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ABSTRACT Although DCN-based super-resolution (DCN-SR) techniques have shown impressive perfor-
mance, the working mechanism has not been completely understood and DCN-SR methods still produce
some artefacts. In this paper, we analyze the working mechanisms of DCN-SR methods. We derive
mathematical formulations of the DCN-SR methods and provide some experimental analyses, which show
that the effective receptive fields of the DCN-SR methods are considerably smaller than the theoretical
receptive fields. Based on the mathematical formulations, experiments were performed. The results indicates
that current DCN-SR methods may have some fundamental problems and new types of DCN structures are
needed for reliable super-resolution performance.

INDEX TERMS Deep convolutional networks, effective receptive field, mathematical formulation of DCN,
ReLU, super-resolution.

I. INTRODUCTION
Recently, deep convolutional networks (DCN) have been
successfully applied in many signal processing areas [1]–[5]
such as super-resolution [11], and noise removal [13],
de-mosaicking [12], etc. In particular, a number of resear-
chers have studied DCN-based super-resolution (DCN-SR)
methods, which have provided noticeably better performance
compared to traditional super-resolution and interpolation
methods [14]–[30]. However, the working mechanism of
DCN-based super-resolution (DCN-SR) methods has not
always been well understood. Some authors have studied
the working models of the DCN methods [6]–[10]. In [6],
the authors provided some insight into the intermediate lay-
ers with visualization techniques. Also, it was shown that
the first-layer features may not be specific to a particular
task and can be transferable to other tasks [7]. Some visu-
alizing tools were proposed for DCN [8], which provided
some insight into the DCN working mechanism. In [9],
the author presented some analysis results of the DCN opera-
tions. In [10], the authors found some interesting properties of
neural networks and showed that imperceptible perturbation
may produce errors in neural networks. In [31], the authors
investigated the mathematical model of deep learning frame-
works for inverse problems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yong Yang .

II. MATHEMATICAL FORMULATIONS OF
DCN-SR METHODS
In general, DCN-SR methods have a number of convolution
layers, ReLU layers, etc. They may further include other
types of layers (e.g., channel attention layers, sigmoid func-
tions, etc. [16]). In most DCN-SR methods, networks are
trained using a number of image patches (K×K images).
These patches can be expressed as vectors (N×1) with
N = K 2. For example, the first convolution layer followed
by a ReLU layer can be expressed by the following matrix
operation:

X1
64N×1 = ReLU

(
A064N×NX

0
N×1 + b

0
64N×1

)
(1)

where the superscript represents the layer index. A064N×N is a
filter matrix that represents the convolution operations with
64 filters and b064N×1 is a bias vector:

b064N×1 = [b00, b
0
0,· · ·, b

0
0, b

0
1, b

0
1,

· · ·, b01,· · ·, b
0
63, b

0
63,· · ·, b

0
63]

T

A0
64N×N =


A0,0N×N
A0,1N×N
...

A0,63N×N


where A0,kN×N is a single filter matrix (N×N) of the 0th layer
for the k th filter. X0

N×1 is an input patch and X1
64N×1 is the

90420 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2509-167X
https://orcid.org/0000-0002-7992-0357
https://orcid.org/0000-0001-9467-0942


C. Lee et al.: Mathematical Analysis of DCN-SR

output of the first layer (convolution layer + ReLU layer).
In (1), (A064N×NX

0
N×1 + b

0
64N×1) is a vector. If an element of

the vector is negative, the ReLU operator sets it to zero. Thus,
we can express (1) as follows:

X1
64N×1 =R A

0
64N×NX

0
N×1 +R b

0
64N×1 (2)

where the left subscript (R) represents the ReLU operation.
In other words, a row of matrix RA064N×N and an element of
vector Rb064N×1 are set to zero if the corresponding element of
A064N×NX

0
N×1+ b

0
64N×1 is negative. We will define RA064N×N

as a layer matrix, which applies convolution and ReLU oper-
ations. For the VDSR [17], there are 20 layers and the final
output image can be expressed as follows:

X20
N×1 = A19N×64NX

19
64N×1 +Rb

19
N×1

= A19N×64N
(
A1864N×64NX

18
64N×1+Rb

18
64N×1

)
+Rb19N×1

= A19N×64NA
18
64N×64N X18

64N×1+A
19
N×64NRb

18
64N×1+Rb

19
N×1

Consider the center pixel of the output image (Fig. 1), which
can be expressed as follows:

y = ReLU
(
ϕ
center,19
1×64N X19

64N×1 + b
19
1×1

)
where ϕcenter,191×64N is the row of A19N×64N corresponding to the
center pixel. Using

X k64N×1 =R A
k−1
64N×64NX

k−1
64N×1 +R b

k−1
64N×1 (k = 1-18),

the center pixel of the output image is given by

y = W1×NX0
N×1 +

18∑
k=0

Qk1×64Nb
k
64N×1 +R b

19
1×1

= W1×NX0
N×1 + b

total
1×1 (3)

where

W1×N = ϕ
center,19
1×64N RA1864N×64N · · · RA

1
64N×64NRA

0
64N×N

= ϕ
center,19
1×64N

18∏
j=0

RAj = Q0
1×64NRA

0
64N×N

Qk1×64N = ϕ
center,19
1×64N

18∏
j=k+1

RAj

btotal1×1 =

18∑
k=0

Qk1×64Nb
k
64N×1 + Rb191×1

In other words, an output pixel is obtained by taking the inner
product between the weight mask (W1×N ) and the input patch
(XN×1) and adding the total bias (btotal1×1). Also, the total bias
term (btotal1×1) can be expressed:

btotal1×1 =

L−1∑
k=0

nkbias∑
j=0

αkj b
k
j = W1×NbBNb×1

where nkbias is the number of bias terms (number of filters)
of the k th layer and Nb is the total number of biases.

FIGURE 1. The center pixel of the output layer in the VDSR.

FIGURE 2. Residual block.

W1×Nb is a bias weight vector and BNb×1 is a bias vector.
Thus, if a DCN-SRmethod consists of convolution and ReLU
layers, the output can be expressed as follows:

y = W1×NX0
N×1 +

L−1∑
k=0

nkbias∑
j=0

αkj b
k
j

= W1×NX0
N×1 +W1×NbBNb×1 (4)

It is noted that W1×N and W1×Nb are functions of the input
patch. In other words, the two terms can be expressed as
follows:

y = W1×N

(
X0
N×1

)
X0
N×1 +W1×Nb

(
X0
N×1

)
BNb×1 (5)

Some DCN-SR methods (e.g., EDSR [15]) use residual
blocks (Fig. 2). Similarly, we can express the residual block
as follows:

X l+164N×1 = V l
64N×64N

(
RW l

64N×64NX
l
64N×1+Rb

l
64N×1

)
+ ql64N×1+ X

l
64N×1

=

(
V l
64N×64N RW l

64N×64N+ I64N×64N
)
X l64N×1

+V l
64N×64NRb

l
64N×1+ q

l
64N×1

= Rl64N×64N X l64N×1 + V
l
64N×64N Rbl64N×1

+ ql64N×1

where Rl64N×64N = V l
64N×64NRW

l
64N×64N + I64N×64N and

ql64N×1 is the bias vector of the second convolution operation
(V l

64N×64N ). In other words, any output pixel value can be
expressed as a linear function. Thus, it can be shown that
the output of the EDSR (enhanced deep super resolution
network) can be expressed in a way similar to (3) and (4).

The RRDB (residual in residual dense block) [17] has a
much larger number of layers and the theoretical receptive
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FIGURE 3. Residual channel attention block (RCAB).

FIGURE 4. Channel attention layer (CA) of the RCAB.

field can cover the entire image. Nevertheless, the linear
model of (4) is still valid for the RRDB since it only uses
convolution and ReLU layers. The operation that combines
several images into a higher resolution image can be also
expressed as a matrix operation and is still a linear operator.
Consequently, the dynamic linear model of (4) can be used to
model the output pixel values of the RRDB.

For the RCAN (residual channel attention networks),
the linear model of (4) may not be valid due to the mul-
tiplication operations and sigmoid functions of the channel
attention layer (Fig. 3-4) [18]. Assuming 64 filters are used,
the residual channel attention block (RCAB) can be expressed
as follows:

X l+164N×1 = Y l64N×1 ⊗ C
l
64×1 + X

l
64N×1 (6)

where ⊗ denotes element-wise (channel-wise) product and

Y l64N×1 = V l
64N×64N

(
RW l

64N×64NX
l
64N×1 +R b

l
64N×1

)
+ ql64N×1

The first term of (6) is not a linear operation since C l
64×1 is

computed by a series of operations that include average oper-
ations and sigmoid functions. Thus, for the RCAN, the output
pixel value needs to be expressed as follows:

y = W1×NX0
N×1 +W1×NbBNb×1 + f (X

0
N×1, {b

k
j }) (7)

where f is a non-linear function. Thus, the gradients of
C l
64×1 with respect to the input image and the bias terms

cannot be expressed as linear functions. However, due to the
average operation, the contribution of each pixel would be
much smaller in the non-linear function f . In other words,
if the image size is M × N , C l

64×1 always include a term

((1/MN )m with m > 0) as follows:

C l
64×1 =

(
1
MN

)m
C ′l64×1.

SinceMN is very large (in the order of 105 ∼ 106), the gradi-
ents of f

(
X0
N×1, {b

k
j }

)
with respect to X0

N×1 and {b
k
j } tend to

be very small compared to the gradients of W1×NbBNb×1
and

W1×NbBNb×1. Thus, even for the RCAN,wemay approximate
the output value using (4):

y ≈ ỹ = W1×NX0
N×1 +W1×NbBNb×1. (8)

Fig. 5 shows the difference histogram between the actual
output (y of (7)) and the linear approximation (ỹ of (8)). The
maximum difference was 7.02 × 10−4 for the 8-bit images.
Thus, the dynamic linear model of (4) is still valid for the
RCAN.

FIGURE 5. Difference histogram between the actual output (y ) and the
linear approximation (ỹ ). The maximum absolute difference is
7.02× 10−4 for the 8-bit images.

FIGURE 6. Log ratio of W1×N X0
N×1/W1×Nb

BNb×1 computed over
1600 training images.

III. EFFECTIVE RECEPTIVE FIELDS
As can be seen in (4), the output pixel value consists of two
terms: W1×NX0

N×1 and W1×NbBNb×1. Fig. 6 shows the log
ratios of W1×NX0

N×1/W1×NbBNb×1, which were computed
using 1600 training images that were randomly selected from
the DIV2K database. It appears that W1×NX0

N×1 is about
30-280 times larger than W1×NbBNb×1. Fig. 7 shows the
contributions of the pixel and bias values when the RRDB
DCN-SR methods were used for the baboon image. The
other three methods (VDSR, EDSR, RCAN) have very small
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FIGURE 7. Contributions of pixels and bias values, and energy
distribution (top-left: positive weight mask, top-right: negative weight
mask, bottom-left: positive bias mask, bottom-right: negative bias mask).

bias values so that their bias contributions are invisible.
The bias contribution mainly appeared around the edges.
Also,W1×NX0

N×1 andW1×NbBNb×1 can have negative values,
though the sum is rarely negative. The perceptual RRDB
method showed considerably larger bias contributions than
the other methods.

Since W1×N and W1×Nb are a function of the input patch,
the weight mask (W1×N ) of (4) will be different for each
output pixel and may have negative values as can be seen
in Fig. 7. Fig. 8 shows the average energy of W1×N that was
computed using the 1600 training images for the fivemethods
(VDSR, EDSR, RCAN, RRDB(PSNR), RRDB(perceptual)).
Table. 1 shows the theoretical receptive fields of the four

FIGURE 8. Average energy of the weight mask over 1600 training images.

TABLE 1. Theoretical receptive fields.

methods, even though the training patch size was 41× 41 for
the VDSR and 48×48 for the other methods. Since the RRDB
and RCAN have a large number of layers, their theoretical
receptive fields can cover the entire image, even though the
networks were trained using the 48 × 48 training patches.
As can be seen in the figure, it is observed that the effective
receptive field is much smaller. Fig. 9 shows the color coded
energy distribution of the weight mask (W1×N ).

It appears that the weight mask reflects image character-
istics. For example, for the baboon image, the image mask
had a circular shape (Fig. 10). On the other hand, for the
coastguard image, the weight mask had an elliptic shape
reflecting the horizontal river waves.

IV. EFFECTS OF BOUNDARY PIXELS
In (4), W1×N and αkj are functions of the input image. Thus,
we can rewrite (4) as follows:

y = W1×N

(
X0
N×1

)
X0
N×1 +

L−1∑
k=0

nkbias∑
j=0

αkj

(
X0
N×1

)
bkj . (9)
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FIGURE 9. Average energy of the weight mask over 1600 training images.

FIGURE 10. Average energy of the weight mask of the baboon image.

where L represents the number of layers that include bias
terms. Although the effective reception field is much smaller
than the theoretical reception field, it is still possible that

FIGURE 11. Average energy of the weight mask of the coastguard image.

FIGURE 12. Setting the boundary pixels to zero.

TABLE 2. PSNR comparison of DCN-SR methods with block padding
(averages of seven images).

boundary pixels may affect W1×N and αkj . Consequently,
the boundary pixels may play a certain role in determining
the output images. In order to investigate how the boundary
pixels might affect W1×N (X) and αkj (X), we extracted a
patch from an image. The patch size was the same as used
in the training procedure (41× 41 for the VDSR and 48× 48
for the others). Then, we set the boundary pixels of input
patches to zero (Fig. 12) and applied a DCN-SR method.
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FIGURE 13. Setting the boundary pixels to zero.

Next, we computed the gradient of the center pixel and kept
only the center pixel as the output.We repeated this procedure
for the 1600 patches. We increased the zero padding from
1 to 20 (Fig. 12). We also compared the weight mask (W1×N )
of the original patches and the zero-padded patches, and
computed the angles between the two vectors (masks) as
follows:

θ = cos−1
(

W1×N ·Wb,1×N

||W1×N ||||Wb,1×N ||

)
where Wb,1×N represents the weight mask for the zero-
padded patch, · represents the dot product and || · || repre-
sents the norm of the vector. Fig. 13 shows the output pixel

FIGURE 14. Pipeline of block image experiment. (a) Crop block images
with stride 4. (b) Randomly synthesize block images to background
image. (c) Generate LR image (bicubic interpolation). (d) DCN based
super-resolution. (e) Crop 4× 4 center region from block images. (d)
Reposition to original location.

value differences of the original patches and the zero-padded
patches (averages of the 1600 samples). It can be seen that
zero padding up to 10 pixels produced very small differences
except for with the RRDB (perceptual). These results indicate
that the effective receptive field DCN-SR methods may be
much smaller than expected.

Next, we conducted another experiment. We extracted a
block from a target image (Fig. 14(a)) and put it into a
background image (Fig. 14(b)). The background image with
embedded blocks was reduced (Fig. 14(c)) and then enlarged
using a DCN-SR method ((Fig. 14(d)). Finally, only the
pixels of the center block (4 × 4) were retained (Fig. 14(e)).
We repeated this procedure so that the entire target image
was processed using the DCN-SR method. We computed
the PSNR between the enlarged target image through block
padding and the original high-resolution image. We com-
pared this PSNR with conventional PSNR values that were
computed without block padding. We varied the block size
(from 4 × 4 (B16) to 10 × 10 (B40) in the low resolution
images). Table 2 shows the PSNR comparison (averages
of seven images). A PSNR decrease by 0.4∼0.5dB was
observed for the EDSR, RCAN and RRDB when the block
size was 7 to 10 in the low resolution images. For the VDSR,
when the block size was 5 to 10, the PSNR performance
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FIGURE 15. Enlargement of original images without reduction
(NN: nearest neighbor interpolation).

FIGURE 16. Response to the unit pulse (Green channel 3D graphs are in
log scales.)
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FIGURE 17. Response to the diagonal line.

slightly improved. These results indicate that DCN-SR meth-
ods may not always effectively use information from large
receptive fields.

In traditional SR performance evaluation, a high-resolution
image is reduced and a super-resolution method is applied.
Finally, the PSNR between the original high-resolution image
and the enlarged image is computed. However, this pro-
cess has a serious problem. When an image is reduced,
low-pass filtering effects are introduced, which may affect
performance. So in the next experiments, we applied the
DCN-SR methods to the original images without first reduc-
ing them. Fig. 15 shows the enlarged images along with
the enlarged image when using nearest neighbor interpola-
tion (NN). As can be seen, the EDSR, RCAN and RRDB
produced annoying artefacts. The bilinear and bi-cubic inter-
polation methods produced no such artefacts, even though
they produced blurred images (not shown). These results
indicate that current DCN-SRmethods may not use valid fea-
tures to perform enlargement operations. In general, DCN-SR
methods are not linear systems. Nevertheless, we investi-
gated the DCN-SR responses to some basic patterns. First,
we applied the DCN-SR methods to the unit pulse image
(a single white dot at the center of an RGB image). Fig. 16
shows the unit pulse responses of the five DCN-SR methods
along with the enlarged image using the nearest neighbor

FIGURE 18. Response to the vertical bar.

interpolation (NN). Except for the VDSR, the four methods
showed somehow sinc-function-like artefacts, even though
the side lobs were irregular. Next, we made a diagonal line
and applied the five DCN-SR methods. Fig. 17 shows the
results. Also in this example, except for the VDSR, the four
methods (EDSR, RCAN, DBNN (PSNR), DBNN (percep-
tual)) showed somehow sinc-function-like artefacts. The four
methods appeared to be non-symmetric in the three-color
channels since they produced chromatic images for an achro-
matic input image (white line). In Fig. 18, we applied the five
methods to a vertical bar image. Again, except for the VDSR,
the four methods showed somehow sinc-function artefacts by
having additional bar patterns. Furthermore, the four methods
produced color artefacts. Finally, we applied the five meth-
ods to a diamond pattern (Fig. 19). The VDSR showed an
expected output image, even though the eight dots became
connected. The EDSR produced large artefacts (color distor-
tions, false stripe patterns). Also, the EDSR showed different
directional responses since the stripe patterns occurred in one
diagonal direction. The RCAN produced some color arte-
facts with additional sinc-function-like artefacts. The RRDB
(PSNR) showed similar artefacts, though the color artefacts
were mostly green. The RRDB (perceptual) also showed
large colorful artefacts. Also, it showed different directional
responses since the output images were not symmetric even
though the input image was symmetrical in the vertical
and horizontal directions. All these results indicate that cur-
rent DCN-SR methods may have some fundamental flaws.
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FIGURE 19. Response to the diamond pattern.

It appears that new DCN structures are needed to produce
reliable super-resolution performance.

V. CONCLUSIONS
In this paper, we formulated the workingmechanism of DCN-
based super-resolution methods and showed that DCN-SR
methods can bemodelled as dynamic linear operations, which
take an input image (patch) and bias terms. Based on the for-
mulation, we analyzed the effective receptive fields of several
DCN-based super-resolution methods, which were consider-
ably smaller than theoretical receptive fields. These results
indicate that significant complexity reduction may be pos-
sible without sacrificing performance. Based on the mathe-
matical formulation, a series of experiments were conducted,
which indicates that current DCN-SR methods may have
some fundamental flaws and new types of DCN structures
are needed to produce reliable super-resolution performance.
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