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ABSTRACT Branch predictor is a key component of processor, which can improve the efficiency of
instruction execution. The branch predictor based on machine learning algorithm can achieve high branch
prediction accuracy, but it has the disadvantages of long training time and high access delay. As a neural
network algorithm, Recurrent Neural Network (RNN) is good at processing data related to time series,
and can learn the correlation between data faster. Sliced Recurrent Neural Network (SRNN) parallelizes
the RNN algorithm, effectively reducing the access delay of the RNN algorithm. In this paper, a dynamic
branch predictor based on parallel structure of SRNN is proposed to accelerate the training time and reduces
the computing delay. The optimal design parameters of predictor, which has prediction accuracy with
lower source cost, are selected through a serial simulations. The experimental results show that the branch
predictor proposed in this paper has higher prediction accuracy than the traditional Bimod and Gshare branch
predictors under the same hardware consumption, and its branch prediction rate is 2.34% higher than the
traditional Perceptron neural predictor in the short learning period.

INDEX TERMS Branch predictor, machine learning, recurrent neural network (RNN), sliced recurrent
neural network (SRNN).

I. INTRODUCTION
The branch predictor is an important part of a modern pro-
cessor. A high precision branch predictor can improve per-
formance and reduce power consumption by reducing the
number of instructions executed on the wrong path [1], [2].
In view of the importance of branch prediction, branch
prediction has been widely studied. Among the proposed
branch predictors in the last five Championship Branch
Prediction (CBP) competitions, most are variants of the
TAGE and Perceptron branch predictors, However, only a
few researches have explored more advanced branch predic-
tion machine learning methods [9]. The essence of branch
prediction is a classification problem, and various machine
learning algorithms have shown excellent performance in
other fields [3], [4]. Applying machine learning algorithm
to branch predictor can significantly improve the accuracy
of branch predictor [1]. Therefore, this paper studies the
application of RNN algorithm in branch predictor.
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Various branch predictors based on machine learning algo-
rithm have been proposed. Jimenez et al propose a neural
predictor based on perceptron in [5], which uses a layer of
perceptron model to represent the forward inference pro-
cess of branch prediction. In [6], the algorithm is improved
and a path-based prediction algorithm with higher prediction
accuracy is proposed. In [7], the piecewise-linear predic-
tion algorithm is proposed, which optimizes the prediction
accuracy of the linear non-separable function. Because most
programs themselves tend not to jump when they encounter
branch instructions, the prediction accuracy is improved by
modifying the thresholds of taken and nottaken [8]. Mao et al
put forward a branch predictor based on deep belief net in [9],
and themisprediction rate is reduced by 3%∼ 4% on average.
Jeremy et al propose a predictor based on the Naive Bayesian
algorithm in [10], which transforms multiplication operation
into addition operation, reducing hardware consumption and
path delay caused by multiplication operation. Tarsa et al
proposed a branch predictor based on a convolutional neural
network in [11], which improves the prediction accuracy of
branch instructions that are difficult to predict. The branch
predictor based on machine learning algorithm obtains high
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branch prediction accuracy, but it has two defects: first,
the branch predictor based onmachine learning algorithm can
obtain high prediction accuracy only in the ‘‘stable period’’
after a long time of training, and its prediction accuracy
in the ‘‘learning period’’ with a short training time is low.
Although the hybrid predictor is used to improve the pre-
diction accuracy of the ‘‘learning period’’, it consumes more
hardware area [12], [13]. Second, the traditional machine
learning algorithm is complex in structure, it is not easy to
be implemented in parallel structure, and it has high access
delay in hardware implementation.

As a neural network algorithm which is good at processing
sequence data, RNN can effectively learn the correlation
between sequences [14]–[16]. Applying RNN algorithm
to branch predictor can speed up the learning process.
SRNN algorithm can parallelize RNN algorithm structure,
realize pipeline design of forward inference process, and
reduce access delay [31]. Therefore, this paper constructs
a dynamic branch predictor based on SRNN algorithm by
using two-level prediction model [17], [18] to improve the
prediction accuracy of ‘‘learning period’’ and optimizes
the hardware access delay. Finally, based on the Sim-
pleScalar [19], [20] simulation environment, the influence of
different variables on the prediction effect of the predictor is
studied, and the advantages of the SRNN branch predictor
are analyzed. The experimental results show that the dynamic
branch predictor proposed in this paper based on SRNN
algorithm has a higher prediction accuracy than the traditional
Bimod [21], [22] and Gshare [23] dynamic branch predictor
under the same hardware consumption, and its branch pre-
diction rate in the ‘‘learning period’’ with shorter training
time is 2.34% higher than the traditional Perceptron [5] neural
predictor.

The rest of this paper is organized as follows: Section 2
introduces RNN algorithm and SRNN algorithm. In the
section 3, the architecture of proposed SRNN branch pre-
dictor is introduced, and the prediction process and training
process of predictor are introduced in detail. Section 4 uses
the control variable method to explore the optimal design
parameters of the predictor. In Section 5, the prediction per-
formance of different predictors in different training time is
compared, and the advantages of this predictor are analyzed.
Section 6 summarizes the conclusions of this work.

II. BACKGROUND
A. RNN
RNN is one of the neural network algorithms. Unlike con-
volution, full connection and other kinds of neural network
algorithms, RNN is good at processing data related to time
series. Its algorithm model describes the correlation between
different inputs [16]. Taking text processing as an exam-
ple, it simulates the process of human processing text data.
When people read articles, they will form long-term memory,
remember the useful information they read before, and filter
out the useless information, so that they can better understand

FIGURE 1. RNN algorithm structure.

FIGURE 2. Branch codes in program.

the later text [15]. The RNN is similar to this, its network
structure will remember the previous information, and this
informationwill participate in the operation of the later nodes.
A typical RNN structure is shown in Figure 1.

It can be seen from Figure 1 that the current state St of RNN
not only depends on the input layer, but also the input from
the previous state St−1, and will also transfer the current state
to the next state St+1.
The calculation method of current state St and output yt of

RNN algorithm is shown in Equation (1).

St = f (Wxt + USt−1)

yt = g(VSt ) (1)

Among them, f and g are activation functions [24], U rep-
resents the weight of the previous state, W represents the
weight of the current input, and V represents the output
weight of the current state.

In the process of program execution, each branch instruc-
tion is related to each other, and the branch direction of the
branch instruction will be affected by other branch instruc-
tions. There are usually branch codes as shown in Figure 2.

There are 4 branch statements in the above code, branch 4
depends on branch 1 and branch 2 and does not depend
on branch 3. If branch 1 and branch 2 are not executed,
branch 4 will not be executed, and the execution result of
branch 3 does not affect the execution of branch 4. The RNN
algorithm can quickly learn the correlation between different
branch instructions before and after. Therefore, the dynamic
branch predictor based on RNN algorithm can obtain high
prediction accuracy in the ‘‘learning period’’.

VOLUME 8, 2020 86231



L. Zhang et al.: Dynamic Branch Predictor Based on Parallel Structure of SRNN

FIGURE 3. An 8-Input SRNN calculation model.

B. SRNN
Each state of RNN algorithm depends on the input of the
previous state. This serial structure makes it difficult to par-
allelize. In the hardware implementation, the advantage of
hardware parallelization can’t be used to improve the calcu-
lation speed of RNN algorithm. Forward inference requires
multiple cycles of calculation to complete, which is not con-
ducive to reducing the delay of branch predictor.

In 2018, Zeping Yu et al. Proposed SRNN algorithm,
which divides the input sequence of RNN algorithm into
n subsequences, runs RNN on each subsequence in paral-
lel, merges the output of each subsequence as a new input
sequence, and repeats the above process until the calculation
result is obtained [31]. The Figure 3 shows an 8-Input SRNN
calculationmodel. The slice size of the calculationmodel is 2.

The calculation process of SRNN is as follows:
Multiply the 8 inputs with the input weight W to obtain

the 8 intermediate states of the first layer, as shown in
Equation (2).

S00 = f (x0w0) S01 = f (x1w1)

S02 = f (x2w2) S03 = f (x3w3)

S04 = f (x4w4) S05 = f (x5w5)

S06 = f (x6w6) S07 = f (x7w7) (2)

The 8 intermediate states are divided into 4 groups accord-
ing to two as a group to calculate RNN, and 4 interme-
diate states of the second layer are obtained, as shown in
Equation (3).

S10 = f (S01 + u0S
0
0 ) S11 = f (S03 + u2S

0
2 )

S12 = f (S05 + u4S
0
4 ) S13 = f (S07 + u6S

0
6 ) (3)

The 4 intermediate states are also divided into 2 groups
according to two as a group, and RNN calculation is carried
out respectively to obtain 2 intermediate states of the third
layer, as shown in Equation (4).

S20 = f (S11 + u1S
1
0 ) S21 = f (S13 + u5S

1
2 ) (4)

Finally, RNN calculation is carried out for the 2 intermedi-
ate states output by the third layer, and the final output result

is obtained, as shown in Equation (5).

y = g(S21 + u3S
2
0 ) (5)

Like RNN, f and g are activation functions. SRNN sliced
and layered the RNN algorithm. The slicing structure is very
suitable for parallel computing, and the layered structure is
also conducive to pipeline design.

III. THE ARCHITECTURE OF PROPOSED SRNN
BRANCH PREDICTOR
The dynamic branch predictor based on the parallel structure
of SRNN proposed in this paper adopts a two-level predic-
tor model [17], [18], which consists of a Global History
Register (GHR) and a Pattern History Table (PHT). PHT
table storesU weight u0, . . . , un−1 andW weightw0, . . . ,wn
required by SRNN algorithm, and global branch history is
stored in GHR register. Its structure is shown in Figure 4.
When calculating branch prediction value y, a parallel

RNN computing circuit based on SRNN is designed. The
SRNN computing circuit consists of multiplier, accumulator
and pipeline register. The circuit divides the pipeline stage
according to the number of layers of SRNN, and each layer
of SRNN can carry out parallel computing.

A. PREDICTION PROCESS
The prediction process of the branch predictor is mainly
divided into two steps. First, the weight parameters
u0, . . . , un−1 and w0, . . . ,wn are obtained from the PHT
table by hashing the PC values of branch instructions. Then,
the SRNN algorithmwas used to calculate the predicted value
y by combining the obtained weight parameters with the
branch history x0, . . . , xn stored in the GHR register. If y > 0,
the result of branch prediction will jump. If y < 0, the result
of branch prediction will not jump.
The calculation model of y simplifies some parameters

in the SRNN algorithm. Take the activation function f as a
linear function f (x) = x, take the output activation function
g as a linear function g(x) = x. Assuming that the value in
GHR is (1,−1,1,1), the weight parameter U is (1,2,3), and
W is (−2,10,1,5), the calculation process of y is as shown in
Equation (6).

S00 = x0w0 = 1×−1 = −2

S01 = x1w1 = −1× 10 = −10

S02 = x2w2 = 1× 1 = 1

S03 = x3w3 = 1× 5 = 5

S10 = S01 + u0S
0
0 = −10+ 1×−2 = −12

S11 = S03 + u2S
0
2 = 5+ 3× 1 = 8

y = S11 + u1S
1
0 = 8+ 2×−12 = −16 (6)

So y = −16 < 0, the result of branch prediction is no
jump.

B. TRAINING PROCESS
After the branch instruction is executed, the predictor updates
the parameters in the PHT table according to the branch result
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FIGURE 4. Structure of proposed SRNN branch predictor.

of the instruction. The predictor update algorithm needs to be
executed, and the update algorithm is as follows:

Procedure train(y:integer; t:boolean)
Begin

if |y| <θ or predict 6= t then
for i = 0 to n do

wi = wi + txi
end for
for i = 0 to n− 1 do

if xi 6= t then
ui = 1

else
ui = ui + 1

end for
end if
GHR = (GHR� 1) or t

end
When the prediction result is not equal to the real result

or the absolute value of the prediction result is less than the
set threshold value, the update algorithm is executed. If xi is
the same as branch result t , its corresponding weight ui and
wi are increased by 1. If xi is different from branch result t ,
its corresponding wi is decreased by 1, and ui is set to 1.
Then, the GHR register moves left to store the current branch
result t . The core idea of the algorithm is to increase the value
of the component with a strong correlation with the current
branch instruction in the U and W vectors, and decrease the
value of the component with a weak correlation with the
current branch instruction.

IV. PARAMETER OPTIMIZATION DESIGN
In order to explore the optimal design parameters of predictor,
the control variable method is used to study the influence
of GHR register length, PHT table size, data representation
precision and slice size on the prediction accuracy of SRNN
branch predictor. The test data set is SPEC2000 [25], [26].

A. GHR LENGTH
The global branch history is stored in the GHR regis-
ter. Larger GHR register length can record more history

information of branch instructions. In order to study the influ-
ence of GHR register length on branch prediction accuracy,
the experimental control PHT table size is 512, the data
precision is an 8-bit signed integer, and gradually increases
the length of the GHR register. The comparison of branch pre-
diction accuracy of different test sets under different lengths
is shown in Figure 5.

Figure 5 shows that when the length of the GHR register
increases from 4 to 40, the branch prediction accuracy of
the branch predictor will increase. When the length increases
to 32, the branch prediction accuracy of each test set will
reach saturation, and 32 can be selected as the length of the
GHR register.

B. PHT TABLE SIZE
PHT table keeps weight parameters corresponding to each
branch state. Larger PHT table can record more weight val-
ues corresponding to the branch state, which can reduce
the impact of duplicate name problem on branch prediction.
Similarly, using the control variable method, the length of
the experimental control GHR register is 32, and the data
precision is an 8-bit signed integer. Gradually increase the
size of the PHT table, and obtain the comparison of branch
prediction accuracy of different test sets under different sizes
of PHT tables, as shown in Figure 6.

Figure 6 shows that when the PHT table size increases
from 16 to 8192, the branch prediction accuracy of the branch
predictor will increase. When the length increases to 1024,
it will reach saturation. 1024 can be selected as the PHT table
size.

C. DATA REPRESENTATION PRECISION
Benefiting from the good fault tolerance of neural net-
works [27], [28], the data format of the predictor is rep-
resented by signed integers, not by floating-point numbers.
In order to study the effect of signed integers with differ-
ent digits on the branch prediction accuracy, the control
variable method is used to control the size of the PHT
table to 512 and the length of the GHR register to 32,
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FIGURE 5. Influence of GHR length on prediction accuracy.

FIGURE 6. Influence of PHT size on prediction accuracy.

gradually increasing the data representation precision of
signed integers, and the comparison figure shown in Figure 7
is obtained.

As the data representation precision increases from 3 to 10,
the branch prediction accuracy of the branch predictor will
increase. When the number of data bits increases to 8,
the branch prediction accuracy of each test set reaches satura-
tion, Therefore, 8-bit signed integer numbers can be selected
to represent the data.

D. SLICE SIZE
SRNN algorithm needs to slice the input data of the RNN
algorithm. If the slice is small, the accuracy of branch. pre-
diction will be reduced, if the slice is large, the accuracy of
branch prediction will be increased, but the parallelism of
calculation will be reduced, and the calculation delay will

be increased. In order to find the balance between prediction
accuracy and calculation parallelism, control the size of PHT
table to 512, the length of the GHR register to 32, and
the data precision to an 8-bit signed integer, and gradually
increase the size of slices. The comparison of branch predic-
tion rates of different test sets under different slices is shown
in Figure 8.

As can be seen fromFigure 8, the larger the slice, the higher
the branch prediction accuracy of the branch predictor. For
SRNN predictor with GHR register length of 32, when the
slice size increases to 6, the branch prediction accuracy of
each test set reaches saturation. Therefore, when designing
a specific SRNN predictor, it is necessary to explore the
optimal slice size under a specific GHR register length, so as
to achieve a better balance between prediction accuracy and
computational parallelism.
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FIGURE 7. Influence of data representation precision on prediction accuracy.

FIGURE 8. Influence of slice size on prediction accuracy.

V. COMPARISONS
In order to explore the advantages of the SRNN predictor,
the prediction accuracy of different branch predictors is com-
pared under the same hardware consumption. At the same
time, the prediction performance of different predictors in
different training time is analyzed. The test data sets are
SPEC2000 [25], [26] and Dhrystone [29], [30].

In this paper, Bimod [21], [22], Gshare [23] and Perceptron
neural network predictor [5] are selected to compare the
branch prediction accuracy with the SRNN predictor pro-
posed in this paper under the same hardware consumption.
The PHT table size of all predictors is 512, and the GHR
register length of Gshare, Perceptron and SRNN predictors
is 32. Because these four branch predictors use PHT tables
of the same size, and PHT tables are the main resource

consumption of branch predictors, the hardware resources
consumed by these four branch predictors are almost the
same. The four branch predictors perform the same test set
to get the branch direction prediction accuracy comparison
chart as shown in Figure 9.

The prediction accuracy of Gshare is better than Bimod,
but lower than the Perceptron predictor and SRNN predictor.
In the test program with long execution time, the prediction
effect of Perceptron predictor and SRNN predictor is equiv-
alent, but in the test program with short execution time,
the SRNN predictor proposed is better than that of Perceptron
predictor.

Experiments in Figure 9 show that the execution time of
the program will affect the prediction effect of the branch
predictor. Different predictors have different prediction
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FIGURE 9. Comparison of different branch predictors.

FIGURE 10. Change of prediction accuracy with a different training time of different branch predictors.

performances under different execution times. In order to
study this problem, we use the Dhrystone processor test
program to compare the prediction effect of different branch
predictors under different training time. The training dura-
tion is achieved by controlling the number of cycles of the
Dhrystone program. Figure 10 shows the branch prediction
performance of different branch predictors under different
Dhrystone execution times.

As can be seen from Figure 10, when the number of
Dhrytone cycles is between 1-10, the execution time of
the program is short, and the branch predictors have not
been fully trained. At this time, the SRNN predictor is
significantly better than other predictors, and its prediction
accuracy is 2.34% higher than the traditional Perceptron
neural network predictor. With the increase in the number of
Dhrystone cycles, the branch prediction rate of each branch
predictor gradually increases. When the cycle is executed
100000 times, the prediction rate reaches saturation. At this
time, the prediction rate of Perceptron and SRNN predictors
is equal, and better than that of Gshare and Bimod.

VI. CONCLUSION
In this paper, a branch predictor based on the parallel structure
of SRNN is proposed, which has a higher prediction accuracy
in the ‘‘learning period’’ and parallel RNN computing struc-
ture. Using SimpleScalar, the optimal parameters of GHR
register length, PHT table size, data representation precision
and slice size are studied, and the prediction accuracy of
different predictors under different training time is compared.
The experimental results show that the branch predictor pro-
posed in this paper has higher prediction accuracy than the
traditional Bimod and Gshare branch predictors under the
same hardware consumption, and its branch prediction rate is
2.34% higher than the traditional Perceptron neural predictor
in the short learning period.
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