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ABSTRACT Massive multiple-input multiple-output (MIMO) is a key technology in 5G. It enables multiple
users to be served in the same time-frequency block through precoding or beamforming techniques, thus
increasing capacity, reliability and energy efficiency. A key issue in massiveMIMO is the allocation of power
to the individual antennas, in order to achieve a specific objective, e.g., the maximization of the minimum
capacity guaranteed to each user. This is a nondeterministic polynomial (NP)-hard problem that needs to be
solved in a timely manner since the state of the channels evolves in time and the power allocation should stay
in tune with this state. Although several heuristics have been proposed to solve this problem, these entail
a considerable time-complexity. As a result, with the present methods, it cannot be guaranteed that power
allocation happens in time. To solve this problem, we propose a deep neural network (DNN). A DNN has a
low time complexity, but requires an extensive, offline, training process before it becomes operational. The
DNN we propose is the combination of two convolutional layers and four fully connected layers. It takes
as input the long-term fading information and it outputs the power for each antenna element to each user.
We limit ourselves to the case of time-division duplex (TDD) based sub-6GHz networks. Numerical results
show that, our DNN-based method approximates very closely the results of a commonly used heuristic based
on the bisection algorithm.

INDEX TERMS Cell-free massive MIMO, deep learning, power allocation.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) systems, where sev-
eral antennas are deployed in both transmitter and receiver,
have been studied during the last two decades and applied
to many wireless standards [1]. While the initial work
was focused on point-to-point links, multi-user MIMO
(MU-MIMO) attracted more attention in recent years and
is a technique used in 5G. In MU-MIMO a base sta-
tion (BS) simultaneously serves several users in the same
time-frequency resource block. Benefiting from the spatial
diversity and multiplexing, MU-MIMO increases capacity,
enhances reliability, improves energy efficiency and reduces
interference [2]. In order to achieve further capacity gains,
massive MIMO has been introduced, where the number of
antennas in a BS has been increased to hundreds, being at
least one order of magnitude larger than the number of user
equipment (UEs) served simultaneously. As the number of
antennas in an antenna array grows, the channels become
asymptotically deterministic; this is known as channel hard-
ening. As a result, the capacity only depends on the long-term
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fading coefficients, which are stable over a time period of
typically several seconds [3].

Recently, cell-free (CF) massiveMIMO has been proposed
[4], where several remote antenna arrays (RAA) are spread
over a coverage area and are connected to a central controller
(CC) via a fronthaul. The CC function, which in 5G is part of
the BS (gNB), determines the power to be allocated for each
UE at each individual antenna.

In a massive MIMO system, a UE in the coverage area
can, in principle, be served by each and every antenna. In CF
massive-MIMO, this is still true, but the antennas are now
geographically distributed over the coverage area in clusters
(sub-arrays). The difference with a cellular or small cell
system, is that in those, a UE can only be served by antennas
belonging to a particular cluster, i.e., a particular BS. Hence,
in CFmassive-MIMO, the concept of cell has disappeared [5]
and all antennas coherently serve all UEs [6].

Compared to centralized massive MIMO (Fig.1), where all
antennas are co-located in one BS, the merits of CF massive
MIMO are:

(1) Much smaller physical size of the RAAs compared
to a centralized antenna array, which facilitates deployment,
in particular in indoor scenarios.
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FIGURE 1. Centralized massive MIMO vs CF massive MIMO.

(2) Better performance for the same total number of anten-
nas; e.g., in [7] it is shown that CF massive MIMO can have
a significantly higher sum-rate than a centralized system, for
the same precoding and transmission power.

(3) Higher robustness against shadow fading due to the spa-
tial diversity of the RAA arrays; this is particularly important
for mmWave.

There are also some drawbacks of CF massive MIMOwith
respect to centralized massive MIMO:

(1) Higher physical deployment costs due to the geograph-
ical spread of the RAAs and the need for a fronthaul.

(2) Non-negligible propagation delay in the fronthaul,
because the RAAs are spread over a potentially large area.

Since in massive MIMO, and in particular CF massive
MIMO, different UEs are served simultaneously in the same
time-frequency domain, controlling the inter-user interfer-
ence is important. The power allocation plays a crucial role
in controlling this interference and in optimizing the perfor-
mance [8], [9]. In this paper we address this problem for
CF massive MIMO. To ensure quality of service fairness for
the UEs, we intend to do this by max-min power control
optimization. We assume that the UEs have a single active
antenna.

A key benefit of massive MIMO is that the short-term
fading can be neglected due to channel hardening [10]. The
time scale of the long-term fading determines the power
controlling time, which puts a constraint on the validity of the
power allocation decisions. Hence, it limits the time budget
available in the CC for the collection of the channel state
information (CSI), the computation of the transmission power
for each antenna to UE, and, the sending of the power settings
to each RAA via the fronthaul.

The problem we are facing is that the time complexity
of an exact solution of the max-min power optimization is
excessive for the given time budget. Even the heuristics that

are proposed in the literature, e.g., the bisection algorithm in
[4], are too complex to meet the time constraints.

This led us to propose a deep neural network (DNN) to
perform the task. The time-complexity of a DNN is low.
The price one pays is the off-line training that needs to be
performed. This can be lengthy and requires the generation of
a large training data set. However, this is not a real problem
since it is an activity which is performed off-line, before the
DNN becomes operational.

Deep learning has become a popular method to solve com-
plex problems [11]. Universal approximation theory [12],
proves that a DNN can approximate any function that has
continuous values. It has shown competitive performance,
compared to non-machine learning solutions, in communi-
cation networks such as multiple access scheme [13], routing
optimization and congestion reduction [14].

A. RELATED WORK
Many papers have studied massive MIMO, e.g., [15], [16]
and [17], however, most of these consider centralizedmassive
MIMO. A few papers, in particular [7], [18] and [19], have
addressed distributed massive MIMO. They found that a
distributed system offers higher sum-rates than centralized
systems, assuming perfect CSI and no interference. A real-
istic analysis however must account for imperfect CSI as
well as interference between UEs. In [4] the max-min power
allocation, based on imperfect CSI, is studied for the extreme
case where each RAA has only one antenna. In [20] the same
problem is studied for different RAA sizes, assuming fixed
UE positions. However, none of these papers ( [4] and [20])
consider the real-time constraints of the power-allocation,
which is our main concern.

Recently the power of applying deep learning methods
in the control of wireless communication systems has been
shown in [21], [22], and, in particular for massive MIMO,
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in [23], [24], and [25]. In [21] a fully connected neural net-
work mimics the processing of the weighted minimum mean
square error (WMMSE) algorithm to manage interference in
multi-cell networks. The numerical results show that with a
neural network one can closely approximate the performance
of WMMSE but, in much less time. In [23] and [24] it is
shown that a DNN achieves near-optimal accuracy of sig-
nal detection with much less computations compared to the
classical method. DNN-based channel estimations were pro-
posed in [25], [26] and [27], outperforming traditional esti-
mators in terms of computational cost. Specifically, a fast and
flexible denoising convolutional neural network (FFDNet)
is proposed to estimate the channel for cell-free mmWave
massive MIMO in [27], the authors claim that the proposed
FFDNet achieves faster training speed than the existing DNN
methods without sacrificing normalized mean square error
performance.

Similarly, in [28] and [29] deep learning was used to solve
power allocation in massiveMIMO. A fully connected neural
network and a recurrent neural network were proposed to
maximize the spectrum efficiency (SE) and implement the
max-min power policy respectively in [28]. In [29] a two-
layer DNN was used for power allocation to combat inter-
cell interference. The state-of-the-art residual dense block
(ResDense) method was applied in [30] to allocate power in
multi-cell massive MIMO. Numerical results show encour-
aging performance of DNN-based power allocation; hence,
it is expected that DNNs will replace traditional heuristics,
because of their lower time complexity.

B. CONTRIBUTIONS
In this work we consider the real-time power allocation
problem in CF massive MIMO using time-division duplex
operation (TDD). Our contributions are the following:

(1)We formulate the general max-min power allocation
problem, then we propose a heuristic, consisting of a non-
convex iteration algorithm combined with the bisection
method, to solve it.

(2)We construct a DNN to approximate our proposed
heuristic.

(3)We analyze the performance of the DNN in terms of
the accuracy with which it approximates the heuristic and its
time complexity. Our results show that the DNN provides a
very good approximation, while requiring significantly less
computation time.

The paper is organized as follows: in Section II, we formal-
ize the CFmassiveMIMO system and the max-min optimiza-
tion problem. In Section III we propose a heuristic to optimize
the max-min power allocation. Its purpose is to generate
offline a data set to be used for training the DNN and to
assess the results of our DNN approach. The proposed DNN
is discussed in Section IV. Section V shows numerical results,
which provide evidence that our DNN solution approximates
the heuristic quite closely. Section VI summarizes our con-
clusions and indicates further research that is needed.

Notation: Boldface characters denote a matrix or a vector.
()∗ and ()H stand for conjugate and conjugate-transpose,
respectively. | | represents the Euclidean norm, and E{ } is the
expectation operator. We use UE and user interchangeably.

II. CF MASSIVE MIMO SYSTEM
Consider a CF massive MIMO system comprising N RAAs,
each equipped with M antennas. K single-antenna UEs are
served by these RAAs in a given coverage area. Furthermore,
all RAAs are connected to a CC, where the power allocation
is performed. We base our system model on the following
common assumptions:

(1) The system operates in the sub-6GHz frequency bands.
(2) The standard block-fading model ( [31], [32]) is used.
(3) The time-frequency resources are divided into coher-

ence intervals, during which the channel can be regarded as
constant [33].

(4) The channels between antenna m in RAA n and user k ,
for allm, n, and k , are i.i.d. with a Rayleigh fading distribution
[9]:

gkn,m ∼ CN (0, βkn,m) (1)

where βkn,m is the long-term fading coefficient. [34] proposed
that the channel model should be the combination of Rayleigh
and Rician fading, because the LOS probabilities depend on
the distance between the transmitters and receivers. In this
work, we assume Rayleigh fading to simplify the model.

(5) The propagation in the fronthaul is negligible. How-
ever, as argued in [4], the effects of the fronthaul should be
quantified in future work, as is done in [35] and [36].

A. UPLINK CHANNEL ESTIMATION
Let τc be the coherence time expressed in number of modula-
tion symbols. We assume pilot sequences of length K where
K < τc. UE k is preassigned the pilot ψψψk with E{|ψψψk |

2}
= 1 and ψψψkψψψ

H
k ′ = 0 for k 6= k ′. This guarantees that there

is no intra-cell pilot contamination [37]. In general, pilot
contamination is a very important issue in MIMO systems.
It degrades the quality of the CSI, which in turn reduces
the system capacity. References [38] and [39] examine how
intra-cell pilot contamination can be decreased for multi-
cell massive MIMO, [40] checks how to reduce the pilot
contamination for cell-free massive MIMO.

During the channel estimation phase, all users send their
pilots with full transmission power. The received signal at
antenna m in RAA n is the superposition of these pilots:

yn,m =
K∑
k=1

p1/2p gkn,mψψψk +www+ ιιι (2)

where pp is the pilot power, www ∈ CK is an additive Gaussian
white noise vector with element power σ 2 and ιιι ∈ CK

is the pilot contamination vector from other cells with ele-
ment power η2. Based on the received signal, the RAA per-
forms conjugate operations to decode the desired signal from
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user k:

ykn,m = yn,mψψψH
k =

K∑
k ′=1

p1/2p gkn,mψψψk ′ψψψ
H
k +ψψψ

H
k www+ψψψ

H
k ιιι (3)

The Bayes estimator [41] will produce the estimated channel
by prior probability gkn,m ∼ CN (0, βkn,m):

ĝkn,m = E{gkn,m|y
k
n,m} =

p1/2p βkn,m

ppβkn,m + σ 2 + η2
ykn,m (4)

See the details in Appendix A.

B. DOWNLINK TRANSMISSION
Based on the estimated channels, i.e., the CSI values, the CC
determines the power for each antenna in each RAA to trans-
mit data to UEs. Let qk with E {|qk |2} = 1 be the intended
signal for user k , then the transmitted signal of antenna m in
RAA n is :

xn,m =
K∑
k=1

(
pkn,m

)1/2
f kn,mqk (5)

where pkn,m is the downlink transmission power from antenna
m in RAA n to user k and f kn,m is an element of the precod-
ing vector. Since the max-ratio precoding can be performed
locally at each RAA, and hence is very suitable for a CF
massiveMIMOarchitecture [42], we usemax-ratio precoding
as was also done in [9]:

f kn,m =
ĝkn,m√

E{|ĝn,m|2}
(6)

The max-ratio precoding has lower complexity than zero-
forcing and approximates the performance of the optimal
dirty-paper precoding [43] when increasing the number of
antennas [44]. To find a low-complexity precoding algorithm
with good performance is still a challenge. In [45] a promising
deep-learning based algorithm is proposed, which, however,
requires further research and analysis.

UE k will receive the superposition of the signals of all
RAAs in the whole system:

yk =
N∑
n=1

M∑
m=1

(
gkn,m

)∗ K∑
k ′=1

(
pk
′

n,m

)1/2
f k
′

n,mqk ′ + wk (7)

where wk is the thermal noise with element power σ 2 at UE
k .

C. ACHIEVABLE DOWNLINK DATA CAPACITY
We can decompose the right side of equation (7) into a sum
of four terms: the desired signal, the fluctuation caused by the
uncertain channel gains, the interference from other UEs, and
the noise, as shown in (8). According to [9], the achievable
downlink capacity for user k ,Ck is given by the use-and-then-
forget (UatF) bound:

Ck = (1−
K
τc
) log2(1+ SINRk ) (9)

with the achievable signal-to-interference-plus-noise ratio
(SINR) given by (10). Details are shown in Appendix B.

III. MAX-MIN POWER ALLOCATION
As we see in (10), the achievable SINR of user k is a function
of the following variables: long-term fading, pilot power,
white noise and downlink transmission power. In this section,
we use a heuristic consisting of a combined bisection-plus-
iteration algorithm for max-min power allocation. The max-
min policy ensures quality of service fairness among all UEs.
Other power allocation policies such as new fairness power
allocation [46], max product SINR [30], given target SINR
[31] could also be considered, which would lead to a different
optimization objective function.

The max-min power allocation policy can be formulated
as:

max
pkn,m

min
k
SINRk

s.t.
K∑
k=1

pkn,m ≤ pl (11)

where pl is the downlink transmission power limitation of
each antenna, n = 1, 2, . . . ,N ; m = 1, 2, . . . ,M and
k = 1, 2, . . . ,K . An exact solution for this optimization
problem is not feasible, since the time complexity increases
exponentially as M ,N and K increase linearly, i.e., it is
nondeterministic polynomial (NP)-hard. Therefore, one has
to resort to a heuristic to solve it. A widely adopted heuristic
(see, e.g., [4]) is the bisection algorithm [47], which divides
the problem into two sub-problems, namely, the candidate
value problem and the feasibility problem. In each loop of the
bisection algorithm, a candidate value is chosen to determine
the constraints of the subsequent feasibility problem. The
challenge of this method is that we need to solve a non-
convex feasibility problem in each loop, which is a nonlinear
inequalities problemwithK+NM constraints andNMK vari-
ables. There is no analytical solution, therefore we propose a
numerical solution given by Algorithm 1. This, of course, will
give us sub-optimal solutions.

The key idea of Algorithm 1 is that, after an initial power
allocation, the user with the highest capacity will always
give its allocated power to the user with the lowest capac-
ity, provided that its capacity does not go below the can-
didate capacity that corresponds to SINRcandidate, which is
SINRcandidate = (SINRmax + SINRmin)/2 in our bisection
algorithm. At the stopping point of the algorithm, the dif-
ference in SINR between the user with the highest and
the one with the lowest capacity, will be no more than
ε1. If we set ε1 small enough, the capacity of all users
will be regarded as sufficiently equal, achieving fairness.
The tolerances ε2 and ε3, here, are used to avoid endless
loops.

The time complexity to solve (11) by our heuristic is
O(log2(MN )M3N 3K 2) which is shown in Appendix C . Even
such a polynomial complexity can be too high when the
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Algorithm 1
Input:Input:Input: SINRcandidate
Output:Output:Output: feasibility, pkn,m
1: Set initial power allocation and tolerance ε1, ε2, ε3 > 0
2: while SINRmax − SINRmin > ε1
3: if SINRmax − SINRcandidate < ε2
4: break while
5: end if
6: i = arg

k
max SINRk

7: j = arg
k
min SINRk

8: for t = 1 : MN
9: set: sup = 1
10: while pit/2

sup > ε3
11: (pit )

′
= pit − p

i
t/2

sup

12: (pjt )
′
= pjt + p

i
t/2

sup

13: if SINR′i ≥ SINRcandidate
14: pit = (pit )

′, pjt = (pjt )
′

15: if SINR′j ≥ SINRcandidate
16: break for
17: end if
18: else
19: sup = sup+ 1
20: end if
21: end while
22: end for
23: if SINRmin ≥ SINRcandidate
24: break while
25: end if
26: end while
27: if SINRmin < SINRcandidate
28: unfeasible
29: else
30: feasible
31: end if

solution has to be obtained within the time constraints. This
was the motivation to try DNNs to solve the problem.

IV. DEEP LEARNING BASED POWER ALLOCATION
In this section we propose a DNN to perform the max-min
power allocation. This method has low complexity: it only
requires a number of layers of simple operations such as
matrix or vector multiplications [21]. In addition, a DNN
is expected to run on neural processing units (NPU) [48],
specifically designed to support machine learning, making
it possible to parallelize parts of the computation. Hence
it should be easy to meet the time constraints. Unlike tra-
ditional iterative methods of solving (11), the DNN-based
power allocation operates as a nonlinear regression: given the
input information (the long-term fading coefficients βkn,m),
the DNNwill output the transmission power for each antenna.
Since we use a supervised-learningmethod, a training data set
is required. For a given CFmassiveMIMOnetwork, the train-
ing should be based on the particular network configuration
and the usage scenarios to be expected.

Let there be N RAAs in the coverage area. For each
realization, we assume K UEs are uniformly and randomly
distributed in the coverage area. The max-min power allo-
cation is computed by the heuristic described in section III,
to generate a sufficiently large number of data points as
training samples for the DNN. We record three elements
of each realization to compose a training data point: the
long-term fading coefficients K ×MN matrix βββ, the achiev-
able signal to noise ratio S, i.e., the final SINRcandidate,
and the corresponding computed power allocation vector ppp.
Multiple realizations are produced to generate the training
dataset.

yk = E{
N∑
n=1

M∑
m=1

(
gkn,m

)∗ (
pkn,m

)1/2
f kn,mqk}︸ ︷︷ ︸

Desired

+

N∑
n=1

M∑
m=1

(
gkn,m

)∗ (
pkn,m

)1/2
f kn,mqk − E{

N∑
n=1

M∑
m=1

(
gkn,m

)∗ (
pkn,m

)1/2
f kn,mqk}︸ ︷︷ ︸

Fluctuation

+

N∑
n=1

M∑
m=1

(
gkn,m

)∗∑
k ′ 6=k

(
pk
′

n,m

)1/2
f k
′

n,mqk ′︸ ︷︷ ︸
Interference

+ wk︸︷︷︸
Noise

(8)

SINRk =

|
∑N

n=1
∑M

m=1(p
k
n,m)

1/2 1√∑K
i=1

(p1/2p βin,m)2

ppβin,m+σ2+η2

pp(βkn,m)
2

ppβkn,m+σ 2+η2
|
2

∑K
k ′=1

∑N
n=1

∑M
m=1 p

k ′
n,m

1∑K
i=1

(p1/2p βin,m)2

ppβin,m+σ2+η2

pp(βk
′

n,m)2

ppβk
′

n,m+σ
2+η2

βkn,m + σ
2 + η2

(10)

MSE =
1
i

I∑
i=1

(
1

NMK

N∑
n=1

M∑
m=1

K∑
k=1

(
(pkn,m)

pre,i
− (pkn,m)

target,i

pl
)2︸ ︷︷ ︸

average power coefficient error

+ (
(S)pre,i − (S)target,i

(S)target,i
)2︸ ︷︷ ︸

regression rate error

) (12)

VOLUME 8, 2020 87189



Y. Zhao et al.: Power Allocation in Cell-Free Massive MIMO

A. DESIGN OF THE DNN
Several DNNs have been proposed in the literature to solve
the power allocation problem. In [21], a fully connected
DNN was proposed to control interference. Its purpose was
to approximate the WMMSE algorithm. Although it can be
proved that an arbitrary accuracy can be achieved by sev-
eral layers, overfitting, i.e., good performance for training
data while bad performance for testing data, is inherently
a shortcoming of a fully connected network. In [30] the
residual dense block (ResDense), which consists of several
convolutional layers is used for power allocation in massive
MIMO. Good performance was achieved by this powerful
DNN; however, the objective function is different from ours:
the sum spectral efficiency is maximized. The solution for
this maximization problem is based on the greedy strategy,
i.e., a user will always be served by its closest BS. This makes
the problem easier to solve as the solution is confined to
a small feasible region. Moreover, since [30] studied multi-
cell MIMO, based on a centralized MIMO setup, the system
model is entirely different from ours. Since neither of these
DNNs was suitable for solving our problem, we needed a
different design.

As mentioned in Section III our proposed algorithm for
power allocation involves two parts: the candidate value prob-
lem and the feasibility problem. We note that the candidate
value SINRcandidate is determined by a feasible solution, while
the power allocation is based on SINRcandidate. This makes the
problem more complicated since we need to solve two sub-
optimization problems. If one is known or obtained easily,
e.g., the final SINRcandidate (S) is known, we can decrease the
loop in Algorithm 1 or, if we can easily determine whether
SINRcandidate is feasible, in each loop of Algorithm 1, a simple
bisection computation will get the final SINRcandidate by an
iteration involving multiple steps, thereby simplifying the
optimization significantly.

Based on the above analysis, and according to the uni-
versal approximation theory [12], we expect to get S by
using a DNN with several layers. We use a convolutional
neural network for the regression of S, because compared
with the fully connected neural network, it can signifi-
cantly decrease the number of parameters. After we get S,
we need an iterative algorithm to solve the feasibility prob-
lem, i.e., the power allocation. Referring to [21], we can use
several fully connected layers to approximate this iterative
algorithm. So, we design the structure of our DNN as con-
sisting of two stages: regression processing and allocation
processing.

While we propose a specific DNN structure, it is worth to
point out that finding the best DNN structure and the values of
the hyper-parameters can also be seen as optimization prob-
lems in their own right, requiring further research. Referring
to the literature ( [21], [49]), we tried several structures and
hyper-parameters, including fully connected networks (from
one layer to six layers) and traditional convolutional neural
networks (two convolutional layers with a number of fully
connected layers varying from one to four), to choose the

FIGURE 2. Structure of the DNN.

best configuration, i.e., the one that gives us the lowest mean
square error (MSE) on the training dataset.

Let us now discuss in detail the two stages of the DNN. For
an explanation of the general concepts used in convolutional
neural networks, we refer to [11] and [49]. Rectified linear
units (ReLu) are used as our activation functions in all layers.
Regression: The objective of the regression part is to get

S, the achievable SINR, from the input, i.e., from the long-
term fading coefficients matrix βββ. We use two convolutional
layers and two fully connected layers for this process (see
Fig.2). Specifically, for the first convolutional layer, we use
5 × M × Q filters with stride [1,M ] to operate on the input
matrix. The result of this convolutional operation yields Q
feature matrices withK×N elements by zero padding 2. Note
that we do not use a pooling operation after feature extraction
in this layer. In the second layer, we use 5×5×Q filters with
stride [1, 1] and zero padding 2 to guarantee the same num-
ber of inputs and outputs in this layer. Then a max-pooling
operation is used to decrease the number of parameters. Here
we use a 2 × 2 kernel size with stride [2, 2]. After that we
adopt a two-layer fully connected network to get the output
S. The numbers of neurons in these two fully connected
layers are dK/2e×dN/2e×Q anddK/2e×dN/2e×dQ/2e,
respectively.derepresents the ceiling operation.
Allocation: When the intermediate S is obtained, the next

step is to perform the process of power allocation. We derive
from (10) that there is a multiplication operation of βββ and
S to calculate the transmission power; so Sβββ is the input in
this phase. Finally, two fully connected layers with 2KNM
and KNM neurons are employed to describe the nonlinear
relationship between the input Sβββ and the output ppp.

B. TRAINING OF THE DNN
The DNN is trained in two phases, i.e., the input-output pair
(βββ, S) is used to adjust the filters in the first two fully con-
nected layers (regression processing), while (Sβββ,ppp) is used
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to train the following two fully connected layers (allocation
processing). MSE is used as loss function, see (12). I is the
number of training data, and (pkn,m)

pre,i, (pkn,m)
target,i, (S)pre,i,

(S)target,i represent the output of the power allocation by
the DNN, the target output of the power allocation by the
training data set, the intermediate value by the DNN, and
the intermediate value by the training data set for sample
i, respectively. The first term in (12) represents the average
power coefficient error while the second one is the regression
rate error of the intermediate S.

The DNN is trained using the adapted gradient descent
method described in [50], which means that the learning rate
is updated in each epoch: in initial epochs the learning rates
are large to guarantee that the loss function will converge,
while in the later epochs the learning rates are getting smaller
to achieve sufficient searching. The training process contains
updating of weights between neurons and updating of the bias
in each layer by partial derivatives. More details of how the
training process works are described in [11].

C. TIME COMPLEXITY OF THE DNN
The time complexity of the DNN solution mainly lies in the
training phase, which is not a problem for the operational
phase of the system, since it can be done offline. The com-
plexity of the DNN power allocation operation lies in the
online forward propagation part. Assuming a well-trained
DNN, the time complexity is O(K 2N 2M2); see Appendix D
for details. Compared to the complexity of the heuristic algo-
rithm O(log2(MN )M3N 3K 2) in Section III, the DNN power
allocation eliminates multiple iteration loops. The compu-
tation times of the two methods are compared in the next
section.

V. COMPARISON OF DNN-BASED AND
HEURISTIC-BASED POWER ALLOCATION
In this section, we show by simulations that the DNN-based
power allocation can closely approximate the performance of
the bisection heuristic with a much lower time complexity.

A. CONFIGURATION AND SCENARIO FOR SIMULATION
We consider a 200×200m2 square coverage area with a total
of 100 antennas to serve K = 5 users. There are 9 RAAs
(N = 9) placed in a regular grid as shown in Fig.3. Each
RAA has 11 antennas (M = 11), except for the central
one which has 12. This has no particular significance, except
that the simulations were originally done for studying the
effects of the degree of distribution of the antennas on the
network capacity. Note that determining the optimal degree
of distribution and geographical deployment of RAAs in
CF massive MIMO is an open issue. Finding the optimal
configuration, given a particular number of antennas requires
further research. We have used a sample configuration of a
CF massive MIMO system to demonstrate the potential of
the DNN-based solution. However, for a new configuration
(e.g., different deployment of RAAs), the DNN might need
to be retrained.

FIGURE 3. CF massive MIMO configuration used in simulations.

As in [4], the maximum power levels for each RAA
antenna and each UE are 200 mW and 100 mW respectively.
The carrier frequency is 1.9 GHz and the available bandwidth
is 20 MHz. We set the height of the RAAs to 15 m and for the
UEs to 1.65 m. We assume that the noise power is -94 dBm,
and the standard deviation of shadow fading is 8 dB. The
number of modulation samples in each coherence interval is
assumed to be 200. The pilot contamination from other cells
is −80 dBm.
The mini batch size, i.e., the number of samples to process

before the parameters are updated in the DNN, is 500. The
initial learning rate is 0.002 and the maximum number of
iterations is 800. The initial weights and bias are Gaussian
random variables that have an N (0, 0.01) distribution. The
number of filters in each convolutional layer is 60. For the
first two fully connected layers, we set the number of neu-
rons to 900 and 450 respectively; while for the latter fully
connected layers, we select 1000 and 500 respectively. The
simulation parameters are listed in Table 1.

We assume that a correlated shadowing path loss model
can be used, where the long-term fading coefficients βkn,m are
given by:

βkn,m = PLkn,m × 10
σshz

k
n,m

10 (13)

where PLkn,m is the path loss in dB, the second factor repre-
sents the shadow fading with standard deviation σsh and zkn,m
is the shadow fading coefficient defined as in [4], [51]:

zkn,m =
√
κan,m +

√
1− κbk (14)

where an,m ∼ N (0, 1) and bk ∼ N (0, 1) are independent
random variables, and κ , where 0 ≤ κ ≤ 1, is a parameter.
When κ = 0, the shadowing from a given user is the same
to all RAAs, which means that the obstacle is near to the UE;
while for κ = 1, the shadowing from a given RAA is the same
to all users, means that the obstacle is near to the RAA. In our
simulation, we set κ = 0.5 and adopt the covariance functions
of an,m and bk in [51]. The three-slope path loss model [52]
is formulated as in (15). dkn,m is the distance between user k
and antenna m of RAA n. L is defined in [53] as (16), where
f is the carrier frequency, hRAA is the height of the RAAs and
hu is the UE antenna height.
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TABLE 1. Parameters.

FIGURE 4. Power coefficient error, regression rate error and loss function
as a function of the number of iterations.

B. PERFORMANCE OF DNN BASED POWER ALLOCATION
We evaluate the DNN-based power allocation in two scenar-
ios, namely fixed-position UEs and moving UEs.

We should first train the DNN before testing and using it.
Therefore, we generated a dataset, containing 432000 data
points. The DNN is trained using 430000 data points.
Fig.4 shows how the power coefficient error, the regression
rate error and the loss function, evolve with the number of
iterations.

Two hyper-parameters influence the loss function. The first
one is the learning rate, i.e., the evolution rate of the DNN.
A higher rate results in a faster convergence but runs the risk
of ending up in a local optimum, which means insufficient
searching has been done. A low rate, on the other hand, may
lead to a loss function that does not converge. The second
influential hyper-parameter is the number of filters (Q) in
each convolutional layer. More filters improve the prediction
accuracy, i.e., the loss becomes smaller, however, it also
implies that the training time becomes longer.

FIGURE 5. CDF of power allocation with N = 9, M = 11/12, fixed UE
scenario.

It is worth to point out that the number of filters dominates
the loss function of the regression while the learning rate
has more influence on the loss function of the allocation.
We tried different hyper-parameters, considering the trade-
offs between the number of filters and the implementation
complexity and, between the learning rate and the training
time. We see from Fig.4 that after 800 iterations, the loss
function is close to 0; its value is actually 10−5. This value is
still expected to decrease as the number of iterations grows.

1) FIXED-POSITION UEs
For the UE fixed-position scenario, we use the remaining
2000 data points for testing. Fig.5 compares the power allo-
cation obtained by the DNN and the target, determined by the
bisection heuristic. It does this by comparing the CDF of the
power allocation from 2,000 testing data points. Each data
point consists of 500 transmit-receive pairs (MNK ), so the
data in Fig.5 is the result of 106 pairs. A specific transmit-

PLkn,m =


−L − 35 log10(d

k
n,m), d

k
n,m > d1

−L − 15 log10(d1)− 20 log10(d
k
n,m), d0 < dkn,m ≤ d1

−L − 15 log10(d1)− 20 log10(d0), d
k
n,m ≤ d0

(15)

L = 46.3+ 33.9 log10(f )− 13.82 log10(hRAA)− (1.1 log10(f )− 0.7)hu + 1.56 log10(f )− 0.8 (16)
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FIGURE 6. One random data from 2,000 data points with N = 9,
M = 11/12, fixed UE scenario.

receive pair corresponds to a particular antenna of an RAA
and the receiver of a UE. We found that the power allocated
to around 30% of the channels is zero. This means that some
antennas are not providing power to some users. We also
observe that the power distribution generated by the DNN and
the target almost overlap, which means that the two methods
achieve similar results.

However, the CDF only describes the results statistically,
different transmit-receive pairs may get very close transmis-
sion power, as a result, a similar CDF is obtained. To make it
clear, we chose the results of one data point, randomly taken
from the test set, which contains 2000 data points, see Fig.6.

Fig.6 (a) shows the CDF of the power allocation for one
randomly chosen data from 2,000 test data, Fig.6 (b) shows,
for this specific data, the target and the DNN power allocation
for each of the 500 transmit-receive pairs. The errors between
DNN and target (bisection) power allocation are mostly less
than 1mW. However, compared to the right side in Fig.6 (a),
the errors on the left side are much larger. This is because a
max-pooling operation is used after the second convolutional
layer in the DNN, causing the information of small values

FIGURE 7. CDF of errors of power allocation with N = 9, M = 11/12, fixed
UE scenario.

FIGURE 8. CDF of per-user data capacity with N = 9, M = 11/12, fixed UE
scenario.

to disappear. Fig.6 also demonstrates that our DNN-based
power allocation does not perform as well as Fig.5 shows:
different transmit-receive pairs may get close or even same
allocated power. This result leads us to make a statistical
analysis of errors for the test data. We recorded the CDF of
errors for the 2000 test data (i.e., 106 transmit-receive pairs)
in Fig.7.

We observe that the relative error (|Target-DNN|/pl)
between the DNN allocation and the target is less than
0.01 for around 59% transmit-receive pairs and 0.05 for 97%.
We calculate that the average error of power allocation for the
whole test data set, is 0.0123.

Even if the DNN achieves a very similar power allocation
as the bisection algorithm, a question arises: what is the
effect of the allocation error on the per-user data capacity?
Fig.8 gives some insight. It compares the CDF of the per-user
data capacity for the DNN allocation and the target bisection
heuristic allocation, based on the total test set containing
2,000 data points.

VOLUME 8, 2020 87193



Y. Zhao et al.: Power Allocation in Cell-Free Massive MIMO

FIGURE 9. Moving-UE scenario traces.

We use the same trained DNN to perform power allocation
for both the case with pilot contamination and without pilot
contamination. We observe that the difference of DNN and
target heuristic for both cases are almost the same, which
means that the performance of our DNN is not noticeably
affected by pilot contamination. This is because the power
allocation depends on the long-term fading β. The pilot
contamination only affects the performance of the chan-
nel estimation, causing a degradation of the per-user data
capacity. Fig.8 also shows that the gap for both cases is no
more than 4Mbits/s, which maps to at least 94% accuracy
of approximation, measured as (1-|Target-DNN|/target). So,
we can conclude that the DNN approximates the behavior of
the bisection heuristic very closely in the fixed-position UE
scenario.

2) MOVING UEs
For the moving-UE scenario, each UE has an initial position
that is random and uniformly distributed over the coverage
area. Each UE moves in a random direction (up, down, left
and right) with a randomly chosen velocity distributed uni-
formly between 0 and 5m/s. It maintains its speed and direc-
tion for 1s, before selecting a new speed and direction. When
the UE reaches the boundary of the coverage area it reverses
its direction of movement to stay within the coverage area.
A trace of a realization of such a scenario, over the simulation
period, for fiveUEs, is shown in Fig.9.We simulate a duration
of 200 seconds at a random initial position of UEs and assume
that the UEs will not get out of the coverage area. The DNN-
based power allocation is performed every second, after the
CC has estimated the CSI from the uplink pilots. We compare
again the DNN-based method and the bisection-algorithm
based heuristic. Fig.10 shows the CDF of the power allocation
for both methods, over a 200s period, thus the results come
from 105 transceiver pairs.

From Fig.10 we can see that DNN-based power allocation
works worse than in fixed-position scenario. Much more
errors occurred in 1 ∼ 70mW. We also record the results of
one random second out of the 200 seconds in Fig.11.

FIGURE 10. CDF of power allocation with N = 9, M = 11/12, moving UE
scenario.

FIGURE 11. One random data from 200 seconds with N = 9, M = 11/12,
moving UE scenario.

Compared to Fig.6, Fig.11 shows that the DNN-based
power allocation approximates the trend of the target bisec-
tion method, but has larger errors with respect to the target
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FIGURE 12. CDF of errors of power allocation with N = 9, M = 11/12,
moving UE scenario.

FIGURE 13. CDF of per-user data capacity with N = 9, M = 11/12, moving
UE scenario.

than in the fixed-position scenario. The input to the DNN,
consists of the long-term fading coefficients. However in a
moving UE scenario, with random moving directions, ran-
dom velocity of the UEs and shadowing, more noise is created
for the input data. As in the fixed-UE scenario, we also
record the statistical errors in Fig.12. We note that 38.1%
of the errors are less than 0.01 and 57.5% of the errors are
less than 0.05. The average error is 0.0609. This large error
may be caused by underfitting, i.e., our DNN is insufficiently
sensitive to the noise of input data. This could likely be solved
by using a recurrent neural network. However this needs to be
investigated in future research.

Finally, we calculate the final per-user capacity of moving
UEs in Fig.13, the results come from a 200 second operation
period.

The largest difference between the two methods occurs
around 60 Mbits/s. The corresponding accuracy is around
85%. We also observe that the difference is the largest in
the low capacity part, which implies that for the cases where

FIGURE 14. 4 RAA deployment.

FIGURE 15. CDF of errors of power allocation with N = 4, M = 25 for the
4-RAA and fixed-UE scenario.

UEs are in an unfavorable location, e.g., due to shadowing,
the DNN does not perform as well.

3) DIFFERENT DEPLOYMENTS OF RAAs
To see what impact a different deployment of the RAAs
has on the effectiveness of the DNN method compared to
the bisection heuristic, we consider the RAA configuration
shown in Fig.14. 4 RAAs are placed in the coverage area and
each RAA is equipped with 25 antennas, 5 single-antenna
UEs are served. The UEs are stationary.

We generate 173800 data points using the bisection heuris-
tic. Then 171800 data points are used for continuous training,
i.e., totally 601800 (171800+430000) data points have been
used to train our DNN. The rest, 2000 data points are for
testing. We show the CDF of the power allocation error (with
respect to the bisection heuristic) in Fig.15. We observe that
48% of the errors are less than 0.01 and 87.5% are less than
0.05. The average error is 0.0209.

Finally, in Fig.16 we show the CDF of per-user data capac-
ity. The largest errors occur in the low capacity part (from 0 to
60 Mbits/s), where the poor channels add more difficulties
for the DNN. While for the other part, the difference between
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TABLE 2. Executing time of two methods to solve the power allocation problem.

FIGURE 16. CDF of per-user data capacity with N = 4, M = 25 for the
4-RAA and fixed-UE scenario.

DNN and the bisection heuristic is no more than 6 Mbits/s,
mapping to around 88% accuracy.

4) COMPARISON OF EXECUTION TIME
The time complexity of the DNN method is dramatically
lower than the one of the bisection heuristic. Nevertheless,
it is difficult to do a fair comparison in terms of processing
time on a real implementation. One important reason is that
the implementations will be based on different hardware
architectures. Where the bisection heuristic is well suited
to be executed on a classical (multicore) CPU architecture,
the DNN will likely run on a hardware architecture opti-
mized for machine leaning, e.g., an NPU. Nevertheless, it is
revealing to see the huge difference, when both are executed
on the same hardware. In Table 2 we recorded 10 random
samples from 2,000 data points. We use the same platform,
a 4 core Intelr Core i5-7300 CPU with 2.6 GHz frequency.
The programs are both written in Python 3.7.2.

From table 2 it is obvious that the DNN-based power allo-
cation requires much less processing time than the bisection
heuristic and has less variation. For the DNN, the number of
calculations is constant. The fluctuation of processing time
comes from the calculation of different floating-point num-
bers and the inaccuracy of reading the system time. The CPU
load also plays a role in this fluctuation. For the bisection
heuristic, the time fluctuation mainly comes from different
initializations, i.e., a different starting point of the search
can make a large difference in the time needed to find the
optimum.

VI. CONCLUSION
In this paper, we proposed a DNN to perform the power
allocation in a CF massive MIMO system. The max-min
power policy, which provides a fair quality of service for all

users, was considered.We showed that this NP-hard problem,
for which a time-consuming heuristic is required to meet the
time constraints imposed by the coherence time, can be better
solved by a well-trained DNN. The DNN approach has a low
time complexity while exhibiting a perform very close to the
commonly used heuristic based on the bisection algorithm.
The cost of using a DNN is the lengthy training required. But
this should not be a problem in practice since it is done offline,
before the network becomes operational.

We demonstrated the qualities of the DNN solution using
a particular network configuration and scenario. These quali-
ties, i.e., the close approximation of the behavior of a heuris-
tic, should in principle hold for any network and scenario,
since DNNs have been proven, given enough training, to be
capable of approximating any function arbitrarily close.

However, there are some concerns that we did not address
in this paper and that require further research. In particular
finding the most suitable DNN structure, possibly related to
the configuration of the CF massive MIMO system, and the
determination of the hyper-parameters, which is important
for the (prediction) capacity of the DNN. Another issue is
that we considered a microwave network. To extend this
to the mmWave domain, might be a more complex prob-
lem since the UEs are likely to be equipped with multiple
antenna arrays, instead of a single antenna like we assumed in
this paper. Furthermore, more complex channel models, e.g.,
Rician or the combination of Rician and Rayleigh, should be
considered.

APPENDIX
A. BAYES ESTIMATION FOR THE CHANNEL
As |ψψψk |

2
= 1 and ψψψkψψψ

H
k ′ = 0 for k 6= k ′, we can rewrite (3)

as:

ykn,m = p1/2p gkn,m +ψψψ
H
k w+ψψψ

H
k ιιι (A.1)

From the prior probability gkn,m ∼ CN (0, βkn,m)and
(A.1) we can easily obtain the prior probability ykn,m ∼
CN (0, ppβkn,m+ σ

2
+ η2) as well as the posterior probability

ykn,m|g
k
n,m ∼ CN (p1/2p gkn,m, σ

2
+ η2), then see (A.2). Similar

processing for the imaginary part yields (4).

B. ACHIEVABLE SINR OF UE
Reference [33] shows that the achievable data capacity of
reliable data transmission [54] will not exceed the Shan-
non limit [55] in (9). The pre-log factor (1 − K/τc)
refers to payload transmission, as K modulation symbols
are used during channel estimation. SINRk is formulated
as (B.1).
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1) |Desired |2

See (B.2). From (3) and (4) we have:

E{|ĝn,m|2} =
K∑
k=1

(p1/2p βkn,m)
2

(ppβkn,m + σ 2 + η2)2
E{|ykn,m|

2
}

=

K∑
k=1

(p1/2p βkn,m)
2

ppβkn,m + σ 2 + η2
(B.3)

and:

E{(gkn,m)
∗ĝkn,m}

= E{(gkn,m)
∗

p1/2p βkn,m

ppβkn,m + σ 2 + η2
(p1/2p gkn,m +ψψψ

H
k w+ψψψ

H
k ιιι)}

=
pp(βkn,m)

2

ppβkn,m + σ 2 + η2
(B.4)

2) E|Fluctuation|2

See(B.6), then since gkn,m ∼ CN (0, βkn,m), we have:

D{|gkn,m|
2
} = D{(Re(gkn,m))

2
+ (Im(gkn,m))

2
}

= D{(Re(gkn,m))
2
} + D{(Im(gkn,m))

2
} (B.7)

where Re(gkn,m), Im(gkn,m)∼ N (0, βkn,m/2), then:

(
Re(gkn,m)√
βkn,m/2

)2, (
Im(gkn,m)√
βkn,m/2

)2 ∼ χ (1) (B.8)

So we can get:

D{(
Re(gkn,m)√
βkn,m/2

)2} = D{(
Im(gkn,m)√
βkn,m/2

)2} = 2 (B.9)

D{(Re(gkn,m)
2
} = D{(Im(gkn,m)

2
} =

(βkn,m)
2

2
(B.10)

Plugging (B.6), (B.7) and (B.10):

E{|Fluctuation|2}

=

N∑
n=1

M∑
m=1

pkn,m
1∑K

k ′=1
(p1/2p βk

′

n,m)2

ppβk
′

n,m+σ
2+η2

pp(βkn,m)
3

ppβkn,m + σ 2 + η2

(B.11)

3) E|Interference|2

See (B.12). Finally, we get (10) by combining (B.5), (B.11),
(B.12).

C. TIME COMPLEXITY OF THE PROPOSED HEURISTIC
To calculate the computational complexity of the bisection-
based heuristic we should consider the worst case of the
power allocation. The time complexity of the bisection algo-
rithm is O(log2(MN )) according to [47].

We calculate the complexity of Algorithm 1. SINRmax is
approximately linearly increasing withMN while SINRmin is
0 for the worst case. In each iteration of this loop, SINRmax
and SINRmin are updated as:

SINRmax = SINRmax − δ1 (C.1)
SINRmin = SINRmin + δ2 (C.2)

where δ1 and δ2 are updating steps for SINRmax and SINRmin,
respectively. The calculation of δ1 and δ2 are very compli-
cated because they are dependent on variable factors such as
the actual deployment of the RAAs, the position of the users
etc. Moreover, they are always changing in each loop of the
iteration. However, we can derive from the convergence of
our proposed algorithm that the smallest values of δ1 and δ2
(the worst case), are unrelated to the scale of the problem.
This means that we can use the smallest value of δ1 and
δ2 to address the worst case of the iteration to meet the
termination condition:
(SINRmax − iter × min(δ′1, δ

′

2))
−(SINRmin + iter × min(δ′1, δ

′

2)) ≤ ε1 (C.3)

E{Re(gkn,m|y
k
n,m)} =

∫
−∞

−∞

x
P{Re(ykn,m|g

k
n,m)} × P{Re(gkn,m)}

P{Re(ykn,m)}
dx

=

∫
+∞

−∞

x

1
√
2π
√
σ2+η2

2

e
−

Re[(ykn,m−
√ppx)2]

2× σ
2+η2
2 ×

1
√
2π

√
βkn,m
2

e
−

Re(x2)

2×
βkn,m
2

1
√
2π

√
ppβkn,m+σ2+η2

2

e
−

Re[(ykn,m)2]

2×
ppβn,mk+σ2+η2

2

dx =
p1/2p βkn,m

ppβkn,m + σ 2 + η2
Re(ykn,m) (A.2)

SNRk =
|Desired |2

E{|Fluctuation|2} + E{|Interference|2} + E{|Noise|2}
(B.1)

|Desired |2 = |E{
N∑
n=1

M∑
m=1

(gkn,m)
∗(pkn,m)

1/2f kn,mqk}|
2
= |E{

N∑
n=1

M∑
m=1

(gkn,m)
∗(pkn,m)

1/2 ĝkn,m√
E{|ĝn,m|2}

}|
2 (B.2)
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|Desired |2 = |E{
N∑
n=1

M∑
m=1

(gkn,m)
∗(pkn,m)

1/2f kn,mqk}|
2
= |

N∑
n=1

M∑
m=1

(pkn,m)
1/2 1√∑K

k=1
(p1/2p βkn,m)2

ppβkn,m+σ 2+η2

pp(βkn,m)
2

ppβkn,m + σ 2 + η2
|
2

(B.5)

E{|Fluctuation|2} = E{|
N∑
n=1

M∑
m=1

(gkn,m)
∗(pkn,m)

1/2f kn,mqk − E{
N∑
n=1

M∑
m=1

(gkn,m)
∗(pkn,m)

1/2f kn,mqk}|
2
}

= D{
N∑
n=1

M∑
m=1

(gkn,m)
∗(pkn,m)

1/2f kn,mqk}

=

N∑
n=1

M∑
m=1

pkn,m
1∑K

k ′=1
(p1/2p βk

′

n,m)2

ppβk
′

n,m+σ
2+η2

pp(βkn,m)
2

(ppβkn,m + σ 2 + η2)2
[ppD{|gkn,m|

2
} + βkn,mσ

2
++βkn,mη

2] (B.6)

E{|Interference|2} = E{|
N∑
n=1

M∑
m=1

(gkn,m)
∗
∑
k ′ 6=k

(pk
′

n,m)
1/2f k

′

n,m|
2
} = D{

N∑
n=1

M∑
m=1

(gkn,m)
∗
∑
k ′ 6=k

(pk
′

n,m)
1/2f k

′

n,m}

=

∑
k ′ 6=k

N∑
n=1

M∑
m=1

pk
′

n,m
1∑K

i=1
(p1/2p β in,m)2

ppβ in,m+σ 2+η2

pp(βk
′

n,m)
2

ppβk
′

n,m + σ
2 + η2

βkn,m (B.12)

where δ′1 and δ
′

2 are the smallest values of δ1 and δ2, respec-
tively, iter is the number of iterations of Step 2 inAlgorithm 1.
So we can calculate iter = θMN , where θ is a linear
coefficient. The complexity of step 8-22 in Algorithm 1 is:

O(2 log2(pl/ε3)MN (MNK 2)) = O(M2N 2K 2) (C.4)

D. TIME COMPLEXITY OF THE PROPOSED DNN
The computational complexity of the DNN lies in the forward
propagation. In the first convolutional layer, we use 5×M×Q
filters with stride [1,M ]. The input is one K ×MN matrix so
the output of the first convolutional layer is a K × N × Q
matrix, which implies K × N × Q convolutional computa-
tions. So, the complexity of the first convolutional layer is
O(5KMNQ). Similarly, the complexity of the second convo-
lutional layer is O(25KMNQ2). The first two fully connected
layers in the regression processing have a complexity:

O(dK/2e × dN/2e × Q× dK/2e × dN/2e × dQ/2e
+dK/2e × dN/2e × dQ/2e)

≈ O(K 2N 2Q2/32+ KNQ/8) (D.1)

The last fully connected layer in the optimization process-
ing has a complexity of O(2K 2N 2M2

+ KNM ). So, we can
get the total time complexity as:

O(5KNMQ+ 25KNMQ2

+K 2N 2Q2/32+ KNQ+ 2K 2N 2M2
+ KNM )

= O(K 2N 2M2) (D.2)

Finally we get the total time complexity of our proposed
heuristic:

O(log2(MN )× θMN ×M2N 2K 2)
= O(log2(MN )M3N 3K 2) (C.5)
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