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ABSTRACT To bolster the resilience of power systems against typhoon disasters, this paper develops a
holistic framework of wind disaster warning for transmission lines. This paper proposes a hybrid prediction
model to quantify the transmission line damage probability under typhoon disaster based on extreme value
type I probability distribution, Monte Carlo method, and Random Forest. Specifically, this paper uses the
extreme value type I probability distribution and the Monte Carlo method to simulate the random wind field,
and predict the damage probability of transmission lines under each wind field using the Random Forest
method. This paper takes typhoon ‘‘Mangkhut’’ in 2018 as a case study, and compare the performance of the
hybrid model based on random wind field with the Random Forest method under predicted and measured
wind field. The results demonstrate that the hybrid model can effectively utilize wind speed data to obtain a
more reliable prediction and achieves the best synthetic similarity to the actual damage situations.

INDEX TERMS Typhoon, power system resilience, transmission line, extreme value type I probability
distribution, Monte Carlo, Random Forest, random wind field.

I. INTRODUCTION
Typhoon disaster, as one of the most catastrophic natural dis-
asters, brings severe hazards like storm and flooding and may
cause unprecedented damages to the power grid in coastal
areas, including tower tilt and falling, power transmission
lines breaking, and even wide-scale power outage [1], [2].
Therefore, it is urgent to establish an effective wind disaster
warning system for transmission line damage under typhoon
to provide decision support for dispatch, operation, mainte-
nance, and overhaul.

However, the damage mechanism of power grid under
typhoon is complex and requires further study. For example,
the failure of power equipment is caused by various factors
including project construction quality, physical and chemi-
cal environment, and extreme weather. Some of the factors
are difficult to quantify and thus bring challenges to the
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cause analysis and damage prediction modeling. Therefore,
this paper aims to develop an effective method for damage
warning of power transmission lines under typhoon disaster.
In particular, this paper focuses on the transmission line
damage caused by tower tilt and falling in this paper.

There has been a body of literature [2], [3] that explored
the correlation between transmission line failure and the wind
speed. Yang et al. in [3] utilized a tropical cyclone wind
model and fragility curve to simulate the failure probability
of transmission lines. An exponential function in [4] was con-
structed to describe the relationship between the transmission
line segment failure rate and wind speed, and thus further
established contingency probability models. In [5], fragility
curve was used to illustrate the relationship between the fail-
ure probability and the wind speed. However, the wind speed
probability distribution was ignored and the transmission line
failure model under typhoon disaster was oversimplified.
Other studies in [6]– [8] proposed failure probability models
using the structural stress theory. Geng et al. in [6] computed

85038 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8514-3195
https://orcid.org/0000-0002-0503-183X


H. Hou et al.: Hybrid Prediction Model for Damage Warning of Power Transmission Line Under Typhoon Disaster

the failure probability of transmission lines based on the stress
intensity interference model. Yang et al. in [2] established the
logarithmic normal distribution model of tower damage by
using YanMengwind fieldmodel [7], [8] and structural stress
theory. However, models using the structural stress theory
have high computational overhead and thus cannot be used
in large-scale studies. Moreover, many key information such
as microtopographic information and operation time were not
captured in the structural-stress-theory-based models.

Recent studies in [9]– [11] took multi-source information
into consideration to establish transmission line failure mod-
els. An early warning model for transmission line gallop-
ing with input of weather conditions, the conductor type,
cross-section and span of transmission line was constructed
based on support vector machine and Adaboost [9]. Gao et al.
in [10] established a transmission line failure prediction
model based on the microclimate prediction and historical
tripping data. But the microclimate prediction substantially
increased the computational complexity. The study in [11]
improved the wind load model of power tower with the
Weibull distribution aging curve based on the batts model,
but the analysis of microtopography is insufficient. However,
the destruction of the typhoon will lead to dynamic changes
of the power grid structure, which leads to the changes of the
weighted betweenness and other indicators as well.

The transmission line failure models have also been
inspired by the studies of outage prediction. For example,
Nateghi et al. in [12] found that the most critical variables
were the wind characteristics of the storms and the climatic
and geographic characteristics of the service area in outage
prediction. Guikema et al. in [13] used the Random Forest
method and Bayesian mass-balance multiscale model to build
a high-precision outage prediction model. However, it did not
consider the influence of microtopography. Reference [14]
constructed an ensemble decision tree regression consist-
ing of decision tree, Random Forest and boosted gradient
tree, and achieved a higher accuracy than other models in
predicting outages.

The aforementioned studies have demonstrated that multi-
source information and hybrid methodology are promis-
ing in predicting transmission line failure. In our previous
work [15], a combined model based on the equipment
operation information, meteorological information, and geo-
graphic information was established, but it only utilized mea-
sured maximum gust without considering the uncertainty
of predicted wind speed. This paper develops a holistic
framework for wind disaster warning of the transmission
line under typhoon disaster. We set up a hybrid predic-
tion model for transmission line damage probability calcu-
lation based on extreme value type I probability distribution,
Monte Carlo method and Random Forest method. The former
model in [15] only utilized certain maximum gust, which
was not applicable for scenario of predicted gust that con-
tained occurrence probability. Thus, in this paper, the extreme
value type I probability distribution is employed to calcu-
late the occurrence probability of a certain gust based on

the hypothesis that the maximum gusts at one point follow
extreme value type I probability distribution [16]. However,
the predicted maximum gust at one point is time-varying.
Therefore, the Monte Carlo method [17] is employed to carry
out stochastic simulation.

This enables the comprehensiveness, efficiency and appli-
cability in the warning of typhoon ‘‘Mangkhut’’ in Guang-
dong power grid, China. The main contributions of this paper
are as follows:

1) This paper develops a hybrid method to predict the
damage probability of transmission line under typhoon dis-
aster, which can provide decision support for the disaster
prevention and mitigation;

2) The extreme value type I probability distribution and
Monte Carlo method are used to simulate the wind field, and
the Random Forest is used to predict the damage probability
of transmission lines.

The rest of the paper is organized as follows: Section II
briefly introduces the technical framework for wind disaster
warning of transmission line damage. Section III describes
the construction of modules in the technical framework.
In Section IV, results are demonstrated through comparison
with single model Random Forest (RF) method under pre-
dicted wind field and measured wind field. We conclude the
paper in Section V.

II. TECHNICAL FRAMEWORK
To prevent and control the transmission line damage caused
by a typhoon, this paper constructs a technical framework
of wind disaster warning for transmission lines. It consists
of three functional modules: information acquisition module,
information processing module, and damage warning and
evaluation module. The framework is depicted in Fig. 1.

FIGURE 1. The technical framework of wind disaster warning of
transmission line.

III. CONSTRUCTION OF MODULES
A. CONSTRUCTION OF INFORMATION
ACQUISITION MODULE
The information acquisition module is designed to acquire
the information needed for damage warning of transmis-
sion lines, including meteorological information, equipment
operation information, microtopography information, traffic
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information, real-time damage information, etc. The
Information in Fig. 1 are provided by electric power research
institute, Guangdong power grid Co., Ltd. The wind speed
data have missing values and thus cannot be used directly in
the analysis. Therefore, this paper uses ArcGIS10.4.1 [18]
to collect and process information. For instance, we use
ArcGIS10.4.1 to perform inverse distance weight inter-
polation for gust and microtopography, and relevant data
are extracted to the equipment coordinate. Note that
ArcGIS10.4.1 is a geographic information system created
by ESRI (Environmental Systems Research Institute, Inc.),
of which 10.4.1 is the widely used version. Though the
transmission system is composed of the transmission tower,
insulator, fittings, guide line, and ground wire, this paper
mainly considers the transmission line damage involving
tower tilt and break.

B. CONSTRUCTION OF INFORMATION
PROCESSING MODULE
The information processing module is used for variable
marking, missing value filling, reference value conversion,
and standardization. Variable marking is to flag damage
status. Missing values are filled using the median. Then the
reference value conversion is used to convert gust wind speed
and tower design wind speed to 10 meters height.

According to the technical specification [16], the variation
of wind speed along with the height obeys the exponential
law shown as follows,

Vz = V1

(
z
z1

)α
, (1)

where Vz (m/s) is the wind speed at height z, V1 (m/s) is the
wind speed at height z1,α is the surface roughness coefficient,
and α can be selected using Table 1 according to [16].

TABLE 1. Surface roughness coefficient.

Meteorological stations are generally located in open
plains that the surface roughness is generally class B.

Normalize all the data x as

x∗ =
(x − xmin)

(xmax − xmin)
, (2)

where x∗ is the standardized feature, x is the original feature,
xmin and xmax are the minimum and maximum values of the
original feature.

C. CONSTRUCTION OF DAMAGE WARNING
AND EVALUATION MODULE
The damage warning and evaluation module establishes
the hybrid prediction model of transmission line damage
probability based on the extreme value type I probability
distribution, Monte Carlo method, and Random Forest
method.

In the reliability study, the extreme value type I proba-
bility distribution is more conservative, which is helpful to
make more reliable prevention and mitigation strategies [19].
It is demonstrated that amongst various machine learn-
ing techniques such as the Random Forest (RF) method,
Adaboost, Classification and Regression Tree (CART),
Gradient Boosted Regression Tree (GBRT), Support Vector
Machine (SVM) and Logistic Regression (LR), the RF
method often achieves better performance in predicting dam-
age caused by typhoon [15]. The Monte Carlo method is
one of the most accurate and effective method for solving
structural reliability problems [20]. Therefore, the extreme
value type I probability distribution, RF method and Monte
Carlo method are selected to construct the hybrid prediction
model. However, the traditional RFmethodwas utilized alone
in [15] and the wind speed was used only once, which ignores
the occurrence probability of the wind speed. Therefore,
their results are heuristic and inaccurate. This paper uses the
random wind field generated by the Monte Carlo method
and extreme value type I probability distribution to improve
the prediction of RF. The hybrid model in this paper utilizes
random wind samples from the extreme value type I proba-
bility distribution to get a convergent prediction that achieves
higher accuracy.

To be more specific, the extreme value type I probability
distribution and Monte Carlo method are used to simulate
the wind field. The RF method is used to predict the damage
probability of transmission line under each wind field. This
hybrid method takes uncertainty of predicted wind speed into
account and realizes weighted probability output based on
each prediction of RF method.

1) EXTREME VALUE TYPE I PROBABILITY DISTRIBUTION
The extreme value type I distribution (also known as the
Gumbel distribution) [21] is

F (x) = e−e
−a(x−u)

, (3)

where a is the scale parameter, u is the location parameter, and
a > 0, −∞ < u < +∞. The probability density distribution
function is

f (x) = a · e−a(x−u) · e−e
−a(x−u)

. (4)

The extreme value type I probability distribution and den-
sity function are depicted in Fig. 2 and Fig. 3, respectively.

There are three commonly used parameter estimation
methods: the method of moments, the Gumbel’s method and
the maximum likelihood method. It is proved that when the
sample size is small, Gumbel’s method is less effective [22].
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FIGURE 2. Extreme value type I probability distribution function.

FIGURE 3. Extreme value type I probability density function.

The forecasting data of wind speed in this paper is provided as
a matrix of 800 longitudes multiplying 600 latitudes and each
longitude-latitude pair is a wind speed point. Since the wind
speed series at each wind speed point is just 24, this paper
doesn’t use Gumbel’s method. As for accuracy, the method
of moments, Gumbel’s method, and maximum likelihood
method all have satisfactory parameter estimation results for
the extreme type I distribution [22]. However, the maximum
likelihood method and Gumbel’s method are more compu-
tationally expensive than the method of moments. Given
the advantages in both accuracy and calculation, this paper
chooses the method of moments [23] to estimate scale param-
eters and position parameters.

The method of moments estimation is based on the law
of large numbers, and the sample means converge to the
distributional mean as the number of observations increase.

Independent random variables X1, X2, . . . chosen accord-
ing to the probability distribution derived from the parameter
value θ andm are a real valued function, if k (θ) = Eθm (X1),
then

1
n

n∑
i=1

m (Xi)→ k (θ) as n→∞. (5)

The method of moments results from the choices
m (x) = xm. Write

µm = EXm = km (θ) . (6)

for the m-th moment.

The first moment (mathematical expectation) of the
extreme value type I distribution is:

E (x) =
y
a
+ u, (7)

where y ≈ 0.57722, the second moment (variance) is:

σ 2
=
π2

6a2
. (8)

Hence, obtain

a =
1.28255
σ

. (9)

u = E (x)−
0.57722

a
. (10)

According to (3), the relationship between wind speed xR
and recurrence period R is:

xR = u−
1
a
ln
[
ln
(

R
R− 1

)]
. (11)

The occurrence probability of the maximum value xP once
in N years is the guaranteed rate [16]:

PN = P (x > xP) = 1− P (x ≤ xP) = 1− F
(
xp
)
, (12)

where PN is the guaranteed rate.
This paper employs the Kolmogorov-Smirnov test [24]

to validate the accuracy of the method of moments for its
effectiveness on samples with small sizes.

For random variable x, construct a hypothesis test:

H0 : F (x) = F0 (x) , (13)

where F (x) is a distribution function and F0 (x) is the com-
pletely determined continuous distribution function.

Then construct the sample distribution function as

Fn (x) =


0 x < X(1)
i
n

X(i) < x < X(i+1), i = 1, 2, . . . , n

1 x ≥ X(n)

(14)

where X(1) ≤ X(2) ≤ · · · ≤ X(n).
Set the test statistic

Dn = sup
−∞<x<+∞

|Fn (x)− F0 (x)| . (15)

The supremum of Dn can be found at

di = max
{∣∣∣∣F0 (X(i))− i− 1

n

∣∣∣∣ , ∣∣∣∣ in − F0 (X(i))
∣∣∣∣} ,

i = 1, 2, . . . , n, (16)

where di is the maximum variance between the sample distri-
bution and the completely determined continuous distribution
function of X(i).

Therefore, the test statistic is written as

Dn = max {d1, d2, · · · , dn} . (17)

If F0 and Fn fit well, Dn should be small, otherwise Dn
is large. Specifically, the test rule is set under a significance
level α: if Dn > Dα,n, reject H0; otherwise, accept it.
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Calculate the rejection rate at level α of all wind speed
points to validate the accuracy of the method of moments as

RR (α) =
numα(rejected points)
num(wind speed points)

, (18)

where RR (α) is the rejection rate at significance α,
numα (rejected points) is the number of rejected points under
level α, num (wind speed points) is the account of wind speed
points.

2) MONTE CARLO METHOD
The techniques used in Monte Carlo simulations can be basi-
cally classified into two categories known as sequential and
non-sequential [17], [20] techniques. Because non-sequential
methods are typically easier to implement and require much
less CPU resource and memory as compared to sequential
methods [25], non-sequential Monte Carlo method is used in
this paper.

As for sample generation, this paper utilizes direct sim-
ulation [26] because the extreme value type I probability
distribution is specific function.

A system state is a combination of all component states,
and each component state can be sampled by the proba-
bility that the component appears in that state. When the
components are independent, this can be achieved simply by
sampling states of individual components to construct system
states [25]. The tower destruction mainly due to the wind
speed exceeding the design wind speed, so it is reasonable
to neglect the interactions between towers and assume their
damages are independent. And, since wind speed points are
matched to towers as introduced in 4) for damage calculation,
assuming that wind speed points are independent.

In this paper, each wind speed point is equivalent to a
component of the system and the component state conforms
to the extreme value type I probability distribution. All the
wind speed points amount to the system. The set of generated
wind speeds at all wind speed points, namely the whole wind
field, represents the system state.

3) RANDOM FOREST METHOD
Random Forest [27] is a statistical learning method based
on bagging [28], and its basic strategy is to adopt bootstrap
sampling. Given a dataset D, L sampling subsets containing l
training samples are randomly selected. Then a base learner
is trained based on each sampling subset, and finally all the
base learners are combined. Bagging generally adopts sim-
ple voting method for the classification and simple average
method for regression.

RF is an ensemble method consisting of the decision tree
by bagging [29]. It not only uses bootstrap to select training
samples randomly, but also selects features randomly when
partitioning a decision tree. In general, traditional decision
tree selects an optimal feature when splitting. In RF, for
each node of the decision tree, a subset containing m fea-
tures is randomly selected from the feature set of the node,
and then an optimal feature is selected from each subset

for partitioning. Therefore, the diversity of base learners of
RF comes not only from sample perturbation, but also from
feature perturbation. The generalization performance of the
final integration can be improved by increasing the difference
between individual learners [30].

4) TRANSMISSION LINE DAMAGE PROBABILITY
HYBRID PREDICTION MODEL
In order to calculate the transmission line damage probabil-
ity more accurately, this paper proposes a hybrid prediction
model of transmission line damage probability.

Firstly, the model utilizes the extreme value type I prob-
ability distribution to simulate the predicted wind field
distribution. The interval of wind speed point can reach
1km × 1km. Since the predicted wind speed is 10-minute-
averaged wind speed at 10 meters height, the maximum gust
wind speed at 10 meters height can be obtained by multiply-
ing the gust coefficient. The gust coefficient is the parameter
converted from average wind speed to instantaneous wind
speed, which is generally defined as the ratio between the gust
wind speed and the average wind speed at a time interval of
10min [31]. Assuming that the gust distribution at each wind
speed point obeys the extreme value type I probability distri-
bution. Based on (5)-(10), the forecast 24-hour wind speeds
of each point are used for parameter estimation. Each wind
speed point is fitted with an extreme value type I distribution,
to realize the simulation of predicted wind field distribution.

Although the forecast wind speeds data adopted by the
power sector are abundant, the engineering experience shows
that the prediction data within 24 hours before the typhoon
landfall achieve the best accuracy. Therefore, this paper uses
the hourly forecast data within 24 hours before the typhoon
landfall to fit the extreme value type I distribution. Then,
according to the geographical distance, the maximum value
type I distribution is matched for each tower, and each tower
is taken as a new wind speed point. Assuming that each wind
speed series is a vector of 24 elements, which contains hourly
forecasting data of 24 hours before the typhoon makes land-
fall. Use (7)-(10) to calculate scale parameters and position
parameters of each wind speed series.

The wind speed series is matched for each tower according
to the distance restriction:

|X1 − X2| + |Y1 − Y2| ≤ 0.01, (19)

where (X1,Y1) is the geographic coordinate of a wind speed
series, and (X2,Y2) is the geographic coordinate of a certain
power tower. If (X1,Y1) and (X2,Y2) satisfy (19), the wind
speed point is matched with this tower and the coordinate of
the tower is taken as a new wind speed point. Going through
all the wind speed points, a wind speed point satisfying the
restriction will be obtained. This completes the selecting
procedure of wind speed samples.

Secondly, the probability generation of random wind field
was realized based on Monte Carlo method. At each wind
speed point, M wind speed wij are generated randomly
according to uniform distribution, where i (i = 1, 2, . . . ,N)
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is the sequence of wind speed points, and j (j = 1, 2, . . . ,M)
is the sequence of random samples. At the same time, the
probability of each sample is calculated by using the well-
fitted extreme value type I probability distribution.

Finally, in each random wind field, use RF method to
calculate the damage probability f (xi|wi = wij) of the tower,
where xi is the feature vector at the wind speed point i, and wi
is the wind speed component. According to the Monte Carlo
method, the tower damage probability at the wind speed point
is equivalent to the average of M predicted results. The tower
damage probability at each wind speed point is Pi.
To obtain a stable and reliable prediction result, define:

Pi =
1
M

M∑
j=1

P
(
wij
)
f
(
xi
∣∣wi = wij

)
. (20)

The deviation of Pi at iteration M is defined as

εM =
1
M

M∑
j=1

P
(
wij
)
f
(
xi
∣∣wi = wij

)
−

1
M-1

M-1∑
j=1

P
(
wij
)
f
(
xi
∣∣wi = wij

)
, (21)

where εM is deviation of Pi between the iterations M and
M− 1, and M > 1.
The convergence restriction in this paper is defined as

|εM| < 0.01, (22)

and M is determined according to (22).
It shows that the hybrid prediction model of damage prob-

ability considers the uncertainty of wind speed prediction.
Damage probability is evaluated based on the confidence of
wind speed occurrence P(wij), and Monte Carlo method is
used for multiple simulations, to consider various possible
wind fields. Therefore, the hybrid prediction model of dam-
age probability is more effective than the single model RF
method. In addition, since the wind speed point has been
matched to the tower coordinates, the damage probability at
the wind speed point represents the transmission line damage
probability.

D. SIMILARITY ANALYSIS
In order to numerically compare the prediction results of
different models, this paper introduces four similarity indica-
tors: distribution similarity, magnitude similarity, cumulative
similarity, and synthetic similarity defined as follows.

1) DISTRIBUTION SIMILARITY
Distribution similarity indicates how close the geographic
distribution of predicted damage is to the actual damage. This
paper uses equation (20) in [15] to calculate the distribution
similarity between the predicted result and the actual damage
situation. The larger the distribution similarity is, the closer
the predicted damage distribution to the real situation.

2) MAGNITUDE SIMILARITY
The higher the damage probability is, the more likely the
damage is to occur. To formulate an accurate disaster preven-
tion and mitigation strategy, it is necessary to set a thresh-
old for the damage probability and take precautions actions.
In other words, when the predicted damage probability is
greater than the threshold, the damage is considered to occur,
and no damage is likely to occur when the predicted value is
less than the threshold.

To analyze the similarity between the predicted damage
magnitude under different probability thresholds and the
actual damage magnitude, the magnitude similarity of the
prediction model i under probability threshold Pj is defined
as:

MSi
(
Pj
)
=

1∣∣M −Mi
(
Pj
)∣∣ , (23)

where Pj denotes the probability threshold of level j, M
denotes the actual damage magnitude, Mi

(
Pj
)
denotes the

predicted damage magnitude of model i under Pj, and
MSi

(
Pj
)
is the damage magnitude similarity of model i

under Pj. The larger MSi
(
Pj
)
is, the closer the predicted

magnitude to the actual situation.

3) CUMULATIVE SIMILARITY
To evaluate the robustness to probability threshold, the cumu-
lative similarity is defined as:

CSi =
l∑
j=1

MSi
(
Pj
)
, (24)

where l is the number of probability threshold levels, and CSi
is the cumulative similarity of model i. The cumulative simi-
larity reflects the ability of models to maintain the prediction
accuracy under different probability thresholds. The larger
CSi is, the more robust the model to the probability threshold.

4) SYNTHETIC SIMILARITY
Damage prediction needs to focus on both the distribution and
magnitude of damage so that disaster prevention and mitiga-
tion decisions can be accurate without causing underestima-
tion or overestimation. Therefore, the synthetic similarity is
defined as the arithmetic mean of the distribution similarity
and cumulative similarity:

SSi =
DSi + CSi

2
, (25)

where SSi denotes the synthetic similarity of model i, andDSi
denotes the distribution similarity of model i. The higher the
SS value is, the closer the predicted damage distribution and
magnitude to the actual damage situation.

IV. CASE STUDY FOR TYPHOON MANGKHUT
A. OVERVIEW OF TYPHOON ‘‘MANGKHUT’’
At 5 pm on Sept. 16, 2018, tropical cyclone ‘‘Mangkhut’’
(strong typhoon) made landfall in Haiyan town, Taishan of
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FIGURE 4. The path of typhoon ‘‘Mangkhut’’ [32].

Guangdong province. The maximum wind near the center
was class 14 (45m/s, equivalent to 162km/h), and the mini-
mum pressure at the center was 955hPa. Its moving path is
shown in Fig. 4.

B. APPLICATION OF THE TECHNICAL FRAMEWORK
1) INFORMATION ACQUISITION MODULE
For the typhoon ‘‘Mangkhut’’, information acquired include
hourly forecast gusts within 24 hours before typhoon landfall,
the maximum gust measured at each of 1,340 monitoring
points, and microtopographic information. In order to visu-
ally display the distribution of predicted gusts and measured
gusts, Fig. 5 and Fig. 6 show the predicted and measured
maximum gust distribution.

FIGURE 5. Predicted maximum gust of ‘‘Mangkhut’’.

FIGURE 6. Measured maximum gust of ‘‘Mangkhut’’.

The predicted and measured maximum gust data come
from the power grid department, among which the pre-
dicted maximum gust data are from the forecast gust series
of 24 hours before landing because according to experience,
the forecast data of 24 hours before landing are the most
accurate. The measured maximum gusts were detected dur-
ing the passage of the typhoon. Fig. 5 shows that the wind
speed near the landing point is the maximum, and the wind
speed is decreasing from the coastal area to the inland area.
In Fig. 6, the maximum wind speed is also distributed near
the landing point, and shows an attenuation trend from the
coast to the inland. The gust distribution in both images are
roughly the same along the coast. However, the attenuation
trend in Fig. 6 is faster because each gust zone is narrower
than that in Fig. 5, and the non-uniformity in the attenuation
is more prominent. Fig. 7 shows the main network of 11 cities
in coastal area of Guangdong province.

FIGURE 7. Main networks along coast of Guangdong.

In Fig.7, main networks of 11 cities including Chaozhou,
Huizhou, Jiangmen, Jieyang, Maoming, Shantou, Shanwei,
Yangjiang, Zhanjiang, Zhongshan and Zhuhai are presented
except for those lacking operational information such as
Guangzhou, Dongguan, Shenzhen, Hongkong.

Geographic information data with 1km×1km resolution of
Guangdong province, including altitude, aspect, slope, slope
position, underlying surface, and surface roughness collected
by ArcGIS10.4.1 are shown in Fig. 8.

Fig. 8(a) shows the characteristics of the topography of
Guangdong province, which is high in the northwest and
low in the southeast. The distribution characteristics of slope
in Fig. 8(b) are consistent with altitude. Fig. 8(c) displays
the aspect distribution. Fig. 8(d) exhibits the slope posi-
tion distribution. Fig. 8(e) shows the underlying surface
distribution. Roughness in Fig. 8(f) is large in mountainous
areas with high altitude and in delta areas with dense urban
buildings. The slope direction is−1, indicating ‘‘flat without
slope’’. Definitions of slope position and underlying surface
are given in Table 2 and Table 3.

The damage information of main and distribution net-
works under four typhoons including ‘‘Rammasun’’ and
‘‘Kalmaegi’’ in 2014, ‘‘Mujigae’’ in 2015, and ‘‘Hato’’
in 2017 collected by the power department will be shown in
the following section.
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FIGURE 8. Geographical information distribution of Guangdong province:
(a) Altitude, (b) Slope, (c) Aspect, (d) Slope position, (e) Underlying
surface, (f) Surface roughness.

TABLE 2. Slope position interpretation table.

TABLE 3. Underlying surface interpretation table.

2) INFORMATION PROCESSING MODULE
First, the damage status of the tower is marked by classifi-
cation variables. In this paper, the damaged state is denoted
by 1, and the undamaged state is denoted by 0. Literature [33]
proves that the median can obtain a good confidence interval

TABLE 4. Features interpretation table.

in the missing value interpolation of multi-source data, and it
is easy to operate, so this paper uses the median to fill in the
missing value. All wind speeds are converted to the gust.

Convert wind speeds by using (1), and (2) is used for
standardization. Table 4 shows the variables and their defi-
nitions. After processed, the damage information under four
typhoons are used to train the model. For the large amount of
training data in Section III, we list some of them in Table 14
of Appendix.

3) DAMAGE WARNING AND EVALUATION MODULE
First, train the RF model by use of the training dataset
constructed by processed damage information under four
typhoons. The training dataset is composed by cases divided
into features and damage status. The features are shown
in Table 4, and the damage status of the tower is marked by
classification variables, which is 1 if the tower is damaged
and otherwise 0. The cases representing damage status 0 in
the dataset are randomly selected from historical record of
these four typhoons. Then utilize the training dataset to fit a
RF model [15].

Then, this paper generates wind speed randomly at each
wind point, and calculate its guaranteed rate by the extreme
value type I probability distribution. Then this paper puts
the generated wind speed into the RF method to predict
the damage probability. At last, this paper multiplies it with
the guaranteed rate to get the predicted damage probability.
Repeat above process until the probability converges.

We take a power tower at (116.9◦N , 23.643◦E) as an exam-
ple. Its feature vector denoted as [V′10, H , A, S, P, U , R, T ]
is shown in Fig. 9.

FIGURE 9. Features of the power tower at (116.9◦N , 23.643◦E).
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FIGURE 10. The 24-hour forecast wind speed series at (116.9◦N ,
23.643◦E).

The 24-hour forecasting wind speed series in the coordi-
nate of the illustrated power tower is shown in Fig. 10.

Scale parameter and location parameter of extreme value
type I probability distribution at this tower are a = 0.52072
and u = 14.269. To evaluate the estimation accuracy of the
method of moments, test the goodness of fit under 5 signifi-
cance levels at this wind speed point using (13)-(17), and the
result is shown in Table 5.

TABLE 5. The Hypothesis Test at (116.9◦ N, 23.643◦ E).

As shown in Table 5, there is Dn < D24,α at each value
of α. Therefore, accept the hypothesis that wind speed sam-
ples at (116.9◦N , 23.643◦E) obey the extreme value type I
probability distribution.

To calculate the damage probability, this paper first gen-
erates a wind speed using Monte Carlo method to get
w = 15.0024 m/s. Considering the occurrence possibility
of w, calculate its guaranteed rate P(w) = 0.49471. Then this
paper uses RF to calculate the damage probability regarding
the generated wind speed and obtain f (x|w = 15.0024) =
0.5192. However, this result should be amended by P(w),
i.e., P = P(w)∗f (x|w = 15.0024) = 0.4878. In order
to get a stable result, repeat the above process until (22)
is satisfied. As shown in Fig. 11, the deviation of average
value of P is reduced to 0.01 after 30 iterations, and it
further decreases as the iteration times increase. This paper
repeated the above process for all the power towers and found
that when the number of iterations exceeds 50, deviations
of all the average values are smaller than 0.01. Therefore,
this paper sets iteration times M = 50, and the result shows
P = 0.4409 in Fig. 11.
To evaluate the accuracy of the method of moments for

all wind speed points, calculate the rejection rate as shown
in Table 6 by (18). Table 6 shows that when α = 0.2,

FIGURE 11. The deviation of average value of P as iteration times
increase.

TABLE 6. The rejection rate of all wind speed points.

the rejection rate RR (α) = 0.0915. Therefore, all the wind
speed points fit well with the extreme value type I probability
distribution by using the method of moments, achieving an
accuracy of 90.85%. Therefore, the method of moments is
effective in parameter estimation for wind speed.

For purpose of damage calculation, we use the single
model RF method described in Section III to respectively
evaluate the damage situation of transmission lines in case
of predicted wind field and measured wind field.

First, the evaluation results in case of predicted wind field
are shown in Fig. 12.

FIGURE 12. Damage prediction by the single model RF method under
predicted wind field.

In Fig. 12, the diamond icons indicate the location of the
broken line accidents, and the pentagrams indicate the loca-
tion of damaged towers. The results show that transmission
lines with high damage probability are mainly located in
coastal areas, especially in areas with gust above 28.5 m/s
in Fig. 5. Furthermore, the predicted damage distribution
is consistent with the actual damage situation, the tower
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damage is still influenced bymodeling related features, so the
predicted location is close to the actual damaged location.
However, some areas in the upper left containing actual
damage do not have predicted result due to the lack of oper-
ation information including design wind speed and operation
time. The prediction of damage probability is high where no
damage occurs.

Specifically, the four indicators including distribution
similarity, the maximum magnitude similarity, cumulative
similarity and synthetic similarity are shown in Table 7.

TABLE 7. Indicators of single model RF method under predicted gust.

FIGURE 13. Damage prediction by single model RF method under
measured wind field.

Second, in case of measured wind field, Fig. 13 shows
damage probability evaluation results calculated by the single
model RF method. In Fig. 13, under the actual gust, the
predicted transmission line damage is mainly distributed in
coastal areas with gust above 28.5 m/s, and in consistence
with the actual damage distribution. The evaluation results
cover almost all the actual damaged areas, indicating that the
damage evaluation results under the actual gust are effective.
However, the predicted damage probability is still high where
no damage occurs in practice.

TABLE 8. Indicators of single model RF method under measured gust.

The four indicators including distribution similarity,
themaximummagnitude similarity, cumulative similarity and
synthetic similarity are shown in Table 8.

At last, this paper uses the hybrid prediction model to
predict damage probability of transmission lines according
to Section III. The predicted results are shown in Fig. 14.

FIGURE 14. Damage prediction by hybrid prediction model under
predicted wind field.

In Fig. 14, the damage probability of coastal areas is relatively
high. Except for maintaining the consistence with actual
damage distribution, the hybrid prediction model avoids or
reduces damage probability in areas without actual damage.
Therefore, areas with highest risk will be identified efficiently
than Fig. 12 and Fig. 13, indicating that the prediction result
of the hybrid prediction model is better. Compared with the
predicted results of the singlemodel RFmethod, the predicted
distribution of the hybrid prediction model of damage proba-
bility improves the probability accuracy.

The four indicators including distribution similarity,
themaximummagnitude similarity, cumulative similarity and
synthetic similarity are shown in Table 9.

TABLE 9. Indicators of the hybrid prediction model.

The hybrid prediction model uses the extreme value type I
probability distribution and Monte Carlo method to simulate
the random wind field. Under the premise of giving the
occurrence probability of wind field, the damage probability
of transmission lines under each wind field is calculated by
RF method, and the average damage effect is finally calcu-
lated. Compared with the hybrid prediction model, the single
model RF method only uses the maximum gust field during
the prediction period, and does not consider the occurrence
possibility of maximum gust at each wind speed point, so it
may lead to application limitations in actual use. In addi-
tion, in the actual situation, the measured wind speed data
are abundant, and only using the maximum gust data will
inevitably lead to the loss of effective information. Therefore,
the hybrid prediction model of damage probability has more
practical application value than the single model RF method,
especially in the early-warning and prevention and control of
medium-term and long-term typhoon disaster damage in the
power grid. Abundant historical typhoon monitoring data can
be used to fit the extreme value type I distribution, andMonte
Carlo method and RF method can help to predict the risk of
power grid damage in a specific time scale.

VOLUME 8, 2020 85047



H. Hou et al.: Hybrid Prediction Model for Damage Warning of Power Transmission Line Under Typhoon Disaster

The Monte Carlo method calculates the probability of sys-
tem states by combining components’ states, but the number
of samples will increase sharply as the number of components
increases. This paper does not need to calculate the risk indi-
cators at the system level, so the prediction problem is simpli-
fied to the component level, which greatly reduces the number
of sampling. For example, sampling 50 times is effective for
the prediction. The computation time is 3333.11 seconds with
computer configuration of Intel i5-4210U and 4-gigabyte of
memory, which is efficient to issue an alert at least 23 hours
in advance.

The comparisons between four indicators of three methods
are carried out in the following section.

4) SIMILARITY ANALYSIS
For comparing convenience, distribution similarity indicators
of the three predicted results are shown in Table 10.

TABLE 10. Comparison of distribution similarity.

Table 10 shows that the predicted damage distribution of
single model RF method under the measured gust is the clos-
est to the actual damage situation, which is 0.0152. However,
it is only 0.00985 under the predicted wind speed, indicat-
ing that the uncertainty of the predicted wind speed has a
great impact on the prediction results. After using the hybrid
prediction model, the distribution similarity is improved to
0.0107, which is 8.63% higher than the result of single model
RF method under predicted gust. It is demonstrated that the
extreme value type I probability distribution andMonte Carlo
method are effective to simulate typhoon wind field, and
the uncertainty of typhoon can be counted to improve the
accuracy of prediction results.

According to the statistics, Table 11 shows the damage
magnitude of the three predicted results under various prob-
ability thresholds.

The magnitude similarities of different probability thresh-
olds are shown in Fig. 15, which indicates that when the
threshold value is 0.7, the magnitude similarity of the hybrid
prediction model reaches to the highest. The magnitude sim-
ilarity of single model RF method under predicted and mea-
sured gust reach to the highest at 0.9, but far lower than the
hybrid predictionmodel, indicating that the predicted damage
magnitude of hybrid prediction model is more accurate.

In order to facilitate the comparison, power towers
related to broken lines are included into the actual damage
magnitude. The actual damage magnitude is 16, and the
cumulative similarities of the models are shown in Table 12.
It can be seen that the cumulative similarity of single model
RF method under predicted gust is 0.0471. In the case of
measured gust, the cumulative similarity of single model RF

TABLE 11. Damage statistics of different probability thresholds.

FIGURE 15. Magnitude similarity of different probability thresholds.

TABLE 12. Comparison of cumulative similarity.

method is only 0.0416. The cumulative similarity 0.347 of
the hybrid prediction model is the highest, and higher than the
twomethods by 636.73% and 734.13%, respectively. It shows
that the hybrid prediction model of damage probability is
more effective and can reduce the prediction error.

This paper compares the probability threshold for 3 meth-
ods simultaneously, intending to verify that there is a thresh-
old that can be identified from all thresholds in the hybrid
prediction model, which is critical to make a decision under
typhoon disasters. Although there are also most suitable
thresholds in the other two methods if they are studied indi-
vidually, their predicted magnitudes at 0.9 are neither obvi-
ous nor close to the actual damage magnitude. Therefore,
the hybrid prediction model is state-of-the-art model among
the three methods.

The synthetic similarities are shown in Table 13. It can
be seen that the synthetic similarity of the hybrid predic-
tion model is the best (0.179), higher than the previous two
methods by 528.07% and 530.28%, respectively. Therefore,
the model proposed in this paper is scientific and effective,
and can be applied to engineering practice.
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TABLE 13. Comparison of synthetic similarity.

TABLE 14. Partial damage information under four typhoons.

V. CONCLUSION
This paper establishes a technical framework for transmission
line damage warning under typhoon disasters. In the damage
warning and evaluation module, a hybrid prediction model of
transmission line damage probability based on the extreme
value type I distribution,Monte Carlo method and RFmethod

is proposed. Its application in typhoon ‘‘Mangkhut’’ is intro-
duced by a case study.

The comparison between the predicted results and the
actual damage distribution verifies the scientific nature and
practicability of the proposed hybrid prediction model of
transmission line damage probability. The hybrid prediction
model can promote distribution similarity by 8.63% than
single model RF method under predicted wind speed; the
hybrid prediction model has the best cumulative similarity;
the hybrid prediction model has the highest synthetic
similarity. Therefore, the hybrid prediction model of trans-
mission line damage probability can reduce the prediction
error while ensuring the prediction accuracy, which is more
practical for further risk indicator calculation.

According to the statistics of the tower damage reasons,
the potential factors such as the construction quality,
corrosion of the equipment caused by salt in the paddy field,
and accidental meteorology could not be ignored. However,
how to predict and quantify the potential risks caused by these
factors are the direction of future efforts.

APPENDIX
See Table 14.
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