
SPECIAL SECTION ON INTELLIGENT INFORMATION SERVICES

Received April 12, 2020, accepted April 25, 2020, date of publication May 6, 2020, date of current version May 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992478

Improved Jaya Algorithm for Flexible
Job Shop Rescheduling Problem
KAIZHOU GAO 1,3, FAJUN YANG 2, JUNQING LI 3,
HONGYAN SANG 3, AND JIANPING LUO 4
1Macau Institute of Systems Engineering, Macau University of Science and Technology, Taipa 999078, China
2School of Mathematics and Computer Science, University of Hagen, 58097 Hagen, Germany
3School of Computer, Liaocheng University, Liaocheng 252000, China
4College of Information Engineering, Shenzhen University, Shenzhen 518060, China

Corresponding author: Fajun Yang (fjyang1116@foxmail.com)

This work was supported in part by the Shandong Province Colleges and Universities Youth Innovation Talent Introduction and Education
Program, in part by the National Natural Science Foundation of China under Grant 61603169, Grant 61773192, Grant 61503170, and
Grant 61803192, in part by the Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, and in part by
the Alexander von Humboldt Foundation.

ABSTRACT Machine recovery is met from time to time in real-life production. Rescheduling is often a
necessary procedure to cope with it. Its instability gauges the number of changes to the existing scheduling
solutions. It is a key criterion to measure a rescheduling solution’s quality. This work aims at solving a
flexible job shop problem with machine recovery, which arises from the scheduling and rescheduling of
pump remanufacturing systems. In their scheduling phase, the objective is to minimize makespan. In their
rescheduling phase, two objectives are to minimize both instability and makespan. By introducing two novel
local search operators into the original Jaya algorithm, this work proposes an improved Jaya algorithm to
solve it. It performs experiments on ten different-scale cases of real-life remanufacturing environment. The
results show that the improved Jaya is effective and efficient for solving a flexible job shop scheduling and
rescheduling problems. It can effectively balance instability and makespan in a rescheduling phase.

INDEX TERMS Jaya algorithm, flexible job shop scheduling, machine recovery, remanufacturing, schedul-
ing and rescheduling.

I. INTRODUCTION
Production scheduling and task scheduling are extremely
crucial in industrial manufacturing [43], [46] and data cen-
ter [47], [48]. In many industrial fields, e.g., wafer fabrica-
tion, mechanical manufacturing, and automobile assembly
environment, flexible job shop problem (FJSP) is very com-
mon [3], and it consists of two parts: machine assignment
and operation sequencing [1], [2]. There are some constraints
existing in FJSP, which must be well solved in real-life envi-
ronment [4]. Many researchers have studied various issues
in FJSP, e.g., machine breakdowns [5], [6], fuzzy process-
ing time [7]–[9], resource and energy constraints [10], [11],
transportation time [12] and new job insertion [13]–[15].

For FJSP with machine breakdown, the studies [16]
and [17] propose Genetic algorithm (GA) related algorithms.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mengchu Zhou .

In [16], a hybrid GA is developed to solve FJSP with random
breakdown for robust and stable objectives. In [17], a GA
with special chromosome encoding to adapt the machine
disruption is proposed. It is compared with a right-shift
reschedule and a pre-scheduler to verify its competitiveness.
For the same problem and constraint, a rescheduling process
is performed in [18] by using route changing and right-shift
strategies. It handles right-shift scheduling, route changes
and idle time insertion. In [19], game theory is employed
to solve FJSP with machine breakdown of its objectives
to maximize robustness and stability. The objectives are
seen as two sides of the game and ideal Nash Equilib-
rium (NE) and near NE solution strategies are developed
to achieve the optimal solution. Based on this idea, one
NE searching algorithm is proposed and benchmarks with
machine breakdown are tested to verify the performance.
Ahmadi et al. [5] employ non-dominated ranking genetic
algorithm and non-dominated sorting genetic algorithm II to

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 86915

https://orcid.org/0000-0002-9252-6928
https://orcid.org/0000-0002-5522-2714
https://orcid.org/0000-0001-8440-9601
https://orcid.org/0000-0001-7476-5039
https://orcid.org/0000-0002-9777-1543
https://orcid.org/0000-0002-5408-8752


K. Gao et al.: iJaya Algorithm for Flexible Job Shop Rescheduling Problem

solve FJSP with machine breakdown with the objectives to
optimize makespan and stability.

In [45], the authors propose a novel machine group-
oriented match-up rescheduling approach for dynamic semi-
conductor manufacturing systems where unexpected events,
such as machine breakdown and due date changes could
occur. In [42], considering disruptive changes, such as the
arrival of new jobs or machine breakdowns, a rescheduling
architecture which bases on a predictive-reactive strategy is
designed and implemented.

Different strategies, e.g., possible machine break down
scheduling by using predictive strategy [20], time-varying
scheduling with machine failure rate by using stochastic strat-
egy [21], and machine preventive scheduling for maintenance
activities [22] are proposed to deal with dynamic FJSP. They
focus on machine failure while machine recovery is rarely
considered. When a schedule is executed in a shop, a recov-
ered machine can be selected for the operations that have not
been started.

It has been proved that FJSP is an NP-hard prob-
lem [23], [24] and recent years have witnessed a new trend,
i.e., using and improving meta-heuristics to solve FJSP. Parti-
cle swarm optimization [25], genetic algorithm [26], harmony
search algorithm [27], artificial bee colony algorithm [28],
memetic algorithm [29] and Jaya [13], [30] are among these
algorithms. Jaya represents a simple and novel one, which
is first developed in [32]. In comparison with existing algo-
rithms, we only need to consider the number of iterations and
population size in Jaya and there is not any other parameter.
Thus, Jaya is more simple and easier. It has been successfully
applied to solving many real-life problems since 2016 [32]–
[36].

FJSP exists in many practical engineering fields and it is
a topic with significance for theatrical research and value for
engineering practices. In this paper, FJSP from pump reman-
ufacturing with machine recovery is studied. In remanufac-
turing environment, rescheduling is necessary after machine
recovery to reduce makespan. Instability is a key metric to
measure rescheduling solutions’ quality [8], [12]. To solve the
concerned problem, Jaya is improved by using our proposed
local search strategies. Ten pump remanufacturing cases are
scheduled and rescheduled with machine recovery effectively
and efficiently.

The rest of the paper is organized as follows. The math-
ematical model of a flexible job shop scheduling and
rescheduling problem with machine recovery is described in
the next Section. Then, the improved Jaya (iJaya) algorithm
is developed and described in Section III. Section IV shows
the comparisons and analysis of experimental results. Finally,
the conclusions and some future research directions are given
in Section V.

II. PROBLEM MODELING
A. THE MODEL OF FJSP
In the FJSP, a job consists of several operations. One out of
multiple candidate machines is selected for one operation.

And each operation can be processed on just one machine
each time. The following assumptions and notations are used
to formulate FJSP.

1. Jobs are denoted as J = {Ji}, 1 ≤ i ≤ n, n is the
number of jobs and qi is the number of operations in
job i.

2. Candidate Machines are denoted as M = {Mk}, 1 ≤
k ≤ m,m is the number of machines.

3. Job Ji has a processing sequence with predetermined
priority. Oi,h indicates operation h of Ji.

4. One operation Oi,h is processed on a machine M (Oi,h)
without interruption, i.e., the set of selectable machines
for operation Oi,h. Pi,h,k indicates the processing time
of Oi,h on Mk ∈ M (Oi,h).
Decision variables

xi,h,k=

{
0, machine Mk is not selected for Oi,h
1, machine Mk is selected for Oi,h

(1)

5. ci,h indicates the Oi,h’s completion time, and the
makespan (the completion time of the last job) is one
objective to be optimized in this study,

CMax = max1≤i≤n ci, (2)

where ci is the completion time of job Ji.

B. RESCHEDULING AND INSTABILITY FOR MACHINE
RECOVERY
Machine recovery exists in a pump remanufacturing envi-
ronment [37]. For a shop floor that is executing a schedule,
when a recovered machine is added in a candidate machine
set at time t , the makespan could be reduced by rescheduling
the not-yet started operations. The start time of one job in a
rescheduling phase is t or the completion time of the oper-
ation being currently processed. The available time of one
machine in rescheduling stage is t or the completion time
of the on-going operation on this machine. The scheduling
problem in rescheduling stage becomes an FJSP with differ-
ent job start time (SJ ) and machine available time (SM ). In a
rescheduling phase, the start time of machine Mk and job Ji
are denoted as follows:

SMk =

{
t, No operation is being processed on Mk

ci,h, Operation Oi,his being processed on Mk at t

(3)

SJi =

{
t, No operation is being processed at t
ci,h, Operation Oi,h is being processed at t

(4)

In the above formulas, t is the time a recovered machine
becoming available. We show an example in Fig. 1 to explain
the problem more clearly. Fig. 1(a) shows one schedule
which is being implemented. Makespan is 14. At time 3, one
recovered machine M4 is added to the candidate machine
set. Fig. 1(b) presents a rescheduling solution after moving
some operations to M4. As a result, makespan is reduced to
12 even if the processing time of operations O2,2 and O1,3

86916 VOLUME 8, 2020



K. Gao et al.: iJaya Algorithm for Flexible Job Shop Rescheduling Problem

FIGURE 1. An example of rescheduling with a recovered machine.

become larger on M4 than those on M3 and M2. Of course,
if the processing time of operations on machine M4 is very
large, it is possible that the makespan cannot be reduced via
rescheduling phase.

Instability describes the percentage of changed operations
of the existing jobs on their respective processing machines
during rescheduling. In practical production, low instability
can reduce rescheduling cost, e.g., materials moving and
machine setting. Low instability can guarantee seamless con-
nection between current scheduling solution to rescheduling
solution. The work [13] defines instability as the percent-
age of changed operations, which are moved to different
machines in rescheduling. In this study, it is revised into:

yi,h =

{
0, Oi,h remains on Mk

1, Oi,h moves to M k ′
(5)

�i,h = m ∗
dk,k ′

dk,max
(6)

F =

∑n
i=1

∑qi
h=1 yi,h∗�i,h∑n
i=1 qi

(7)

where Mk and Mk ′ are operation Oi,h′s processing machines
in the executing schedule and rescheduling solution. �i,h is
Oi,h’s transfer coefficient fromMk toMk ′ . The distance from
Mk andMk ′ is dk,k ′ . The maximum distance fromMk to other
machines is dk,max , including the recovered one. qi denotes
the number of Ji’s operations in a rescheduling phase. The
goal is to optimize rescheduling solutions’ instability. It is
clear that fewer operation exchanging and operations moving
to a closer machinemean a higher stability or lower instability
of a solution in rescheduling. For example, in Fig. 1(b),
the result of makespan is 12, and it is less than 14, which is the
makespan result in Fig. 1(a). Operations O2,2 and O1,3 from
M3 and M2 are moved to M4. In Fig. 1(b), the rescheduling
solution’s instability relates to the physical distances fromM4
to M3 and M2, respectively.

C. BI-OBJECTIVE FUNCTION
An optimization problem with multiple objectives can be
defined as follows:

Minimize F (X) = (f1 (x) , f2 (x) , · · · , fm (x))T

Subject to X ∈ � (8)

where function F : �→ ∧ includes multiple objectives and
a decision vector x = (x1, x1, · · · , xn) belongs to a decision
space �. In this study, f1 = Cmax is the makespan presented

in Part A of Section II while f2 = F is the instability of a
rescheduling solution.

A bi-objective function is:

Minimize F (X) = (f1 (x) , f2 (x))T (9)

Pareto domination is a widely used strategy that com-
pares and ranks all the solutions for optimization problems
with two objectives. For example, there are two solutions
x = (x1, x1, · · · ,xn) and x′=(x′1, x

′

2, · · · ,x
′
n). x ≺x

′ (x dom-
inates x′) if and only if ∀p ∈ {1, 2} ,fp(x) ≤fp(x′) and ∃ q ∈
{1, 2} ,fq(x) <fq(x′). In the Pareto set, solution x is an optimal
one if no other solution x′ dominates x. The collection of all
Pareto optimal solutions is a Pareto optimal set and the Pareto
front is the corresponding image in the objective space. There
is an archive set (AS) employed for storing non-dominated
solutions. In the optimizing process, the dominated solutions
are replaced by the new one in AS.

III. IMPROVED JAYA ALGORITHM
A. JAYA
In Sanskrit, the meaning of word ‘‘Jaya’’ is victory. By reach-
ing the best solution, the applied strategy in Jaya always
tries to become victorious [32]. Its first step is to initialize a
population with its size being NP. Then, the solutions with the
worst and the best results are selected to update the population
in the following generation. The worst solution and the best
one are updated in every generation. The updating method for
new generated solutions is defined in the following formula,
for i ∈ {1, 2, . . . ,NP}:

Xi (t+1)=Xi (t)+r1 (XB (t)−Xi (t))+r2 (XW (t)−Xi (t))

(10)

where Xi(t) is the current position and Xi(t+1) is the updated
position. XB(t) and XW (t) are the best and worst solutions,
respectively. t is an iteration index and r1 and r2 are uni-
formly distributed random numbers in range [0, 1]. During
its updating, if the objective function value of Xi(t) is worse
than that of Xi(t + 1), then Xi(t + 1) is accepted and replaces
Xi(t). At the end of each generation, all the remained solutions
and updated solutions are treated as the initial solutions in
the following iteration. The procedures of Jaya are shown as
follows:

Jaya algorithm
S1. Initialization
S2. Extract the best and worst solutions
S3. Modify solutions by using the best and worst ones
S4. If the new solution is better than the original one, accept

it and replace the original one; else, keep the later.
S5. If the stop criterion is satisfied, output the optimal

solution and objective function values; else, go to S3.

B. IMPROVEMENT STRATEGIES
In the initialization phase, the encoding and decoding strate-
gies in [13] are employed to represent the solution. In a

VOLUME 8, 2020 86917



K. Gao et al.: iJaya Algorithm for Flexible Job Shop Rescheduling Problem

solution, one element includes three values, the number of
job, the number of operation and the number of the machine
processing this operation. This encoding strategy makes it
easy to change processing machine in designing local search
algorithm. The best solution obtained in a scheduling phase
is employed as an initial solution. For this initial solution,
makespan and instability in a rescheduling phase are the
best result of the scheduling phase and zero, respectively.
The non-dominated solutions in rescheduling should have
smaller makepsan values but larger instability values. Oth-
erwise, the solutions are dominated by the above initial
solution.

Since a flexible job shop scheduling and rescheduling
problem is NP-hard, we propose two local search oper-
ators to improve the exploitation performance of Jaya,
resulting an improved Jaya (iJaya). One is for makespan
while another for instability. In a rescheduling phase,
they are integrated as an ensemble to improve the con-
vergence speed of Jaya. Two operators are presented as
follows.

The local search heuristic for Makespan:
For a solution X with makespan CMax
Select machine M and find the last operation Oi,h on
IfOi,h can be processed on the recoverymachineMr ,Mr 6=

M
a. Move Oi,h to Mr and obtain X ′

b. If the C ′Max < CMax ,
c. Accept X ′ and replace X
d. Break the local search operator
e. Endif

Else
Do

On machine M , select former operation O′, and for
job i, the former operation O′′ is selected.
If operation Oi,h’s start time is the same as
O′’s and/or O′′’s completion time

Implement Steps a to e for O′ or / and O′′,
Break this heuristic

Endif
While (existing O′ or / and O′′)

Endif

This heuristic starts from the last competed operation and
is executed just on the operations in a critical path. The com-
putation time for local search is very short and this operator is
stopped once the objective value becomes better. Based on the
procedures of the local search for Makespan, the complexity
isO(Log2 (c)), where c is the count of operations onMachine
M . The next one for instability focuses on the operations
having more than one candidate machines. It moves the oper-
ations to machines with smaller physical distance to reduce
instability. Since all operations on Machine Mk are executed
the local search for instability, the complexity is O(c), where
c is the count of operations on Mk .

Local search for instability objective:
Select one machine Mk randomly,
For each operation Oi,h on Mk
If two or more candidate machines can process Oi,h

Find a different machine candidate Mk ′

If dk ′,f < dk,f // Mf is Oi,h’s former processing
machine

Move Oi,h to Mk ′

Break the local search operator
Endif

Endif
Endfor

TABLE 1. Makespan results by six algorithms.

C. FRAMEWOR OF iJaya
The framework of iJaya is shown in Fig. 2. Two local search
operators are employed to improve the exploitation perfor-
mance in iJaya. In a scheduling phase, iJaya obtains the
best solutions for makespan. When a machine is recovered,
the rescheduling phase is activated. The best solution in a
scheduling phase is used to calculate the start time of jobs
and available times of machines for rescheduling. Then, iJaya
optimizes the bi-objective function in (9). Finally, iJaya out-
puts solutions which are not dominated by others in AS for
instability and makespan.

IV. EXPERIMENTS AND DISCUSSIONS
A. EXPERIMENTAL SETUP
To solve a flexible job shop scheduling and rescheduling
problem by iJaya, we run computer experiments, analyze and
discuss the results. Ten different-scale cases coming from real
orders of a pump remanufacturing company are solved. Ten
cases’ scales are from 5 jobs, 23 operations and 4 machines
to 20 jobs, 400 operations and 20 machines. For one instance,
there is only one recovered machine. The desensitization data
of the 10 cases are shown in the Supplemental File for readers.
The recovery time of the first two cases is 10, and that of the
third and fourth cases is 15. For other cases, the recovery time
is 30.

iJaya is coded in C++ and run on an Intel 3.20 GHz
desktop computer with 8 GB memory. First, it is compared
to some existing algorithms for five benchmark cases of
FJSP. Then, it is employed for solving 10 remanufacturing

86918 VOLUME 8, 2020



K. Gao et al.: iJaya Algorithm for Flexible Job Shop Rescheduling Problem

FIGURE 2. iJaya for scheduling and rescheduling flexible job shop with machine recovery.

TABLE 2. Makespan results by Jaya.

cases. Finally, iJaya is employed for rescheduling formachine
recovery. For the benchmark FJSP cases, the population size
is set to 50 while the maximum generation count is set to

1000. For flexible job shop rescheduling, the size of popula-
tion and the maximum generation number are 50 and 10000,
respectively. All experiments are executed 30 runs.

B. COMAPARING EXISTING ALGORITHMS
To test the performance of iJaya, five benchmark cases for
FJSP are solved. iJaya is compared to five competitive meta-
heuristics, including a simple and effective evolutionary algo-
rithm (SEA), Tabu search with neighborhood local search
(TSPCB), two-stage artificial bee colony algorithm (TABC),
and knowledge-based ant colony optimization (KBACO)
[38]. Table 1 shows the results of makespan of all algo-
rithms. All algorithms can find the best results for five Kacem
instances. The second last column of Table 1 shows the
standard deviation (SD) of makespan results over 30 repeats
of each case by iJaya. Since these cases are FJSP benchmarks,
we just show the results of the compared algorithms. For
iJaya, both average makespan and running time (Agv_t) over
30 runs are recorded. Based on the comparison results with
the existing algorithms, iJaya is an effective and efficient
algorithm for scheduling flexible job shop problems. Hence,
iJaya is employed for solving scheduling and re-scheduling

VOLUME 8, 2020 86919



K. Gao et al.: iJaya Algorithm for Flexible Job Shop Rescheduling Problem

FIGURE 3. Pareto results obtained by three compared algorithms (the results in blue color are obtained by NSGAII, the results in green color are gotten by
ISFLA, and the results in red color are received by iJaya, respectively).

flexible job shop problems with machine recovery in the next
experiments.

C. iJaya FOR SCHEDULING AND RESCHEDULING
To solve 10 cases from remanufacturing, Table 2 shows the
makespan results by iJaya. For each case, the maximum
results (Max), the average results (Ave), and the minimum
results (Min) in 30 runs are recorded. In this study, as the ratio
of the SD over the average value, the coefficient of variation
(CV) is employed to replace of the SDmeasurement. The aim
is to show the robustness and stability of iJaya for scheduling
and rescheduling flexible job shop problems. From Table 2,
the CV values of makespan are less than 7%. It means
that iJaya has high robustness and stability for 10 remanu-
facturing cases. For each case, the solution with the mini-
mum makespan value is selected to execute on a shop floor.

When a recovery machine is added to the candidate machine
set, the rescheduling phase is activated, to optimize the bi-
objective function based on the presently executed schedules.

In a rescheduling phase, iJaya is compared with two
multi-objective optimization algorithms, i.e., a classical
multi-objective algorithm, NSGAII [39], and a new pub-
lished algorithm, improved shuffled frog leaping algorithm
(ISFLA) [40]. For the real-life FJRP cases, nobody knows
the actual Pareto front (PF) since the high complexity.
In our work, its approximation is received by comparing
non-dominated solutions obtained by three algorithms. The
inverted generational distance (IGD) [12], [41] is a widely
used performance indicator, which is employed to verify
the competitiveness of non-dominated solutions gotten by
three compared algorithms. The lower IGD values mean
closer distances to the PF. In PF, the solutions’ proportion

86920 VOLUME 8, 2020



K. Gao et al.: iJaya Algorithm for Flexible Job Shop Rescheduling Problem

TABLE 3. IGD values for Makespan vs. instability.

TABLE 4. Proportion comparisons for Makespan vs instability.

metric [12], [41] obtained by all algorithms is calculated. The
larger proportion means better performance. The aim is to
obtain highly competitive non-dominated solutions.

For instability and makespan objectives, the Pareto results
gotten by three compared algorithms are counted. The IGD
and proportion values of results are recored in TABLEs 3 and
4. According to TABLE 3, the IGD results by three algorithms
for first two small-scale cases are zero. It means that three
algorithms can find the same non-dominated solutions, which
are included in PF. For cases from 3 to 10, the IGD values
via iJaya are smallest (0.00), which are included in PF. The
results via NSGAII, and ISFLA are non-zero. Hence, iJaya
has the best competitiveness among three algorithms for IGD
and has best performance for rescheduling the FJSP with
instability and makespan objectives.

In TABLE 4, θ is the number of non-dominated solutions
in PF or obtained by all compared algorithms. It is obvious
that the proportion values of NSGAII are non-zero (100, 100,

and 20) for the three two cases and zero for cases 4 to 10.
NSGAII can only find Pareto optimal solutions for the first
two cases and just partial Pareto optimal solutions for the
third case. ISFLA can also find Pareto optimal solutions for
the first two cases. ISFLA obtains a part of Pareto optimal
solutions for the third and fourth cases and the proportion
values of these two cases are 50% and 25%. For all cases,
the proportion values of iJaya are 100%. It means that iJaya
obtains all Pareto solutions. To show the difference of three
algorithms more clearly, the Pareto non-dominated solutions
by all compared algorithms for all cases are shown in Fig. 3.
It can be seen from Fig.3 that the non-dominated results by
iJaya are better than those by NSGAII and ISFLA, especially
for the instability objective.

V. CONCLUSION AND FUTURE WORKS
This work studies on scheduling and rescheduling flexible
job shop problems with machine recovery. An improved Jaya
algorithm is developed. The ensemble of two local search
operators can improve the convergence speed of iJaya. One
bi-objective function with instability and makespan is min-
imized. The superior performance of the proposed iJaya is
verified through comparing with two existing algorithms.

In the future, we plan to

1. Improve Jaya’s performance and develop more swarm
and evolutionary algorithms for scheduling and
rescheduling flexible job shop problems;

2. Consider more scheduling and rescheduling problems
with constraints, e.g., environments with disruptions
[42], Multiresource Constraints [43].

3. Research on more scheduling and rescheduling prob-
lems in some special fields, e.g., semiconductor manu-
facturing [44], [45] and steel production [46]

4. Develop new local search heuristics based on problem
features and ensembles of different local searchers to
improve the performance of algorithms.

5. Extend Jaya algorithm to more scheduling and opti-
mization problems, e.g., task scheduling in data
center [47].

REFERENCES
[1] P. Brucker and R. Schlie, ‘‘Job-shop scheduling with multi-purpose

machines,’’ Computing, vol. 45, no. 4, pp. 369–375, Dec. 1990.
[2] M. R. Garey, D. S. Johnson, and R. Sethi, ‘‘The complexity of flowshop and

jobshop scheduling,’’Math. Oper. Res., vol. 1, no. 2, pp. 117–129, 1976.
[3] X. Guo, S. Liu, M. Zhou, and G. Tian, ‘‘Disassembly sequence opti-

mization for large-scale products with multiresource constraints using
scatter search and Petri nets,’’ IEEE Trans. Cybern., vol. 46, no. 11,
pp. 2435–2446, Nov. 2016.

[4] H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li, and J. Li, ‘‘TTSA: An effective
scheduling approach for delay bounded tasks in hybrid clouds,’’ IEEE
Trans. Cybern., vol. 47, no. 11, pp. 3658–3668, Nov. 2017.

[5] E. Ahmadi, M. Zandieh, M. Farrokh, and S. M. Emami, ‘‘A multi objective
optimization approach for flexible job shop scheduling problem under
random machine breakdown by evolutionary algorithms,’’ Comput. Oper.
Res., vol. 73, pp. 56–66, Sep. 2016.

[6] R. Buddala and S. S.Mahapatra, ‘‘Two-stage teaching-learning-based opti-
mization method for flexible job-shop scheduling under machine break-
down,’’ Int. J. Adv. Manuf. Technol., vol. 100, nos. 5–8, pp. 1419–1432,
Feb. 2019.

VOLUME 8, 2020 86921



K. Gao et al.: iJaya Algorithm for Flexible Job Shop Rescheduling Problem

[7] J. Lin, ‘‘Backtracking search based hyper-heuristic for the flexible job-shop
scheduling problem with fuzzy processing time,’’ Eng. Appl. Artif. Intell.,
vol. 77, pp. 186–196, Jan. 2019.

[8] L. Sun, L. Lin, M. Gen, and H. Li, ‘‘A hybrid cooperative coevolution
algorithm for fuzzy flexible job shop scheduling,’’ IEEE Trans. Fuzzy
Syst., vol. 27, no. 5, pp. 1008–1022,May 2019, doi: 10.1109/TFUZZ.2019.
2895562.

[9] B. Liu, Y. Fan, and Y. Liu, ‘‘A fast estimation of distribution algorithm for
dynamic fuzzy flexible job-shop scheduling problem,’’ Comput. Ind. Eng.,
vol. 87, pp. 193–201, Sep. 2015.

[10] L. Gao and Q.-K. Pan, ‘‘A shuffled multi-swarm micro-migrating birds
optimizer for a multi-resource-constrained flexible job shop scheduling
problem,’’ Inf. Sci., vol. 372, pp. 655–676, Dec. 2016.

[11] J. Cheng, F. Chu, and M. Zhou, ‘‘An improved model for parallel machine
scheduling under time-of-use electricity price,’’ IEEE Trans. Autom. Sci.
Eng., vol. 15, no. 2, pp. 896–899, Apr. 2018.

[12] J. F. Tang, C. K. Zeng, and Z. D. Pan, ‘‘Auction-based cooperation mecha-
nism to parts scheduling for flexible job shop with inter-cells,’’ Appl. Soft
Comput., vol. 49, pp. 590–602, Dec. 2016.

[13] K. Z. Gao, F. J. Yang, M. C. Zhou, Q. K. Pan, and P. N. Sugnathan,
‘‘Flexible job-shop rescheduling for new job insertion by using discrete
Jaya algorithm,’’ IEEE Trans. Cybern., vol. 49, no. 5, pp. 1944–1955,
May 2019.

[14] K. Z. Gao, P. N. Suganthan, T. J. Chua, C. S. Chong, T. X. Cai, and
Q. K. Pan, ‘‘A two-stage artificial bee colony algorithm scheduling flexible
job-shop scheduling problem with new job insertion,’’ Expert Syst. Appl.,
vol. 42, no. 21, pp. 7652–7663, Nov. 2015.

[15] K. Z. Gao, P. N. Suganthan, Q. K. Pan, M. F. Tasgetiren, and A. Sadollah,
‘‘Artificial bee colony algorithm for scheduling and rescheduling fuzzy
flexible job shop problem with new job insertion,’’ Knowl.-Based Syst.,
vol. 109, pp. 1–16, Oct. 2016.

[16] N. Al-Hinai and T. Y. ElMekkawy, ‘‘Robust and stable flexible job shop
scheduling with random machine breakdowns using a hybrid genetic algo-
rithm,’’ Int. J. Prod. Econ., vol. 132, no. 2, pp. 279–291, Aug. 2011.

[17] Y. M. Wang, H. L. Yin, and K. D. Qin, ‘‘A novel genetic algorithm for
flexible job shop scheduling problems with machine disruptions,’’ Int.
J. Adv. Manuf. Technol., vol. 68, nos. 5–8, pp. 1317–1326, Sep. 2013.

[18] W. He and D.-H. Sun, ‘‘Scheduling flexible job shop problem subject to
machine breakdown with route changing and right-shift strategies,’’ Int.
J. Adv. Manuf. Technol., vol. 66, nos. 1–4, pp. 501–514, Apr. 2013.

[19] D.-H. Sun, W. He, L.-J. Zheng, and X.-Y. Liao, ‘‘Scheduling flexible
job shop problem subject to machine breakdown with game theory,’’ Int.
J. Prod. Res., vol. 52, no. 13, pp. 3858–3876, Jul. 2014.

[20] M. Nouiri, A. Bekrar, A. Jemai, D. Trentesaux, A. C. Ammari, and S. Niar,
‘‘Two stage particle swarm optimization to solve the flexible job shop pre-
dictive scheduling problem considering possible machine breakdowns,’’
Comput. Ind. Eng., vol. 112, pp. 595–606, Oct. 2017.

[21] H. Mokhtari and M. Dadgar, ‘‘Scheduling optimization of a stochastic
flexible job-shop system with time-varying machine failure rate,’’Comput.
Oper. Res., vol. 61, pp. 31–45, Sep. 2015.

[22] E. Moradi S. M. T. F. Ghomi, and M. Zandieh, ‘‘An efficient architecture
for scheduling flexible job-shopwithmachine availability constraints,’’ Int.
J. Adv. Manuf. Technol., vol. 51, pp. 325–339, Apr. 2010.

[23] A. S. Jain and S. Meeran, ‘‘Deterministic job-shop scheduling: Past,
present and future,’’ Eur. J. Oper. Res., vol. 113, no. 2, pp. 390–434,
Mar. 1999.

[24] A. Baykasoglu, ‘‘Linguistic-based meta-heuristic optimization model
for flexible job shop scheduling,’’ Int. J. Prod. Res., vol. 40, no. 17,
pp. 4523–4543, Jan. 2002.

[25] T. Jamrus, C.-F. Chien, M. Gen, and K. Sethanan, ‘‘Hybrid particle
swarm optimization combined with genetic operators for flexible job-shop
scheduling under uncertain processing time for semiconductormanufactur-
ing,’’ IEEE Trans. Semicond. Manuf., vol. 31, no. 1, pp. 32–41, Feb. 2018.

[26] M. T. Jensen, ‘‘Generating robust and flexible job shop schedules
using genetic algorithms,’’ IEEE Trans. Evol. Comput., vol. 7, no. 3,
pp. 275–288, Jun. 2003.

[27] K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X. Cai, and
C. S. Chong, ‘‘Discrete harmony search algorithm for flexible job shop
scheduling problem with multiple objectives,’’ J. Intell. Manuf., vol. 27,
no. 2, pp. 363–374, Apr. 2016.

[28] M. Tao, Q. K. Pan, and H. Y. Sang, ‘‘A hybrid artificial bee colony
algorithm for a flexible job shop scheduling problem with overlapping in
operations,’’ Int. J. Prod. Res., vol. 56, no. 16, pp. 5278–5292, 2018.

[29] Y. Yuan and H. Xu, ‘‘Multiobjective flexible job shop scheduling using
memetic algorithms,’’ IEEE Trans. Autom. Sci. Eng., vol. 12, no. 1,
pp. 336–353, Jan. 2015.

[30] K. J. Yu, B. Y. Qu, C. T. Yue, S. L. Ge, X. Chen, and J. Liang,
‘‘A performance-guided JAYA algorithm for parameters identification of
photovoltaic cell and module,’’ Appl. Energy, vol. 237, pp. 241–257,
Mar. 2019.

[31] R. V. Rao, D. P. Rai, and J. Balic, ‘‘A multi-objective algorithm for
optimization of modern machining processes,’’ Eng. Appl. Artif. Intell.,
vol. 61, pp. 103–125, May 2017.

[32] R. Rao, ‘‘Jaya: A simple and new optimization algorithm for solving
constrained and unconstrained optimization problems,’’ Int. J. Ind. Eng.
Comput., vol. 7, no. 1, pp. 19–34, 2016.

[33] C. Pradhan and C. N. Bhende, ‘‘Online load frequency control in wind
integrated power systems using modified Jaya optimization,’’ Eng. Appl.
Artif. Intell., vol. 77, pp. 212–228, Jan. 2019.

[34] S. O. Degertekin, L. Lamberti, and I. B. Ugur, ‘‘Sizing, layout and topology
design optimization of truss structures using the Jaya algorithm,’’Appl. Soft
Comput., vol. 70, pp. 903–928, Sep. 2018.

[35] C. Huang, L. Wang, R. S.-C. Yeung, Z. Zhang, H. S.-H. Chung, and
A. Bensoussan ‘‘A prediction model-guided Jaya algorithm for the PV
system maximum power point tracking,’’ IEEE Trans. Sustain. Energy,
vol. 9, no. 1, pp. 45–55, Jan. 2018.

[36] S. P. Singh, T. Prakash, V. P. Singh, and M. G. Babu, ‘‘Analytic hierarchy
process based automatic generation control of multi-area interconnected
power system using Jaya algorithm,’’ Eng. Appl. Artif. Intell., vol. 60,
pp. 35–44, Apr. 2017.

[37] R. C. Savaskan, S. Bhattacharya, and L. N. Van Wassenhove, ‘‘Closed-
loop supply chain models with product remanufacturing,’’ Manage. Sci.,
vol. 50, no. 2, pp. 239–252, Feb. 2004.

[38] T.-C. Chiang and H.-J. Lin, ‘‘A simple and effective evolutionary algorithm
for multiobjective flexible job shop scheduling,’’ Int. J. Prod. Economy,
vol. 141, no. 1, pp. 87–98, Jan. 2013.

[39] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[40] J. Luo, Y. Yang, Q. Liu, X. Li, M. Chen, and K. Gao, ‘‘A new
hybrid memetic multi-objective optimization algorithm for multi-
objective optimization,’’ Inf. Sci., vols. 448–449, pp. 164–186,
Jun. 2018.

[41] K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X. Cai, and
C. S. Chong, ‘‘Pareto-based grouping discrete harmony search algorithm
for multi-objective flexible job shop scheduling,’’ Inf. Sci., vol. 289,
pp. 76–90, Dec. 2014.

[42] P. Valledor, A. Gomez, P. Priore, and J. Puente, ‘‘Solving multi-objective
rescheduling problems in dynamic permutation flow shop environments
with disruptions,’’ Int. J. Prod. Res., vol. 56, no. 19, pp. 6363–6377,
Oct. 2018.

[43] X. Guo, M. Zhou, S. Liu, and L. Qi, ‘‘Lexicographic multiobjective
scatter search for the optimization of sequence-dependent selective
disassembly subject to multiresource constraints,’’ IEEE Trans.
Cybern., early access, Mar. 27, 2019, doi: 10.1109/TCYB.2019.
2901834.

[44] C. Pan, M. Zhou, Y. Qiao, and N. Wu, ‘‘Scheduling cluster tools
in semiconductor manufacturing: Recent advances and challenges,’’
IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 586–601,
Apr. 2018.

[45] F. Qiao, Y. Ma, M. Zhou, and Q. Wu, ‘‘A novel rescheduling method
for dynamic semiconductor manufacturing systems,’’ IEEE Trans. Syst.,
Man, Cybern. Syst., vol. 50, no. 5, pp. 1679–1689, May 2020, doi: 10.
1109/TSMC.2017.2782009.

[46] Z. Zhao, S. Liu, M. Zhou, X. Guo, and L. Qi, ‘‘Decomposition method for
new single-machine scheduling problems from steel production systems,’’
IEEE Trans. Autom. Sci. Eng., early access, Dec. 30, 2019, doi: 10.1109/
TASE.2019.2953669.

[47] H. Yuan, J. Bi, M. Zhou, and A. C. Ammari, ‘‘Time-aware multi-
application task scheduling with guaranteed delay constraints in green data
center,’’ IEEE Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 1138–1151,
Jul. 2018.

[48] H. Yuan, J. Bi, M. Zhou, Q. Liu, and A. C. Ammari, ‘‘Biob-
jective task scheduling for distributed green data centers,’’ IEEE
Trans. Autom. Sci. Eng., early access, Jan. 7, 2020, doi: 10.1109/
TASE.2019.2958979.

86922 VOLUME 8, 2020

http://dx.doi.org/10.1109/TFUZZ.2019.2895562
http://dx.doi.org/10.1109/TFUZZ.2019.2895562
http://dx.doi.org/10.1109/TCYB.2019.2901834
http://dx.doi.org/10.1109/TCYB.2019.2901834
http://dx.doi.org/10.1109/TSMC.2017.2782009
http://dx.doi.org/10.1109/TSMC.2017.2782009
http://dx.doi.org/10.1109/TASE.2019.2953669
http://dx.doi.org/10.1109/TASE.2019.2953669
http://dx.doi.org/10.1109/TASE.2019.2958979
http://dx.doi.org/10.1109/TASE.2019.2958979

	INTRODUCTION
	PROBLEM MODELING
	THE MODEL OF FJSP
	RESCHEDULING AND INSTABILITY FOR MACHINE RECOVERY
	BI-OBJECTIVE FUNCTION

	IMPROVED JAYA ALGORITHM
	JAYA
	IMPROVEMENT STRATEGIES
	FRAMEWOR OF iJaya

	EXPERIMENTS AND DISCUSSIONS
	EXPERIMENTAL SETUP
	COMAPARING EXISTING ALGORITHMS
	iJaya FOR SCHEDULING AND RESCHEDULING

	CONCLUSION AND FUTURE WORKS
	REFERENCES

