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ABSTRACT This paper presents a methodology for predicting NOx emissions of a coal-fired boiler by
using real operation data, coal properties and CNN (Convolutional Neural Network). Two building blocks
are carefully designed following the practical guidelines for the light weight CNN architecture design.
Furthermore, the building blocks are used to develop the deep CNN-based model for NOx prediction.
A comprehensive comparison among different prediction models based on DL (Deep Learning) shows that
the proposed deep CNN-based prediction model outperforms other prediction models in terms of RMSE
(Root Mean Square Error) criteria. The results indicate that the developed deep CNN-based prediction model
has more excellent accuracy and better numerical stability. Besides, the architecture design of the DL-based
prediction model has a significant impact on the performance of the prediction model.

INDEX TERMS Coal-fired boiler, convolutional neural network, deep learning, NOx emission prediction.

I. INTRODUCTION

Coal is the primary fuel used in power plants to generate
electricity. However, NOx emissions during coal combustion
are responsible for human health and environmental pollu-
tion [1]. The control of NOx emissions from coal combustion
is still a concerned issue in many countries. Therefore, the
clean and efficient utilization of coal in power plants has
become one of today’s main objectives in coal combustion
researches.

The combustion optimization approach can effectively
reduce NOx emissions by adjusting the operational parame-
ters [2], [3]. For this approach, it is crucial to develop an accu-
rate prediction model for NOx emissions at the furnace exit.
However, because of complex combustion dynamics, fluid
mechanics and nitrogen conversion chemistry, it is difficult to
build such a prediction model based on the overall dynamics
of the boiler. Alternatively, the advanced machine learning
algorithms can be used to build the relationship between
the related operational parameters and NOx emissions at the
furnace exit.

Some studies have been conducted on applying shallow
learning algorithms (such as shallow neural network, sup-
port vector machine, extreme learning machine, and their
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variants) for modeling NOx emissions in coal combustion
processes [4]-[7]. The above studies have achieved some
success in the prediction of NOx emissions; however, there
are some weaknesses among these shallow learning algo-
rithms. First, the operational variables for modeling NOx
Emissions contain complex data information in part reflect-
ing the complex dynamics of the boiler and the peak load
regulation. These algorithms are considered difficult to learn
such complex nonlinear functions [8]. Second, these algo-
rithms have some restrictions on the size of the training data
set. They are prone to overfitting when using a large data
set [9]. Overfitting can severely degrade algorithm perfor-
mance. Third, these algorithms are of the inability to learn
distributed and hierarchical feature representations from the
data. Thus, much of the actual effort in deploying these algo-
rithms goes into the design of preprocessing pipelines [10].
Recent studies have focused on introducing deep learn-
ing (DL) algorithms for modeling NOx emissions during
coal combustion. Due to high-performance computing sys-
tems, DL algorithms can model complex non-linear relation-
ships and learn internal representation for a large amount of
data [8]-[10]. Also, some techniques are being proposed to
alleviate the overfitting problem. Wang et al. developed the
DL-based NOx prediction model based on the deep belief
network [11]. However, the feature representation process
is completely independent of the NOx prediction process in
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this model. This design approach degrades the model’s per-
formance. Tan et al. used the recurrent neural network with
Long Short-Term Memory (which we will concisely refer to
as LSTM) to model NOx emissions [12]. Yang et al. used two
LSTMs to build the DL-based NOx prediction model [13].
Xie et al. used the LSTM variant called bidirectional LSTM
as the building block to build encoder-decoder architecture
to predict NOx emissions [14]. LSTM can capture long-term
temporal dependencies from data by storing the history infor-
mation, which leads to increased storage cost and computing
cost. Thus, training LSTM or its variants is difficult and time-
consuming [15].

Compared with LSTM, the convolutional neural net-
work (CNN) is usually at a considerably cheaper computa-
tional cost on certain sequence-processing problems. CNN is
a type of feed-forward artificial neural network and uses con-
volution operation in place of general matrix multiplication
to reduce the computational burden [16]. The representations
learned from data are translation invariant, which means the
representations do not change even though the input of CNN
is translated by a small amount. Thus, CNN can use fewer
training samples to learn representations having better gen-
eralization power. Deep CNN has become the master algo-
rithm in computer vision since AlexNet won the ImageNet
Challenge [17]-[21]. However, the application of CNN is
very limited for modeling NOx emissions in coal-fired power
plants. In the present work, we proposed a deep CNN-based
model for predicting NOx emissions of a coal-fired boiler,
aiming to develop an accurate prediction model for NOx
emissions at the furnace exit for more effective emissions
reduction. Two building blocks are designed to learning richer
data representations with less parameter. The building blocks
are used to build a light-weight model to predict the NOx
emissions at the furnace exit of a 330MW pulverized coal-
fired utility boiler. The data samples from the distributed con-
trol system (DCS) are employed to train and test the proposed
NOx emission prediction model. Furthermore, comparisons
with the other DL-based NOx prediction models are con-
ducted. The remainder of this paper is organized as follows.
Section 2 describes the work in developing the building block
and deep CNN-based prediction model. Section 3 describes
the detailed application of NOx emissions prediction and
model comparisons. Section 4 closes with a summary and
conclusion.

Il. CONSTRUCTION OF THE DEEP CNN-BASED
PREDICTION MODEL ARCHITECTURE

A. BRIEF DESCRIPTIONS OF THE BOILER AND DATA
PREPARATION

The studied boiler is 330MW subcritical tangential pulver-
ized coal-fired utility boiler manufactured by Shanghai Boiler
Co. Ltd. The boiler belongs to one unit of Dong Sheng power
plant in Inner Mongolia, China. A schematic diagram of the
furnace is shown in Fig.1. Five layers of primary air (A, B,
C, D, and E) and eight layers of input air (AA, AB, BC,
CC, DD, DE, EF, and FF) are distributed alternately in a
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FIGURE 1. Schematic diagram of the furnace.

TABLE 1. Industrial analysis of the combusted coal.

' Volatile Moisture  Sulfur Quantity of

Time compounds Ash(%) (%) (%) produced
(%) ° ° heat (MJ/Kg)

Dayl 40.69 16.44 26.0 1.18 3.886
Day2 40.93 16.34 26.1 1.21 3.871
Day3 40.40 17.68 26.4 0.97 3.724
Day4 39.31 15.77 25.2 1.16 3.953
Day5 39.30 15.51 26.2 1.02 3919
Day6 39.29 14.62 26.1 1.02 4.01
Day7 38.80 14.77 26.8 0.96 3.954
Day8 38.25 154 25.8 091 3.944
Day9 37.48 14.63 26.50 0.90 3.955
Day10 37.44 12.64 27.10 0.92 4.077

vertical direction. Five medium-speed coal pulverizers are put
into operation to supply with fuel for combustion. Coal-air
mixtures are fed to the burners on A-E levels. Four layers over
fire air (OFA) are fixed over the upper nozzles to replenish
the air in the combustion anaphase for better combustion
efficiency.

The data for modeling NOx emissions consists of three
parts. First, the coal burned in the boiler is an important factor
responsible for the NOx formation. The coal properties are
given by industrial analysis and the analysis results are listed
in Tablel. There are no real-time data about coal properties
due to the lack of an on-line coal analyzer in the power
plant. Thus, these coal properties are introduced to build a
NOx prediction model. Second, fifty-five operational vari-
ables, including boiler load (one), main steam pressure (one),
total fuel flow (one), total air flow (one), coal-feeder rate
(five), primary air flow (five), primary air temperature (five),
main steam temperature (one), total secondary air flow(two),
secondary air temperature (two), secondary air flow (twenty-
four), main steam flow (one), OFA air flow (four), Oxygen
concentration before the selective catalytic reduction inlet
(two), have been selected based on the engineers’ advice and
the knowledge of the tangentially coal-fired boiler. The data
points covering ten days are obtained from DCS with a time
resolution of 1 second. Third, NOx emissions at side A and
side B of the furnace exit (two) have also been considered.

To construct the dataset for modeling, three steps are
adopted in succession on the raw data. First, extreme outliers
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FIGURE 2. The overview of 1D CNN layer. (a) How 1D CNN layer works on the multivariate time
series, (b) the dot product on the patch and convolution kernel.

are removed to improve data quality. Second, the data should
be normalized to make learning easier for our prediction
model. All the data should be standardized by removing the
mean and scaling to unit variance as follow:

== (1)

s

where x and z are the operational variable or NOx emissions
before and after scaling, u is the sample mean, and s is the
standard deviation. Third, the data samples in the dataset used
for modeling NOx emissions should have the form as follow:

Z

(x (), y (@) )
where
p ot—Ki)  nit—Kp)
poit—K —1Dnit—K—1)
x(1) = : : (3
p ot—1) n(it—1)
p o(t) n(t)
1 &
ym=EZMH» )

i=1
In the above matrix, p denotes the row vector containing
the coal properties, o () denotes the row vector containing
selected operational variables at time ¢, n (t) denotes the row
vector containing NOx emissions at time ¢, K; and K, are
nonnegative integers. Thus, these data samples belong to the
multivariate time series. In this study, both of K; and K, are
equal to 60. Modeling NOx emissions based on this dataset
means that using the data samples in the first 60 seconds to
predict the mean of NOx emissions in the next 60 seconds.
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There are two motivations. First, there is a stronger corre-
lation between the adjacent data samples. Second, the data
samples with a larger value of K contain more information.

B. BRIEF INTRODUCTION TO CNN

Recently, there has been lots of progress in designing a small
and computation-efficient deep CNN architecture for mobile
and embedded vision applications, such as ShuffleNetV1 [20]
and ShuffleNetV2 [21]. These architectures are suitable for
the applications which need to be carried out in a timely
fashion. CNNs used in these architectures are designed for
processing image data. This type of CNN is referred as 2D
CNN layer. However, the multivariate time series data for
modeling NOx emissions is completely different from these
image data. Thus, we consider using a type of CNN for
processing the multivariate time series data which is referred
as 1D CNN layer.

The data operated by CNN is called feature map and the
column vector in feature map is called a channel. The com-
putation procedure of 1D CNN layer is shown in Fig. 2 (a).
Firstly, we should determine the size of the convolution win-
dow. The convolution window is used to extract the patches
from the multivariate time series along the time axis. The
extracted patches are essentially the numerical matrixes hav-
ing the same dimensions as the convolution window. Sec-
ondly, the extracted patches are sent to a group of the convo-
lution kernels. Any convolution kernel is a weight matrix that
is not predefined but is learned during the training process
of a 1D CNN layer. The scalar value is obtained by taking
dot products on the patch and the convolution kernel. Such
an instance is shown in Fig. 2 (b). The definition of the dot
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FIGURE 3. Building block of ShuffleNetV2 and our basic building blocks.
DWConv stands for depthwise convolution. (a) Building block of
ShuffleNetV2, (b) our basic building block, (c) our basic building block
with stride 2.

product on two matrixes is as follows:

n m
AB=) . ). by 5)

where A = [a;] and B = [b;]

mxn mxn’

C. ARCHITECTURE DESIGN OF THE BASIC BUILDING
BLOCKS

In [21], there are some practical guidelines, proposed for light
weight CNN architecture design. Based on these guidelines
for ShuffleNetV2, two basic building blocks in this study
are designed. However, the original architecture of Shuf-
fleNetV2, which is designed to process the tasks in computer
vision, can’t process the multivariate time series data for
modeling NOx emissions. In order to process the multivari-
ate time series data feasibly and efficiently, two important
modifications are made in our basic building blocks. Firstly,
the first 2D CNN layer in the first dashed box in Fig. 3 (a)
must be replaced by 1D CNN layer in the first dashed box
in Fig. 3 (b). Secondly, the components in the second dashed
box in Fig. 3 (a) are replaced by a 1D separable CNN layer
in the second dashed box in Fig. 3 (b).

As shown in Fig. 3 (b), there is a channel split operator at
the beginning of the basic building block. The input having
k channels is split into two branches with k; and k; chan-
nels, respectively. The left branch is a shortcut connection
introduced in ResNet [18]. It can be considered as an identity
map and all information is always passed through. The right
branch consists of four components. The first component is a
1D CNN layer. The size of convolution window of this CNN
layer must be fixed to 1. It can be considered as bottleneck
layer to reduce the number of input feature maps, and thus to
improve computational efficiency. Next, the second compo-
nent contains batch normalization [22] and a rectified linear
unit [23]. Batch normalization maintains an exponential mov-
ing average of the batch-wise mean and variance of the data
during training. It has been proved to accelerate the training
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process of the CNN layer. The rectified linear unit (ReLU)
is defined by the activation function f (x) = max {0, x}.
It is considered as the most important factor in improving
the performance of CNNs [24]. The third component is a
1D separable CNN layer. The separable CNN layer, which is
referred as depth-wise separable convolution, consists of the
depth-wise convolution and the pointwise convolution [25].
First, the depth-wise convolution performs independently a
convolution operation on each channel of its input. Second,
the pointwise convolution creates a linear combination of the
output channel of the depth-wise convolution. Some studies
have demonstrated that the separable CNN layer can effi-
ciently reduce the computation cost and learn better repre-
sentations using fewer data [19]. 1D separable CNN layer
is the version of separable CNN layer which can process
the multivariate time series. The fourth component is the
same effect as the second component. The results of the two
branches are concatenated to keep the number of channels
same as the input. At the end of the basic building block,
the channel shuffle operation is used to reshape the order
of channels of output to enable information communication
work between different channels.

Fig. 3 (c) shows the architecture of the basic building block
with stride 2. The stride is a parameter defined by the distance
between two successive convolution windows. Using stride
equal to 2 means the row rank of the input feature map is
down sampled by a factor of 2 to reduce the computational
cost and the number of parameters. In addition, the risk of
overfitting is limited. The basic building block with stride 2
is different from the basic building block. Firstly, the channel
split operator is removed. Secondly, in the right branch, a 1D
separable CNN layer is replaced by a 1D separable CNN layer
with stride 2. Thirdly, in the left branch, a 1D separable CNN
layer is added to keep the size of the input the same as the
output of the right branch. BN and ReLU achieve the same
effect as in the basic building block.

D. DEEP CNN-BASED MODEL FOR NOx PREDICTION

The block diagram as shown in Fig. 4 is a deep CNN-based
model for NOx emissions prediction. The model is a stream-
lined architecture based on the basic building blocks in
Fig. 3 (b) and (c). The design of CNNs used in the model has
twofold: (1) they are used to gradually increase the number
of the channels of the output feature map; (2) they are used to
gradually reduce the row rank of the output feature map. This
guideline will make the deep CNN-based model wider and
deeper, which has been proven to increase the performance
of the model [19]-[21].

The first component is a 1D CNN layer with stride 2. The
size of convolution window of this CNN layer is set to 3. The
second component consisting of BN and ReLLU has the same
effect as the components in the basic building block. The
following three components have the same structure but with
different parameters. In each stage, the basic building block
with stride 2 is set at the beginning, and the basic building
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FIGURE 4. The architecture of NOx prediction model.

block is repeated three times. The data representations are
further refined after these three stages. Next, the sixth com-
ponent is also a 1D CNN layer. The size of convolution
window is set to 1. The seventh component is the same as the
second component. After that, the data representations will
have two dimensions but can’t directly be used for prediction.
Consequently, the global average pooling layer is introduced
to reduce the dimensions of the data representations and
result in one-dimension vectors. These vectors go through
the final component which is a regular fully-connected layer
(FC layer). This FC layer has two outputs for NOx emis-
sions at side A and side B. The first eight components are
used to extract the data representations from the multivariate
time series, and the final component is used to predict NOx
emissions.

To evaluate our prediction model, the dataset should be
splitted into three sets. The training set consists of 60% data
samples; the validation set consists of 30% data samples;
and the test set consists of 10% data samples. The division
of the data depends on the size of the dataset which covers
different operation conditions. It is stresses that the training
set and the validation set containing the enough data can
improve the generalization error of the prediction model.
Root mean square error (RMSE) is introduced to evaluate
the performance of the NOx prediction model. It is true
that the root mean square error (RMSE) is a widely used
performance measure for regression problems. It gives an
idea of how much error the model typically makes in its
predictions, with a higher weight for large errors. It is defined
as,

RMSE = (6)

where N denotes the number of the data samples, y; denotes
the measured value and y; denotes the corresponding pre-
dicted value.
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TABLE 2. The summary statistics of the prediction results of our
prediction model on the test set.

Mean Standard deviation of
RMSE(mg/Nm”®) RMSE(mg/Nm®)
Side
Our A 1.11 0.68
model S}?(’ie 1.06 059

Ill. RESULTS AND DISCUSSION

A. NOx PREDICTION RESULTS

We implemented our model using the open-source deep learn-
ing library Keras with the TensorFlow back-end [26]. A single
NVIDA GeForce GTX 1080 is used. The convolution library
is CUDNN 10.0 [27]. The optimization configuration is used
for our model: the Optimizer is Adam [28]; the initial learning
rate is 0.001 and the decay of rate is 0.95 every 5 epochs.
To avoid the overfitting problem, the early stopping strategy
is applied to the validation set. Thus, a model checkpoint
procedure should be performed either on the training set
or validation set to keep the best model during the training
process. The model follows most of the hyper-parameters
used in [21].

There are 30 runs of our model to evaluate model reliabil-
ity. The summary statistics are shown in Table 2. The mean
RMSEs of the test set at side A and side B are 1.11 mg/Nm?
and 1.06 mg/Nm? respectively. The lowest mean RMSEs
show that our model has high prediction accuracy on the
testing set. The standard deviations of RMSE:s at side A and
side B are 0.68 mg/Nm?> and 0.59 mg/Nm?, respectively. The
lowest standard deviations of RMSEs demonstrate a good
stability of our proposed model.

For the 3rd run, RMSEs at side A and side B are
0.94 mg/Nm? and 1.07 mg/Nm?, which are very close to
the average RMSEs at side A and side B. Fig. 5 shows the
predicted values at the 3rd run on the test set. The predicted
values are in good agreement with the reference values. Fig. 6
shows the relative errors at the 3rd run on the test set. The
maximum relative error is 1.55% at side A, and the maximum
relative error is -1.6% at side B. The good prediction perfor-
mance on test set exhibits a satisfactory capability of the deep
CNN-based prediction model in this study.

B. MODEL COMPARISONS AND DISCUSSIONS

In this section, we survey a variety of DL-based prediction
models based on the leading building blocks and make com-
parisons with our proposed model. For fair comparison,
we do not use any data preprocessing methods except the
methods in building the dataset, and all prediction models for
a comparison have the same training environment. DL-based
prediction models for comparison are as follows:

(1) VGGNet is a deep CNN architecture consisting of
multiple 2D CNN layers. Its building block is a single 2D
CNN layer. Following the design principle of VGGNet, the
VGG-like prediction model was developed based on the
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1D CNN layers. Different from VGGNet, BN and ReLU
are added after each of the 1D CNN layers. The overall
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architecture of the VGG-like prediction model is shown in
Fig. 7. The first two stages have the same structure, and the
next three stages have the same structure. This model follows
most of the hyper-parameters used in [17].

(2) ResNet is a deep CNN architecture introducing shortcut
connections which can improve the training efficiency. Its
building block consists of multiple 2D CNN layers and a
shortcut connection as shown in Fig. 8 (a). We use 1D CNN
layers to replace 2D CNN layers. The modified building
blocks of ResNet-18 are shown in Fig. 8 (b) and (c). The
overall architecture of the ResNet-like prediction model is
shown in Fig. 8 (d). In the ResNet-like prediction model,
the stage consists of a modified building block of ResNet
with stride 2 and a modified building block of ResNet.
This model follows most of the hyper-parameters used
in [18].
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(3) Xception architecture can be considered as a linear
stack of 2D separable CNN layers. The original building
block of Xception is shown in Fig. 9 (a). We use the 1D
separable CNN layers to replace the 2D separable CNN layers
in the original building block of Xception. The modified
building block of Xception is shown in Fig. 9 (b). The overall
architecture of the Xception-like prediction model is shown
in Fig. 9 (¢). In the prediction model, the stage consists of
a single modified building block of Xception. This model
follows most of the hyper-parameters used in [19].

(4) ShuffleNetV1 is a light weight CNN architecture
which also introduces the channel shuffle operator. Its
building block is designed based on the depth-wise CNN
layers and group CNN layers as shown in Fig. 10 (a).
The modified building blocks of ShuffleNetV1 are shown
in Fig. 10 (b) and (c). Fig. 10 (d) shows the overall architec-
ture of the ShuffleNetV 1-like prediction model. In the predic-
tion model, the stage consists of a modified building block
of ShuffleNetV1 with stride 2 and three modified building
blocks of ShuffleNetV1. This model follows most of the
hyper-parameters used in [20].

(5) The LSTM layer has been used to build the pre-
diction model in [12] and [13]. The detailed architecture
of the LSTM layer can be found in [29]. As shown in
Fig. 11 (a), the LSTM-based prediction model consists of a
LSTM layer and a FC layer. Because the number of units
is an important hyper-parameter of the LSTM layer, we test
the LSTM-based prediction models with a different num-
ber of units. There are 10 runs for each number of units.
The detailed summary statistics of the prediction results are
shown in Table 3. For example, we use LSTM-100 to denote
an LSTM layer with 100 units. The average RMSE and
the standard deviation of RMSE rise with the increase of
the number of units. Among the three settings, LSTM-10
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TABLE 3. The summary statistics of the prediction results of the
LSTM-based prediction models on the test set.

Mean Standard deviation of
RMSE(mg/Nm®) RMSE(mg/Nm®)
Sfe 13.38 12.93
LSTM-10 —cr
B 9.81 5.87
Sfe 57.8 91.28
LSTM-50 —<o
‘Be 47.75 77.89
Sfe 40.11 39.9
LSTM-100 —
}36 48.82 60.51

achieves the best results. Thus, we prefer to LSTM-10 for
comparison.

(6) The bidirectional LSTM (BLSTM) layer, which is a
variant of the LSTM layer, consists of two LSTM layers,
one processing the input sequence forwards and the other one
backward. The detailed architecture of the BLSTM layer can
be found in [29]. As shown in Fig. 11 (b), the BLSTM-based
prediction model consists of a BLSTM layer and a FC layer.
Also, there are 10 runs for each number of units. The detailed
summary statistics of the prediction results are shown in
Table 4. It is clear that BLSTM-10 has the best results. Thus,
we prefer to BLSTM-10 for comparison.

(7) Stacking multiple LSTM layers (or BLSTM layers) is
a way to form a deeper model [30]. Based on the results in
Table 3 and Table 4, we have 10 runs for some settings and the
summary statistics of prediction results is shown in Table 5.
It is clear that the prediction results are not improved by
adding more layers. Thus, we do not use this class of models
for comparison.
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FIGURE 10. The overview of the ShuffleNetV1-like prediction model. (a) Original building block of ShuffleNetv1,
(b) modified building block of ShuffleNetV1, (c) modified building block of ShuffleNetV1 with stride 2, (d) the

ShuffleNetV1-like prediction model.

Multivariate Multivariate TABLE 4. The summary statistics of prediction results of the
time series time series BLSTM-based prediction models on the test set.
Mean Standard deviation of
RMSE(mg/Nm®) RMSE(mg/Nm®)
‘ FC ‘ ‘ FC ‘ Sfe 12.11 7.62
BLSTM-10 -
lNOx esitmate lNOx esitmate Side 13.27 7.05
B . .
(@) (b) Side 2118 18.63
FIGURE 11. The overview of the prediction model based on LSTM or BLSTM-50 )
BLSTM. (a) The LSTM-based prediction model, (b) the BLSTM-based Side 18.07 13.89
prediction model. S'lj
e 77.65 82.33
BLSTM-100 Sid
13 ¢ 76.04 66.92

(8) The DL-based model has also been constructed to
estimate NOx emission of coal-fired power plants in [11].
This model has exhibited satisfactory performance in the
prediction accuracy and the most details can be found in [11].

The variations of RMSEs of the eight models among
30 runs are shown in Fig. 12. The minimum RMSE at side A

is 0.25 mg/Nm? and achieved by our prediction model at the
7th run, and the minimum RMSE at side B is 0.28 mg/Nm?>
and achieved by our prediction model at the 5th run. For
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FIGURE 12. Comparison of RMSEs among different models.

TABLE 5. The summary statistics of prediction results of LSTM-10-10 and
BLSTM-10-10 on the test set.

Mean Standard deviation of
RMSE(mg/Nm®) RMSE(mg/Nm®)

S‘:"’ 18.16 761
LSTM-10-10 —

e 20.58 8.41

B

Sfe 17.66 8.44
BLSTM-10-10 —<

;36 18.69 9.99

our prediction model, a smooth trend of RMSEs is observed,
which can empirically demonstrate the good performance
of our prediction models. The similar smooth trends of
RMSEs can be observed for the Xception-like model and
the ShuffleNetV1-like model. There exist some fluctuations
among the trends of RMSEs for the VGG-like model and
the ResNet-like model. For LSTM-10 and BLSTM-10, the
significant fluctuations can be observed on RMSEs. The
maximum RMSE at side A is 57.73 mg/Nm?> and achieved
by LSTM-10 at the 28th run, and the maximum RMSE at
side B is 82.21 mg/Nm? and achieved by LSTM-10 at the
21th run. These significant outliers mean that LSTM-10 and
BLSTM-10 sometimes fail to successfully learn effective
data representations from the multivariate time series which
contains more information. In other words, it is difficult to
obtain acceptable results from the prediction model based on
a single LSTM layer or a single BLSTM. Combined with the
results in Table 5, the prediction performance can’t improve
by simply stacking more LSTM layers (or BLSTM layers).
This is mainly due to the lack of practical guidelines of
architecture design for organizing multiple LSTM layers or
its variants. Although the model in [11] has smooth trend of
RMSE:s, the performance of this model is weaker than our
model.
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TABLE 6. The summary statistics of the prediction results of all prediction
models on the test set.

Mean Standard deviation of
RMSE(mg/Nm®) RMSE(mg/Nm®)

Side 111 0.68

A

Our model Sid
1de 1.06 0.59

B
Sfe 577 2.89

VGG-like model Sid
1de 5.05 481

B
Sfe 6.94 491

ResNet-like model Sid
1ae 4.95 3.46

B

Side

Xception-like A 349 102
model Side 55 1.04

B

Side

ShuffleNetVi-like A 2.03 142
model Side 209 191

B
Sfe 16.79 14.36

LSTM-10 S
1de 16.07 18.11

B
Sfe 13.97 1115

BLSTM-10 Sid
1de 13.87 10.05

B
Sfe 6.28 228

Model in [11] Sid
;36 10.57 5.08

Based on the above results, it is obvious that all deep
CNN-based prediction models have better results than the
LSTM-based prediction models. There are two reasons:
(1) the building blocks in the CNN-based prediction models
are carefully designed following the practical guidelines;
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(2) during the training process of the deep CNN-based pre-
diction model, multiple down-sampling processes are used
to reduce the complexity of the data representations learned
from the multivariate time series.

IV. CONCLUSION

In this study, a novel deep CNN-based model architecture
has been developed for predicting NOx emissions from a
330MW tangentially coal-fired power plant boiler. The col-
lected raw data are translated to the multivariate time series
and the dataset for modeling NOx emissions is built. In order
to efficiently process the multivariate time series samples,
two basic building blocks are carefully designed based on
the combination of the 1D CNN layer, the 1D separable
CNN layer, the channel split operator and the channel shuf-
fle operation. The overall prediction model architecture is
developed mainly based on these two basic building blocks.
The comparisons among the different prediction models have
suggested that our proposed model has the best performance.
In particular, the minimum RMSE of the test set at side A is
0.25 mg/Nm? and the minimum RMSE of the test set at side B
is 0.28 mg/Nm?. It also demonstrates that architecture design
is important to build an accurate prediction model. There
are two reasons that affect the accuracy of the prediction
model: (1) the developed deep CNN-based prediction model
depends on the sufficient data covering different operation
conditions; (2) Recent advances in modern network architec-
tures, which are also crucial components for other state-of-
the-art networks, are adopted in our prediction model. The
proposed model architecture has good potential to predict
NOx emissions on similar pulverized coal-fired utility boilers
with adequate data.
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