200-6
http://dx.doi.org/10.7731/KIFSE.2014.28.2.082
http://dx.doi.org/10.14257/ijfgcn.2016.9.12.23
http://dx.doi.org/10.14257/ijfgcn.2016.9.9.11
http://dx.doi.org/10.1109/RTEICT.2016.7808011
http://dx.doi.org/10.5626/JOK.2015.42.1.54
http://dx.doi.org/10.1109/ICGCIoT.2015.7380533
http://dx.doi.org/10.1109/ICGCIoT.2015.7380533
http://dx.doi.org/10.1016/j.jss.2016.06.059
http://dx.doi.org/10.1016/j.future.2016.11.012
http://dx.doi.org/10.1016/j.neucom.2015.04.130
http://dx.doi.org/10.1145/3004010.3004040
http://dx.doi.org/10.1109/JIOT.2019.2956827
http://dx.doi.org/10.1016/j.scico.2018.06.004
http://dx.doi.org/10.1016/j.jcp.2011.12.001
http://dx.doi.org/10.1016/j.datak.2009.11.001
http://dx.doi.org/10.9709/JKSS.2016.25.2.063
http://dx.doi.org/10.1109/TCSVT.2019.2947482
http://dx.doi.org/10.1109/TIFS.2016.2636090
http://dx.doi.org/10.1016/j.asoc.2013.07.016
http://dx.doi.org/10.14257/ijgdc.2018.11.2.01
http://dx.doi.org/10.1109/ACCESS.2018.2877137
http://dx.doi.org/10.1109/TPAMI.2019.2932058

T.-Y. Kim et al.: Design of Smart Home Implementation Within IoT Natural Language Interface

SANG-HYUN BAE received the B.S. and M.S.
degrees from the Department of Electrical Engi-
neering, Chosun University, Gwangju, South
Korea, in 1982 and 1984, respectively, and the
Ph.D. degree from the Department of Infor-
mation Science, Tokyo Metropolitan University,
Tokyo, Japan, in 1988. He was a Researcher with
the Department of Electrical Engineering, Tokyo
Institute of Technology, Japan, in 1985. He was
also a Visiting Professor with the Department of

Information Engineering, Nara Institute of Technology, Japan, in 1997, and at
the Department of Information Engineering, University of Alberta, Canada,
in 2002. He is currently a Professor with the Department of Computer
Science and Statistics, Chosun University, Gwangju. He was a member of
the Board of Directors of NRF, South Korea, from 2012 to 2013.

YOUNG-EUN AN received the Ph.D. degree in
information and communication engineering from
Chosun University, in 2010. She was a Professor at
the Chosun University College of Science & Tech-
nology, South Korea, from 2011 to 2014. Since
March 2014, she has been a Professor at Chosun
University, South Korea.

VOLUME 8, 2020 84949

