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ABSTRACT Large-scale point clouds scanned by light detection and ranging (lidar) sensors provide detailed
geometric characteristics of scenes due to the provision of 3D structural data. The semantic segmentation
of large-scale point clouds is a crucial step for an in-depth understanding of complex scenes. Of late,
although a large number of point cloud semantic segmentation algorithms have been proposed, semantic
segmentation methods are still far from being satisfactory in terms of precision and accuracy of large-scale
point clouds. For machine learning (ML) and deep learning (DL) methodologies, the semantic segmentation
is largely influenced by the quality of training sets and methods themselves. Therefore, we construct a
new point cloud dataset, namely CSPC-Dataset (Complex Scene Point Cloud Dataset) for large-scale scene
semantic segmentation. CSPC-Dataset point clouds are acquired by a wearable laser mobile mapping robot.
It covers five complex urban and rural scenes and mainly includes six types of objects, i.e., ground, car,
building, vegetation, bridge, and pole. It provides large-scale outdoor scenes with color information, which
has advantages such as the scene more complete, point density relatively uniform, diversity and complexity
of objects and the high discrepancy between different scenes. Based on the CSPC-Dataset, we construct a
new benchmark, which includes approximately 68 million points with explicit semantic labels. To extend
the dataset into a wide range of applications, this paper provides the semantic segmentation results and
comparative analysis of 7 baseline methods based on CSPC-Dataset. In the experiment part, three groups
of experiments are conducted for benchmarking, which offers an effective way to make comparisons with
different point-labeling algorithms. The labeling results have shown that the highest Intersection over
Union (IoU) of pole, ground, building, car, vegetation, and bridge for all benchmarks is 36.0%, 97.8%,
93.7%, 65.6%, 92.0%, and 69.6%.

INDEX TERMS LiDAR, benchmark, point clouds, large-scale datasets, scene understanding.

I. INTRODUCTION
In recent years, machine learning (ML) and deep learn-
ing (DL) algorithms have achieved excellent performance in
many fields. To the best of our knowledge, the applications
of deep learning methods rely on a large number of data with
labeled information for model learning. Therefore, it is of
great significance to construct the labeled public datasets for
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the development of deep learning algorithms. For example,
ImageNet [1], Pascal VOC [2] and COCO [3] play an impor-
tant role in the development of deep learning algorithms in
the field of 2D vision. Accompanying with recent advance-
ments in point cloud acquisition sensors, such as LiDAR and
RGB-D cameras, the number of point cloud data is increasing
rapidly, and point clouds are widely used in unmanned driv-
ing [4], urban planning, and digital city [5], among others.
Currently, machine learning and deep learning methods have
been extensively used for point cloud labeling processing,
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which requires a certain degree of point clouds for train-
ing. However, there are few datasets containing large-scale
scenes and varied objects for point cloud semantic labeling.
In addition, most common datasets are indoor data or CAD
models, such as NYU Depth v2 [6] and ModelNet10 [7].
Existing outdoor point cloud data, such as Sydney Urban
Objects [8] Oakland [9], Paris-rue-Madame [10], Paris-Lille-
3D [11] are relatively sparse, and lacking color information.
From the perspective of scene understanding, there is a lack
of large-scale point cloud datasets with object diversity, scene
complexity, color information, dense points, and explicit
semantic labels. Point cloud semantic segmentation is the key
step for scene understanding tasks. Therefore, it is of vital
significance to construct large-scale point cloud datasets with
rich information. Based on a high-quality dataset, the cor-
responding benchmark dataset can be generated based on
the state-of-the-art point cloud semantic segmentation algo-
rithms. The generated benchmarks can undoubtedly promote
the development of deep learning algorithms and their appli-
cations.

To promote large-scale point cloud scene understanding
based on ML and DL methods, this paper improves the
backpackedmobile laser scanning system [12] and uses a new
backpacked mobile laser scanning mapping robot to obtain
large-scale, complete and colored point clouds. After that,
the point clouds are labeledmanually. Thus, a new large-scale
outdoor point cloud dataset, namely CSPC-Dataset (Complex
Scene Point Cloud Dataset), is built for scene understanding,
especially for point cloud scene semantic segmentation. The
dataset contains approximately 68 million points, including
the six classes of objects such as ground, building, car, bridge,
vegetation, and pole. The scene of CSPC-Dataset covers a
wide range of urban and rural scenes: streets, campuses,
farmlands, residential regions, commercial buildings, etc.
In contrast to other point cloud datasets, the CSPC-Dataset
is the first dataset collected by a backpacked mapping robot.
The dataset is dense, complete, with color information and
diversity objects making it an appropriate dataset to evalu-
ate semantic segmentation algorithms for large-scale point
clouds. To easily access the dataset, we have released the
CSPC-Dataset online using the Baidu cloud network disk.1

Besides, seven state-of-the-art point cloud semantic segmen-
tation algorithms, three of which are based on ML and four
of which are based on DL, are used as the baselines of the

1https://pan.baidu.com/s/1p4tG9asMrt6xPBteRpe-CQ

constructed benchmark. To help readers use the constructed
benchmarks easily, seven metrics are used to evaluate the
performance of point cloud classification, and three groups of
experiments are conducted to compare the effect of baselines.

To show the current research status of point cloud datasets
and benchmarks more clearly, this section mainly analyzes
the point cloud types, the existing point datasets and bench-
marks, and the existing semantic labeling algorithms.

A. POINT CLOUD DATASETS AND BENCHMARKS
Different point cloud acquisition devices can acquire different
types and characteristics of point clouds. As shown in Fig. 1,
the point clouds obtained by different point cloud acquisition
devices have obvious differences. These diverse 3D point
clouds have their advantages and disadvantages. Refer to
Appendix A for further details about the different types of
point clouds.

According to the comparisons in Appendix A and Fig. 1,
it is obvious to be found that colored 3D point clouds include
rich information and hence are more beneficial to scene
understanding of large-scale outdoor scenes.

Semantic segmentation [14], object classification [15],
object detection [16], etc. are important technologies of scene
understanding. To better evaluate the performance of different
scene understanding algorithms, reliable benchmarks need to
be established.

To show the differences of various datasets more clearly,
this paper briefly describes some existing datasets. Refer
the Appendix B for further details. For the RGB-D datasets
including NYU Depth v2, SUN RGB-D [17], UW Object
Dataset [18], SUN3D [19], S3DIS [20], Scannet [21] and
so on, it is mostly used for scene understanding of indoor
scenes. For example, the SUN RGB-D dataset acquired by
four types of sensors contains 10,335 images with dense
annotations in 2D and 3D for objects and rooms. The CAD
model datasetsmainly includeModelNet10 andModelNet40,
which are used to identify ten orientations and forty cate-
gories of datasets, respectively. The most recent ensemble
method [22] reached performance over 97% onModelNet10,
which indicates a model overfit due to limited data. For
vehicle mobile laser scanning datasets, such as Sydney Urban
Objects [23], KAIST [24], Paris-rue-Madame database [10],
Oakland dataset [25] and the dataset from the IQmulus &
TerraMobilita Contest [26], they can only produce point
clouds with linear road trajectories because of the platform
constraints. The precision and density of the obtained point

FIGURE 1. Different types of point clouds. (a) Point clouds scanned by Microsoft Kinect devices (SUN RGB-D). (b) Points generated from CAD models
(ModelNet). (c) Point clouds scanned by mobile laser scanning system (Paris-Lille-3D). (d) Point clouds [13] scanned by airborne laser scanning system.
(e) Point clouds scanned by terrestrial laser scanning system (Semantic3D). (f) Point clouds scanned by the proposed backpacked laser scanning system.
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clouds are relatively low, and lacking color information.
The Sydney Urban Objects dataset contains 631 individual
scanned objects, including vehicles, pedestrians, and trees,
which can be used to evaluate the matching or classifica-
tion algorithms. The dataset from IQmulus & TerraMobilita
Contest contains labels and classes; thus point-wise evalua-
tion of detection, segmentation, and classification becomes
possible. The Oakland dataset contains 1.6 million points
with only x, y, and z coordinates and labels, separated in
training, validation, and testing dataset. The scale and the
point size of this dataset are small. Terrestrial laser scan-
ning (TLS) datasets are usually more accurate and contain
more details of objects. For example, Semantic3D [27], it is
mostly used for semantic segmentation of large-scale outdoor
scenes. The objects are divided into eight classes. Although
point precision is relatively high, the point cloud scene suf-
fers from object occlusion and data missing. Airborne laser
scanning (ALS) datasets, such as the Tianjin ALS city point
clouds provided by [13], are relatively sparse. The point den-
sity is about 20-30 points/m2, and the point clouds are labeled
into three classes (building, tree and vehicle). 3D Semantic
Labeling [28], a large-scale ALS dataset was collected from
Vaihingen, Germany, with different scenes, which defines
nine classes for the 3D labeling challenge. In contrast to
the above LiDAR systems, the emergence of wearable laser
scanning (WLS) system with real-time registering has been
extensively used in the indoor and outdoor mapping. WLS
integrates a laser sensor and inertial measurement unit (IMU)
in portable equipment, which can be handled by a single
operator while walking during acquisition. WLS has a high
degree of flexibility and penetrability, thereby maintaining
the data completeness of the scanning scene. In this case, this
paper aims to exploit the advantages of WLS point clouds
and establishes a more challenging large-scale point cloud
dataset for point cloud-based scene semantic segmentation.

The comparisons between some existing point cloud based
datasets are listed in Appendix B.

Generally, these datasets reviewed above have significantly
boosted the research in point cloud classification and seg-
mentation, while each dataset has its scope of applications
and disadvantages. Although there are a variety of public
datasets, to the best of our knowledge, only the well-known
datasets, e.g., ModelNet, NYUv2, SUN RGB-D, S3DIS,
ISPRS 3D Semantic Labeling, and Semantic3D have bench-
marks. To bridge this gap, we present WLS CSPC-Dataset
and its derivative benchmarks. CSPC-Dataset is a dense
and high precision point cloud and covers varied typical
scenes in real-world scenarios, which makes it more prac-
tical significance for point cloud semantic segmentation of
large-scale complex scenes. To further boost the development
of scene understanding, a semantic segmentation benchmark
of CSPC-Dataset is built to evaluate scene semantic segmen-
tation algorithms.

B. SEMANTIC SEGMENTATION ALGORITHMS
A large number of algorithms of segmentation and classifica-
tion of 3D point clouds have been proposed in the past decade.
As shown in Fig. 2, these algorithms can be roughly divided
into two main categories based on the learning mechanisms:
ML-based methods and DL-based methods. Among these
methods, the features used for point cloud classification algo-
rithms can be mainly divided into three categories: low-level
features, mid-level features, and high-level features.

For the ML-based methods, existing methods can be
divided into single-point based methods and point-set based
methods according to the processing unit of point clouds.
Generally, low-level or mid-level features are used as clas-
sification criteria in the ML-based methods.

Classification of single point based on ML [29]–[33] takes
the feature vectors of the point clouds as input and the labeled

FIGURE 2. Classification and frameworks of large-scale point cloud classification algorithms.
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point clouds as output. The features of point clouds can be
low-level features [30], [31] and/or mid-level features that
derived from a series of low-level features [32]. Each point
can be assigned a specific label by the learned classifier
model. For example, Hackel et al. [29] construct a scale pyra-
mid based on density, and a total of 144-dimensional feature
vectors for each point are calculated. Afterward, the clas-
sifier is trained and used to classify point clouds directly.
Weinmann et al. [33] first select the nearest neighbors at
different scales, then extract multiple features and use clas-
sifiers to classify large-scale point cloud scenes. This method
can distinguish the boundary regions of different objects.
However, due to the extremely large-scale point clouds, this
method has high computational complexity, and some local
regions have obvious under- and over-classifications using
the trained classifier. Point-based methods are usually simple
and efficient because of using less training data. However,
these methods have limited accuracy and robustness. The
semantic segmentation results always contain a high degree
of misclassified noise and outliers.

The classification strategy based on the point set is to clus-
ter the points with the same attribute together and uses these
points as a unit to calculate features. The calculation of point
set features does not depend directly on the selection of neigh-
borhood size [13], [34]–[40] because the size of point set has
been already defined in the process of point set generation.
Compared with the single point-based classification, point
set-based method can better express the topological relation-
ships among points and point sets, facilitating to improve
classification accuracy. For example, Xiang et al. [39] con-
struct adjacency relationships of each point according to
the normal information. Then large segmented blocks can
be built, and support vector machine (SVM) is used to
finalize point cloud classification of urban road scenes.
Aijazi et al. [34] aggregate the super-voxels that are converted
from the raw point clouds. The super-voxels are segmented by
the pre-defined threshold, and the point cloud classification
is achieved based on the super-voxel features. However, point
set-based methods are sensitive to the results of point set
construction, and the training points cannot be randomly
selected. This kind of methods needsmore training points and
computational cost.

Of late, DL has been widely used in scene understanding.
For example, many point cloud semantic segmentation net-
works based on DL have been proposed. The existing point
cloud semantic segmentation methods based on DL mainly
confront three challenges: (1) Unlike an image, which is rep-
resented by a regular grid, point clouds are discrete and unor-
ganized. Because of this, the CNN filter cannot be directly
used for processing point clouds. (2) In computational geom-
etry, the sequence of point clouds does affect point cloud
representation by a matrix. This property determines that
point clouds can be represented by two completely different
matrices. (3) For an image, it has constant pixels because a
digital camera’s CCD records an image using a fixed grid
pattern. However, the number of point clouds is hardly to be

estimated because it depends on scanning distance, scanning
scene, scanning angle, the performance of the sensor, object
reflectivity, etc.

As shown in Fig. 2, point based DL networks are divided
into three categories: the network based on 2D projection,
the convolutional neural network based on 3D voxeliza-
tion, and the network model based on discrete point clouds.
Projection-based network could cause loss of shape infor-
mation due to self-occlusions. It tends to need a consid-
erable number of views for obtaining decent performance.
Voxelization-based network is memory intensive, and the
fined details of objects are hard to be captured. A discrete
point based network is restricted to a relatively small region,
making the process of large-scale point cloud impossible.
• 2D projection based CNN: Inspired by the promis-
ing results of deep learning on 2D images, a series
of methods such as MVCNN [41], VMVCNN [42],
Snapnet [43] and DeePr3SS [44] project 3D point clouds
onto 2D images as an input of convolutional neural net-
work (CNN). Using the network models of object detec-
tion or semantic segmentation, trained by a large number
of images in 2D images, as the pre-trained models, this
method can obtain better detection and classification
results of 2D images. However, these kinds of methods
will easily cause the loss of three-dimensional structure/
shape information due to self-occlusions. The best way
to select the optimal projection angles is another tough
problem. Also, it will have the different representative
abilities of the object even though we have constant
projection angles. That means we assume a series of
fixed virtual cameras surround an object. Once the object
has a certain degree of rotations, the acquired projected
2D images are quite different. The above problems both
affect the generalization ability of 2D projection based
CNN.

• 3D voxelization based CNN: To highly explore the
3D structural information of point clouds, the 2D CNN
models have been extended into 3D CNN models based
on point cloud voxelization, and other relevant prepro-
cessing techniques. A series of publications such as
VoxNet [45], OctNet [46], label-3D CNN [47], Seman-
tic3D.Net (DeepNet) [27], MVF-CNN [48], MVS-
Net [49] along this line demonstrate the effectiveness
of 3D voxelization based CNN. This kind of method
retains 3D structure/shape information of objects, which
makes the process of feature extraction easier. In addi-
tion, this method provides the data structure of point
clouds, which solves the problem of point arrange-
ment. However, the computational complexity of the 3D
CNN convolution is very high. To solve this problem,
the reduction of voxels’ resolution is usually adopted,
but this increases the quantization errors of voxels.
It should be aware that in existing voxelization CNN
networks, only the structure/shape information of point
clouds is used, and the other relevant information such
as color and intensity are usually ignored.
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• Discrete point based CNN: To make full use of the
multi-mode information of point clouds and achieve
an end-to-end point cloud processing network, the net-
work models based on discrete are proposed. In this
method, the point clouds of a large scene are gen-
erally clustered to obtain the appropriate size of
point sets, which are fed to the network to learn the
features through convolution operations. The basic
networks such as PointNet [50], PointNet++ [51],
PointCNN [52], PointSIFT [53] and RS-CNN [54] are
commonly used. Although these frameworks obtain a
promising result in semantic labeling based on discrete
point CNN models, they have limitations for process-
ing large-scale point clouds. To solve this problem,
some works such as Kpconv [55], SO-net [56], Point-
FlowNet [57], SPGraph [58], AGC [59], LDGCNN [60],
RGCNN [61] and RandLA-Net [62] are proposed to
process large-scale point scenes.

Through the above analysis of the characteristics of various
point clouds, some representative point cloud datasets and
benchmarks, and reviews of semantic labeling algorithms for
point clouds, we state our original contributions as follows:

• Backpack Mobile Mapping Robot: A relatively
advanced backpack mobile mapping robot is presented
to collect outdoor large-scale point clouds. By compar-
ing different types of point clouds (see Appendix A),
it can be seen that the improved backpack mobile map-
ping robot has better penetrability, and can obtain the
colored LiDAR point clouds and panoramic images
with position information. The acquired point clouds are
complete, relatively uniform, and have high precision.

• CSPC-Dataset: A new point cloud dataset, namely
CSPC-Dataset (complex scene point cloud dataset),
is constructed for large-scale scene semantic segmenta-
tion. This dataset contains complex and diverse scenes,
covering streets, schools, grasslands, residential regions,
commercial buildings, etc. After a comprehensive sum-
mary and comparison with the existing point cloud
datasets, it can be concluded CSPC-Dataset is more
challenging for large-scale point cloud semantic seg-
mentation methods.

• Benchmark: A representative benchmark is built on
CSPC-Dataset. Each point in the dataset has a corre-
sponding label (6 categories in total). Based on CSPC-
Dataset, we select seven state-of-the-art deep learning
algorithms to conduct point labeling experiments. The
choice of algorithms considers the factors, including
basic processing unit, i.e., points or point sets, feature
types and learning mechanisms. It is worth mention-
ing that the original PointNet++ algorithm has been
enhanced by ourselves to obtain a better semantic seg-
mentation for large-scale point clouds. We provide a
detailed comparison of seven representative methods to
establish a benchmark and reference for investigating
large-scale point cloud semantic segmentation.

In the following parts of this paper, we introduce the
backpack-based colored LiDAR point cloud acquisition
system and its characteristics in Section II. Then the data
acquisition, labeling and characteristics of CSPC-Dataset is
discussed in Section III. Section IV introduces the ML-based
and DL-based baselines. The implementation, evaluation
metrics, three benchmarks and corresponding discussions
are shown in Section V. Finally, we conclude this paper in
Section VI.

II. BACKPACK-BASED COLORED LiDAR POINT CLOUD
ACQUISITION SYSTEM
In this section, we first introduce the improved backpack-
based mobile laser scanning mapping robot and the method
of generating colored point clouds. After that, we compare
the differences of large-scale point cloud datasets collected
by different acquisition devices.

A. BACKPACK MOBILE LASER SCANNING SYSTEM
According to the existing laser scanning systems [63], [64]
(Figs. 3(a)-3(e)), an improved backpack 3D laser scanning
mapping system is designed based on our previous published
patent [65], as shown in Fig. 3(f). The characteristics of
hardware composition is shown in Table 1.

TABLE 1. Hardware composition.

As shown in Fig. 3(f), the backpack mobile laser scanning
mapping system is mainly composed of two 16-line 3D laser
scanners, a panoramic camera, a controller, a handheld ter-
minal, a mobile power supply, a support bar, and a backpack
support. The total weight of this system is 12 kg. When
collecting data, a pedestrian carries the system to walk in the
outdoor environment to obtain the LiDAR point clouds and
the panoramic images. The workflow of the colored point
generation is shown in Fig. 4.

A laser of the backpack robot is placed horizontally for
acquiring the LiDAR point clouds in the horizontal direc-
tion Ph. Another laser is tilted 45 degrees behind the hori-
zontal laser for collecting the LiDAR point clouds in tilted
direction Pt . The calibration matrix of the positional and
orientational relationships of the tilted laser relative to the
horizontal laser is Tc, which is calculated by the algorithm
in [66]. Point clouds from two lasers are fused using Eq. 1.
3D simultaneous localization and mapping (SLAM)
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FIGURE 3. Laser scanning systems. (a) TLS scanner. (b) MLS scanner. (c) Cart-based mapping system. (d) Single laser mobile backpack
scanning system [63]. (e) Dual backpack mobile laser scanning system [64]. (f) Backpack mobile laser scanning mapping robot.

FIGURE 4. The flowchart of colored point cloud generation.

algorithm [67] is adopted to register/stitch 3D point clouds
into a common coordinate system. The point clouds
(Ppointcloud ) of the scene can be built [67] according to Eq. 1.

Ppointcloud = Ph + Pt × Tc (1)

The panoramic camera is placed directly above the hori-
zontal laser, and it is used to capture panoramic images of
the surrounding environment and to color the point clouds.
According to the relative spatial position and orientation rela-
tionship between the panoramic camera and horizontal laser,
and the spatial position and orientation of corresponding
generated LiDAR point clouds, the position, and orientation
of each frame of panoramic images are calculated. Then one-
to-one correspondence between point clouds and pixels of
panoramic images are created, and the RGB color values
are assigned to LiDAR point clouds. The accuracy of the

colored point clouds collected by the backpack robot is shown
in Table 2.

TABLE 2. Accuracy of backpack mobile laser scanning mapping robot.

B. CHARACTERISTICS OF THE LARGE-SCALE POINT
CLOUDS
As shown in Fig. 3(a), terrestrial laser scanning (TLS) can be
used to acquire indoor and outdoor environments. The laser
scanner needs to be fixed in a certain position to acquire point
clouds. The colored point clouds obtained by the TLS system
with an externally mounted camera have a higher density, but
its density is easily affected by the scanning distance. The
density of point cloud is extremely high when the scanned
objects are close to the scanner, as demonstrated in Fig. 5(a).
This leads to greatly varying point density. Meanwhile, many
objects cannot be scanned due to occlusions, self-occlusions
and constraint of scanning distance, resulting in incomplete
scenes. Besides, obtaining the whole point clouds acquired
by TLS is inefficient because multiple scans need to be
registered to capture the complete targets.

To enhance flexibility and efficiency of data acquisition,
increasingly more attention has been paid to mobile laser
scanning (MLS) techniques. As shown in Fig. 3(b), the vehi-
cle mobile mapping system can quickly collect point clouds
of large-scale outdoor scenes as it uses a mobile platform that
is equipped with a laser and the GPS/IMU system. Due to
the constraint of vehicle paths, the application environment
of the MLS system has been significantly constrained, and
its accuracy is influenced by positioning signals. As shown
in Fig. 5(b), the point clouds acquired by a vehicle-based
platform along the road are incomplete, only scanning struc-
tures in the front, but lack of 3D structures of back due to
occlusions.
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FIGURE 5. The generated point clouds by various laser scanning system. (a) Point clouds are collected by the TLS systems. The point
clouds are rendered by their elevation. (b) Point clouds are collected by mobile laser scanning vehicle, and the point colors are rendered
by the different classes. Subfigures (c) and (d) are point clouds collected by a backpack mobile laser scanning mapping robot. The point
colors are rendered in these two subfigures based on RGB color and elevation information.

Of late, with the advancement of SLAM techniques,
SLAM has a hot application in mobile point cloud acquisi-
tion. The point cloud acquisition system based on the SLAM
cart is shown in Fig. 3(c), it can work without GNSS signal.
However, this system can only work in a horizontal plane.
Compared with the above acquisition systems, the backpack
mobile laser scanning mapping robot has strong mobility,
minimal space constraints, and can obtain more complete
point clouds. The single laser backpack laser scanning sys-
tem, as shown in Fig. 3(d), has higher data acquisition sta-
bility than the system based on a cart, although its accuracy
requires to be further improved. After the improvement of a
single laser system, a dual laser mobile backpack scanning
system in Fig. 3(e) can be used in the indoor scenes with-
out GNSS signal and non-horizontal scene constraints. The
collected point clouds can meet the requirements of indoor
environments in high-definition mapping and autonomous
vehicles driving. However, this system is mainly used in
indoor environment and the acquired point clouds without
color information. For the system in Fig. 3(e), there are
limited public outdoor point clouds, and the accuracy of data
acquisition is not provided.

To obtain colored LiDAR point clouds more efficiently,
the data acquisition backpack robot for simultaneously
obtaining panoramic images and LiDAR point clouds is
developed, as demonstrated in Fig. 3(f). Point clouds of
large-scale scenes collected by the backpack robot are shown
in Figs. 5(c) and 5(d). The backpack robot is a new generation
of data acquisition platform with high penetrability and pre-
cision. The biggest advantage of the proposed robot has great
flexibility, allowing it to be used in multiple environments
and situations. The acquired point clouds and panoramic
images can achieve the full scene coverage, overcoming the
occlusions in MLS and TLS systems.

In this paper, the backpack robot can acquire LiDAR point
clouds of buildings, residential areas, blocks, and other scenes
in real-time. It can automatically perform stitching, coloring,
and other operations for the dataset. The backpack robot
can work in both walking and riding modes and has the
capability to acquire indoor and outdoor scenes seamlessly.
It is no requirements of initialization, interruption, residence,

working time constraints, and multi-scan registration. Com-
pared with other point clouds in Fig. 5, the point cloud scene
collected by the backpack robot is complete, dense, uniform,
accurate, and being rich color information, making it an
appropriate data source to express the whole scene.

III. COLORED POINT CLOUD DATASET FOR OUTDOOR
SCENE SEMANTIC SEGMENTATION
Although many public point cloud datasets are used for
semantic segmentation, there are few large-scale LiDAR
datasets, including complex outdoor urban scenes and having
colored information. For the advancement of 3D SLAM and
the mobile mapping robot, the benefits of using 3D point
clouds to model projects have been widely recognized. The
wearable laser scanning system enjoys a high reputation
due to its flexible data acquisition and high qualified col-
lected dataset. Because of this, the portable scanning tech-
nique is extensively used in indoor and outdoor modeling,
high-definition mapping, automatic driving, etc. In this case,
we construct the CSPC-Dataset: a large-scale complex out-
door scene LiDAR dataset for point cloud classification based
on the backpacked mobile mapping robot. We first briefly
introduce the collection of the large-scale datasets. After that,
we describe the details of the point cloud labeling method.
At last, we provide a statistical analysis on CSPC-Dataset.

A. DATASET ACQUISITION
In this paper, five large-scale scenes are acquired by a back-
pack mobile mapping robot (see Section II). The collected
five large-scale point datasets contain nearly 68 million 3D
point clouds, covering urban streets, rural areas, university
campuses, and rural residential areas. Various point cloud
scenes are collected at different times. All the point clouds
are collected in China, including a wide variety of styles
of buildings. As shown in Fig. 6, the pedestrian is carrying
a mobile mapping robot in the scene to collect data. The
robot collects the data of these scenes by laser sensors and
panoramic cameras. After the fine modeling and coloring
processing of point clouds, the complete scanning scene
represented by massive colored points can be recorded. The
scanning frequency of lasers can reach 600,000 points/sec,
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FIGURE 6. Data collection for various scenes using proposed backpack mobile mapping robot.

FIGURE 7. Ground filtering using CSF algorithm embedded in CloudCompare open source tool. (a) The raw data with RGB color
information. (b) Non-ground measurements after implementing filtering.

and the maximum scanning ranges can reach up to 100 m.
The relative and absolute precisions are less than 0.03 m and
0.05 m, respectively.

B. DATASET LABELING
To make CSPC-Dataset more applicable in point cloud scene
semantic segmentation, this paper mainly classifies the col-
lected point clouds into six categories:
• Ground: including unnatural ground points, i.e., mainly
sidewalks and roadways and natural ground points,
i.e., grassland and forest ground.

• Buildings: including high-rise commercial buildings,
residential buildings, low-rise factories, and rural resi-
dential houses.

• Vehicles: including ordinary cars and trucks.
• Bridges: including the common overpasses in urban
roads.

• Vegetation: including trees and low vegetation such as
understories.

• Poles: containing power poles and street lamps.
Note that other scanning artifacts labeled as symbol ‘‘0’’,

in most applications, should be filtered with some heuristic
rules. However, considering the completeness of the dataset
and comparisons with other relevant algorithms, we do not
perform any heuristic preprocessing. To manually label the
collected point cloud of the large-scale scene more accurate,

we use an open-source tool Cloudcompare2 to assist point
labeling by the following three steps:

1) GROUND EXTRACTION
To accurately extract ground points, we use a cloth simulation
filtering (CSF) algorithm [68] to coarsely separate ground
and non-ground measurements. If the terrain is complex,
some errors will occur. To reduce these errors, we manually
check these two parts of point clouds from multiple views
by using Cloudcompare tool. In this way, the ground and
non-ground measurements are significantly refined. It should
be noted that the extraction of ground points plays a solid
foundation for labeling other non-ground measurements
because once the ground points are recognized and elimi-
nated, the remaining non-ground objects can be divided into
some extents. The raw point clouds, shown in Fig. 7(a),
are filtered to obtain ground and non-ground measurements
roughly. Once the ground points are removed, the separability
of off-terrain points can be enhanced due to the data gaps
produced by the CSF algorithm, as demonstrated in Fig. 7(b).

2) MANUAL OBJECT SEGMENTATION
We use human-machine interaction to further manually
label non-ground measurements. More specifically, we use

2http://www.cloudcompare.org/
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FIGURE 8. Manual object labeling. Note that for large objects such as large-sized buildings, we manually use ‘‘split and merge’’ strategy to
guarantee labeling accuracy as much as possible.

FIGURE 9. Point labeling refinement. Subfigures (a) and (b) represent the refined buildings in RGB and Scalar rending modes.

‘‘split and merge’’ strategy to label large objects. For exam-
ple, for a specific target, a good view is selected to split
the large objects manually. In a selected view, only parts of
an object with high probability of belonging to a specific
category are split. Then, the remaining of the same object is
split from other views. This process is repeated from other
possible point of views until the object are totally split.
Afterward, the components of the same object belonging to
the same category are merged together. The large complex,
shown in Fig. 8 is accurately split into multiple patches and
then merged into complete buildings. Other large objects,
such as trees and bridges, can be treated in the same way.

3) POINT LABELING REFINEMENT
To guarantee the point labeling accuracy, the point refine-
ment process is implemented. To this end, we first elimi-
nate some duplicated points that are produced in the split
and merge operations. After that, each point is unique and

associated with one specific class. In addition, a double check
is implemented to remove some noises and outliers. The
noises and outliers are excluded from the RGB and Scalar
(rendering the point clouds by their associated labels) modes
(see Fig. 9). Finally, the extracted point clouds are assigned
to the labels of corresponding objects. The labeled point
clouds of CSPC-Dataset are completed by two operators, and
another two operators are implemented to check and re-label
the initial labeled data to obtain the complete point clouds
with high-accurate labels.

C. DATASET CHARACTERISTICS
The constructed dataset for large outdoor scenes is shown
in Fig. 10. The point cloud statistics for each class in five
scenes are depicted in Table 3. The percentage of each
object in the corresponding scene is given in brackets. For
CSPC-Dataset, the point distribution of six objects is shown
in Fig. 11. The CSPC-Dataset can be used to the ground
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FIGURE 10. CSPC-Dataset. Five scenes from (a) to (e) represent Scene 1 to Scene 5. The leftmost column represents the different scenes
rendered by the RGB color. The middle column are shown by the object class, and the rightmost column represents the enlarged views
from the red rectangle areas in the middle column.

filtering of point clouds, 3D vehicle detection, point cloud
segmentation, classification, and recognition, as well as eval-
uation of the representation ability of point cloud’s features.

In contrast to other datasets depicted in Appendix B,
CSPC-Dataset has the following characteristics:

(1) Large-scale outdoor scenes: Most frequently used
point cloud datasets for benchmarking are indoor scenes or
CAD models. Other outdoor benchmark datasets such as

Paris-rue-Madame [10], Paris-Lille-3D [11] andMLS1-TUM
city campus dataset [69] are acquired by MLS system.
The data acquisition is strongly restricted by the vehicle
path. The incomplete characteristics of MLS point clouds
are prominent because of occlusions and self-occlusions of
objects. Although the large-scale TLS benchmark such as
Semantic3D [27] includes multiple scans to register the rela-
tively complete data. However, the density is varied according
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TABLE 3. Statistics of CSPC-Dataset. Note that the number in (·) represents the percentage of the points in each scene.

FIGURE 11. The number of points in each category of CSPC-Dataset.

to the distance from the object to the scanner. To the best of
our knowledge, it lacks wearable laser scanning (WLS) point
clouds as a benchmark. We bridge these gaps by producing a
WLS benchmark (CSPC-Dataset) using the backpack mobile
scanning robot. In contrast to other types of benchmarks,
the proposedWLS benchmark is large-scale, totally including
nearly 68 million point clouds. The acquired objects are
relatively complete due to the flexible ways of acquisition.
The scanned scenes are diverse, although the precision of
point clouds based on the CSPC-Dataset is slightly low.

(2) The complete scene and relatively uniform point den-
sity: Compared with Semantic3D scanned by the static
laser (see Fig. 1(d)) and KAIST and Oakland datasets
acquired by the vehicle mobile laser scanning (see Fig. 1(c)),
CSPC-Dataset is collected by a backpack mobile scanning
robot, which has the capability to acquire points in indoor and
very narrow space. That is, the scanning path is less restricted,
although the point accuracy could be strongly affected by the
characteristics of the trajectory, such as the traveling speed
and the path followed. As shown in Fig. 10(a), Fig. 10(b) and
Fig. 10(d), the collected point clouds of objects are complete,
allowing the whole scene more complete. Therefore, it guar-
antees the completeness and comprehensiveness of the infor-
mation expressions of the scanning scenes. In the Seman-
tic3D dataset, the occlusion is inevitable due to the horizontal
and vertical field-of-view restrictions. In addition, compared
with the Semantic3D dataset, the density of CSPC-Dataset
is more uniform because the scanning distance varies gently
during a manner of walking scan mode.

(3) Diversity and complexity of objects: CSPC-Dataset
provides complex objects in diverse types and shapes in

different regions. The selected objects of CSPC-Dataset are
more important for scene understanding, digital city, and
urban planning applications. Compared with the ModelNet
series, the objects of CSPC-Dataset are captured from the
real world, and the shapes of objects are more complex and
diverse. The buildings of Semantic3D are relatively homo-
geneous in architectural styles. In contrast, the contained
buildings of CSPC-Dataset have a wide variety of geometric
shapes and architectural styles.

(4) The high discrepancy between different scenes:
CSPC-Dataset chooses different types of scenarios in dif-
ferent regions. Although Semantic3D’s point clouds have
15 different scenarios, they have high similarity in scene com-
position. However, the discrepancy between CSPC-Dataset
scenes is prominent, which helps data demanding methods
like deep learning based algorithms to unleash their full
potential power and learn high richer 3D representations.

IV. BASELINE METHODS
For large-scale point cloud scene, semantic segmentation
is to assign a separate category label to each point in the
point cloud. This paper provides seven methods of point
cloud semantic segmentation for the benchmark generation.
In this paper, these methods are divided into machine learning
and deep learning separately. Machine learning methods are
further selected from single point-based and point set-based
methods. Methods based on deep learning mainly include
SnapNet, improved PointNet++, Label 3D CNN, and
DeepNet.

A. METHODS BASED ON MACHINE LEARNING
Machine learning has received increasing more attention in
terms of point cloud labeling and semantic segmentation
because it requires less training data. In this paper, three
machine learning-based methods are selected as baselines.
Two of them are single point based methods: point labeling
based on covariance and spin images [38], and multi-scale
features fusion [37]. Another method is a point set based
method, which uses multi-layer clustering for the generation
of multi-scale point sets and adopts high-order conditional
random fields (CRF) for point labeling point sets. The
detailed explanations of each method are as follows:
Method 1: Point labeling based on features derived from

covariance eigenvalues and spin images is proposed in [38].
We define this method as SVM-based method, which extracts
these two kinds of features of each point defined at a
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particular support domain. To obtain more discrimina-
tive multi-scale features, the support domains need to be
constructed at different scales by changing the number of
neighbors or the neighboring radius. According to the rec-
ommendations in [38], we select the spherical region with the
support domain radius of 0.08 m, 0.32m, and 1.28 m to create
multi-scale features. Then two multi-scale features are fused
and fed to SVM classifier for classification of points. This
method is also used as a comparison algorithm in [13], [40].
In this paper, this method was run on MATLAB 2017b. The
platform of the experiments is a personal computer, equipped
with a 4.20 GHz Intel Core i7-7700k CPU, 24 GB of main
memory.
Method 2: As shown in Fig. 12, it shows the flowchart of

point cloud classification based on single point multi-scale
feature fusion and pyramid neighborhood optimization [30].
The point cloud classification algorithm first determines the
neighborhood region of each point and then extracts the fea-
tures of a single point, including elevation feature (Elevation),
normal angle distribution histogram (NAD), latitude direction
sampling histogram (LSH), covariance eigenvalue feature
(CF), and plane point ratio feature (PPR). After that, a multi-
scale feature of a single point is constructed by using multiple
resolutions of point clouds and multi-scale neighborhoods.
The fusion features which are normalized and reduced are fed
to SVM for point labeling. Finally, the final results of point
cloud classification are obtained by neighborhood optimiza-
tion based on the multi-scale pyramid.

FIGURE 12. The flowchart of Method 2.

Method 3: We implement a point set based machine
learning method [70] for point clouds labeling. The entire
framework mainly includes two key steps: hierarchical clus-
tering and high-order CRF optimization. The flowchart of
the algorithm is shown in Fig. 13. In hierarchical cluster-
ing, the original point cloud is over-segmented into fine-
grained point sets by combining DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) clustering
and K-means clustering. Then, covariance features (CF),
elevation features (EF), and latitude direction sampling his-
togram (LSH) are extracted and concatenated for each fine-
grained point set. Using these generated point set’s features,

FIGURE 13. The flowchart of Method 3.

the fine-grained point sets are initially classified by the SVM
classifier. Next, the neighborhood topological relationships
of the fine-grained point sets are built by transforming the
problem of the topological relationship construction into a
clustering problem. Using the topological context and fine-
grained point sets, the CRF model, including the first-order
term, second-order term, and high-order term, is constructed
to refine the initial labeling results of fine-grained point sets.

B. METHODS BASED ON DEEP LEARNING
For large-scale scenarios, it probably contains hundreds of
millions of point clouds. Therefore, the large-scale dataset
makes the deep learning methods better learn 3D represen-
tation and understand the point cloud scenes. This paper
chooses the following four typical networks as the baselines
for point cloud semantic segmentation. SnapNet [43] is a
point cloud projection-based method; PointNet++ [51] is a
network based on point set; 3D CNN [47] is a single-scale
voxel-based method and DeepNet [27] is a network based
on multi-scale voxel. To implement these four methods,
we choose the default parameter settings from their original
papers.
Method 4: SnapNet [43] projects point clouds onto 2D

images and uses image semantic segmentation networks
based on deep learning to classify large-scale point clouds.
The method firstly meshes the point clouds and then sets a
virtual camera to take photos of the point scene at different
scales with different views to obtain a series of projected
RGB images, depth images, and unique face color images,
etc. Next, these three kinds of images at each view are
trained based on the U-net [71] and the residual correction
network [72]. Once the pre-trained model is created, it can be
used to segment the projected images with different views.
Finally, the results of the images are back-projected onto the
3D point clouds to finalized the raw point labeling.
Method 5: Method 5 uses an enhanced version of

PointNet++ [51] to achieve point cloud classification.
PointNet++ is composed of sampling layer, grouping layer
and PointNet layer (see Fig. 14). In the sampling layer,
iterative farther-most point sampling method (FPS) is used
to select the center of the local region. That is, a point
is randomly selected first, then the farthest-most point of
the selected point is regarded as the starting point, and the
iteration is continued until selecting the required number
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FIGURE 14. The network of PointNet.

of points. Next, the neighbor points of the center within
a given radius r are selected to construct the point set.
The constructed point sets have the same number of points
by downsampling method, and the point sets feed into the
PointNet [50] to obtain high-dimensional expression of the
point set. The above process is called set abstraction (SA).
The SA process, i.e., sampling, grouping, and PointNet,
is then repeated for high dimensional feature extraction. In the
abstract setting, the original point set is downsampled. For the
semantic segmentation tasks, all the point features in the orig-
inal point set need to be acquired. Therefore, the interpolation
method is used to connect with the corresponding point set
and features to achieve the purpose of feature propagation.
Finally, the classification results of all points in the point
cloud are obtained. For the last classification layer of the
network, the Batch Normalization and ReLu are added to all
the full-connected networks.

However, the PointNet++ cannot be directly used for
processing large-scale point clouds. To overcome this defi-
ciency, we improve the PointNet++ as follows: First,
the input large-scale point clouds are divided into multiple
subsets, each of which contains 100,000 to 300,000 points.
To ensure the precision of floating point calculations, coor-
dinate transformation is performed on each segmented sub-
scene. We downsample points within each subscene using
voxel-based data structure. More specifically, dynamically
sampling with 1.5 m × 1.5 m on horizontal plane of each
subscene is employed to obtain a series of point cloud blocks,
each block having 8,192 point clouds. In each block, we trans-
form the coordinate system of contained points and nor-
malized point’s elevation. We make the origin (X = 0 and
Y = 0) of the coordinate system at the center of each block
and we normalize the minimum elevation of points with zero.
Data enhancement is successively performed by randomly
rotating each point cloud block. Finally, the network is trained
according to the following steps: SA(1024, 0.5, [32, 32,
64]) → SA(256, 1.0, [64, 64, 128]) → SA(64, 2.0, [128,
128, 256]) → SA(16, 4.0, [256, 256, 512]) → FP(256,
256)→ FP(256, 256)→ FP(256, 128)→ FP(128, 128, 128,
128, K ). SA(K , r , [l1, l2, l3]) indicates that a PointNet in
K local regions with radius r contains three fully connected
layers of l1, l2 and l3, respectively. FP(l1, · · · , lf ) indicates
that feature propagation (FP) has f fully connected layers,
and the dimensions of each fully connected layer is lf .

Compared to the original PointNet++, the enhanced ver-
sion of PointNet++ has the following advantages:

(1) When dynamically acquiring point cloud blocks,
the size of each block is set to 1.5 m × 1.5 m × 1z.
Parameter 1z represents the high difference between point
clouds in each block.We do not impose any restrictions on the
height of point clouds, which helps this dynamical sampling
more adaptable to the characteristics of the outdoor scenes.

(2) As the coordinate transformation of each point cloud
block is implemented before training, the local features of the
point cloud block can be learned sufficiently.

(3) In order to adapt to the point cloud distribution char-
acteristics of large-scale outdoor scenes, the parameter r in
SA(K , r , [l1, l2, l3]) is set to 0.5, 1.0, 2.0, and 4.0, respec-
tively. The increase of the neighborhood radius helps to better
extract the local features of large-scale outdoor scenes.
Method 6: Label-3D CNN is a neural network model using

3D CNN for large-scale complex point cloud labeling [47].
The input point clouds are implemented a sparse voxelization
by point clouds’ extents and the pre-defined voxel size. In our
CSPC-Dataset, we set the value of voxel size to 0.3 m. In each
voxel, it is divided into multiple grids (20 × 20 × 20). The
point clouds within each grid are organized by Binary Grid
Occupied [45]. Then, the constructed occupied voxels are
put into the 3D CNN network (see Fig. 15). The network
contains two convolution layers, two max-pooling layers, and
one full connection layer. At the end of the network, Softmax
outputs the category label of each voxel. In the process of
our implementation, the kernel size of the convolutional and
max-pooling layers are set to 5 × 5 × 5 and 2 × 2 × 2,
respectively. Finally, the label of each voxel is assigned to
all points included in the corresponding voxel. This method
can effectively reduce the amount of computational time in
the process of point cloud learning and provide a solution to
process large-scale point clouds during training and testing
effectively. In this paper, the values of the maximum number
of epochs, learning rate, and batchsize of this method are set
to 300, 0.0002, and 240, respectively.
Method 7: DeepNet [27] is a baseline method provided

in Semantic3D, which is based on voxelized point cloud as
input to the network. Considering the advantages of CNN for
feature extraction in the image, the voxel-based point cloud
classification network is constructed by a 3D CNN network,
which is designed based on the VGG network framework.
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FIGURE 15. The network of Label-3D CNN.

FIGURE 16. The network of DeepNet.

The network structure is shown in Fig. 16, from which we
can see that for each point, the number of established voxels
is 16× 16× 16. The symbol ‘‘(m, n)’’ indicates that we give
the number m as input channels and n as output channels.
The 3 × 3 × 3 convolution kernel is used in three 3D
CNNs, and the 2 × 2 × 2 receptive field is used for max-
pooling. The five-scale voxel radii of DeepNet are: 0.0125 m,
0.025 m, 0.05 m, 0.1 m and 0.2 m. The maximum number
of epochs of DeepNet, the learning rate, and the batchsize
are set to 300, 0.0002, and 240. Because the point clouds
in CSPC-Dataset are large-scale, to improve the computa-
tional efficiency, we first use Octree to downsample the raw
point clouds and label the reduced/downsampled point clouds
using the DeepNet. Once the reduced point clouds have been
labeled, other unlabeled points in the raw data are assigned
the labels according to the principle of proximity to the
labeled points.

V. EVALUATION METHODS AND BENCHMARK SYSTEMS
In this section, we firstly introduce the experimental platform
and the selected evaluation metrics for the evaluation of point
labeling accuracy. Then we use the seven baseline methods
(see IV) to conduct experiments on the CSPC-Dataset. After
three groups of experiments, the result evaluations are used
to build a benchmark based on CSPC-Dataset.

A. IMPLEMENTATION
The baseline methods are all running on an Intel Core
i7-7700K CPU, 4.20 GHz, 24-GB RAM computer. The
implementation of algorithms is based on PCL 1.8.0 (C++)
and Tensorflow 1.4.0 (Python 3.6). Seven baseline methods

are tested on the CSPC-Dataset, and the important parameters
of the seven baseline methods are given in Section IV.

B. EVALUATION METRICS
We use comprehensive evaluation metrics including
Precision/Recall, F1-score, Intersection over Union (IoU),
Overall Accuracy (OA), and Kappa to evaluate the accuracy
of point cloud labeling. The specific calculation method is as
follows. Our multi-class labeling problem can be transformed
into binary labeling sub-problems. The evaluation of binary
labeling sub-problems generally uses a confusion matrix,
as shown in Table 4, from which Tp, Fn, Fp and Tn represent
the number of true positives, false negatives, false positives,
and true negatives, respectively. Once we have obtained
a clear understanding of the above four metrics, we can
confidently evaluate Precision/Recall, F1-score, mIoU, OA,
and Kappa.

TABLE 4. Definition relationships between predicted and true values.

Precision represents the success probability of making a
correct positive labeling points, which is calculated as num-
bers of Fp divided by the sum of Fp and Tp.

Precision =
Tp

Tp + Fp
(2)
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Recall explains how sensitive the model is towards identi-
fying the positive class. More specifically, recall is the ratio of
correctly predicted positive points to all points in the positive
class.

Recall =
Tp

Tp + Fn
(3)

To comprehensively evaluate the labeling ability of the
classifier for each category, F1-score is usually used to mea-
sure the overall classifier ability. F1 − score is the weighted
average of the precision and recall and is defined as:

F1 − score = 2×
Precision× Recall
Precision+ Recall

(4)

This score takes both Fp and Fn into account. If the scene
has an uneven class distribution, this score can more reflect
the overall performance of the labeling algorithm.

In addition, IoU is also a commonly used evaluation met-
ric. For i-th class, IoUi of this specific category is calculated
as below:

IoUi =
Cii

Cii +
∑

j6=i Cij +
∑

k 6=i Cki
(5)

where C is a L × L classification confusion matrix. L is the
number of an object category. Cij is the true label of i-th
class classified to the j-th class. IoUi is the comprehensive
evaluation of the classification effect on the i-th category.
Since CSPC-Dataset includes multiple categories, label-

ing based on this data is a multi-class labeling problem.
Therefore, comprehensive evaluation metrics that reflect the
performance of labeling algorithms on all classes are needed.
We useOA,mIoU , and Kappa to evaluate the performance of
different point cloud semantic labeling algorithms.

OA =

∑L
i=1 Cii∑L

j=1
∑L

k=1 Cjk
(6)

mIoU =

∑L
i=1 IoUi
L

(7)

Kappa =
OA− pe
1− pe

s.t. pe =

∑L
j=1

∑L
i=1(Cij × Cji)

N × N
(8)

where, N is the number of all points.

C. BENCHMARK SYSTEMS
To fully evaluate the performance of different algorithms on
different data sizes and scenarios, three groups of experi-
ments are implemented to evaluate the baseline algorithms
comprehensively. Group 1 Benchmark is mainly used to
evaluate the algorithms, including machine learning-based
and deep learning-based methods, with few training samples
on the CSPC-Dataset. Due to the machine learning-based
algorithms are generally inapplicable for model training with
large training data, Group 2 Benchmark is mainly used
to evaluate the deep learning-based algorithms on CSPC-
Dataset. Group 3 Benchmark can be used to evaluate the
generalization performance of different algorithms, and it is
also a point cloud classification benchmark for the overall
CSPC-Dataset. These benchmarks conducted by the three
groups of experiments are as follows:

1) GROUP 1 BENCHMARK
To verify the effect of different algorithms with relatively
fewer training samples, we select three different scenes,
i.e., Scene 2, Scene, 4 and Scene 5, as shown in Fig. 17
for experiments. We select relatively few points from these
three scenes as the training set and the rest as the testing set.
The ground point clouds are filtered in advance. The detailed
statistics of the training set and testing set of this group
experiment are shown in Table 5. Seven baseline methods,

FIGURE 17. The ground truth of the experimental CSPC-Dataset. Subfigures (a)-(c) are training sets. Subfigures (d)-(f) are testing sets. Note that the
left-most column, the middle column and the right-most column are selected from Scene 2, Scene 4 and Scene 5. Color legend: blue=building, dark
green=vehicle, red=pole, yellow=vegetation and light green=bridge.
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TABLE 5. Point clouds of Scene 2, Scene 4 and Scene 5 without including ground points. The symbol ‘‘-’’ represents the class does not exist in the
corresponding scene.

TABLE 6. Classification results of precision/recall, IoU/F1-score, OA and Kappa (%). The symbol ‘‘-’’ represents the class does not exist in the
corresponding scene. The highest metric values are highlighted in bold.

including three machine learning methods and four deep
learning methods described in Section IV are used to conduct
experiments in the selected three scenes. The benchmark of

this group experiment is constructed based on the evaluation
metrics in Section V-A The experimental results are shown
in Table 6.
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From this table, the results show that the overall evaluation
metrics of the machine learning method are mostly superior
to the deep learning methods. However, for all algorithms,
deep learning-based Method 5 has the best classification per-
formance in three scenes. This is becauseMethod 5 processes
large-scale point clouds by the strategy of segmentation and
resampling to enhance the training data. The more discrimi-
native classification model can be trained with the enhanced
training point clouds. Method 2 and Method 3 perform worse
in Scene 4 because the features constructed by statistics the
neighborhood of points are relatively simple. The discrepancy
between various types of point clouds in a complex scene
cannot be well represented. In Method 1, which is also a
machine learning method, the features of spin image and
covariance eigenvalue features are more discriminant than
those in Method 2 and Method 3 in the complex scene.
In addition, althoughMethod 2 andMethod 3 use sample fea-
tures, Method 3 uses point sets as the classification units and
constructs a high-order CRF model for optimization, allow-
ing relatively high classification accuracy than Method 2.
It can be seen that the adopted classification units, i.e., sin-
gle point or point set, the ability of feature expression, and
the used optimization process are both dominant factors for
semantic labeling of point clouds.

For deep learning methods, Method 5 achieved the high-
est values of 81.7%/42.0%/53.7%, 92.6%/43.1%67.6% and
93.1%/50.2%/64.6% with regard to OA, mIoU and Kappa in
Scene2, Scene4 and Scene5, respectively. It outperforms the
other three deep learning methods. For Method 4, the number
of each type of point cloud in the training set has larger
differences. For classes of poles and bridges, they account
for only a relatively small proportion in the projected images
derived from point clouds. The model has poor discrimina-
tion ability for these two categories. For Method 5, as the
dataset is preprocessed by segmentation and coordinate trans-
formation, and the training samples are downsampled or
resampled, the trained model has a relatively good perfor-
mance. But we should note that although Methods 5 out-
performs other deep learning based methods, the labeling
accuracy for poles and cars is not ideal due to the lim-
ited number of training samples. For voxel-based methods
such as Method 6 and Method 7, due to the small number
of samples in the training set and the insufficient sample
types, the trained model can only obtain promising results
regarding samples enriched categories on precision/recall and
IoU/F1-score. The performance degeneration for overall clas-
sification regarding OA, mIoU , and Kappa is significantly
reduced. Through experiments, we also find that for the deep
learning methods based on voxel, the more voxel scales there
are, the better of classification performance of the network
model can be achieved.

2) GROUP 2 BENCHMARK
Deep learning methods are affected by the number of train-
ing samples and the enriched sample types. To make the
dataset better adapt to deep learning methods and represent

the advantages of the deep learning methods, we conduct
group 2 benchmarking experiments. More precisely, Scene 2,
Scene 4 and Scene 5 are still used. In each scene, 70% of the
points are randomly selected as the training set, and the rest
points are used as the testing set. The K -fold cross-validation
method is used to carry out the experiment. In this section,
the parameter K is set to 3. Here, we assume that Scene 2
contains six categories of objects, and Scene 4, and Scene 5
only include five types of objects.

As shown in Table 7, four state-of-the-art deep learning
networks, i.e., Snapnet (Method 4), PointNet++ (Method 5),
Label-3D CNN (Method 6) and DeepNet (Method 7), are
used for semantic labeling of three different large-scale point
cloud scenes. From Table 7, we can see that Method 4 per-
formsworse than the other three deep-learning basedmethods
in three scenes, especially for labeling pole, bridge, and car.
These classes have a relatively small size of geometry or
have only a few samples for training, making it hard to
be classified well. Although the absolute numbers of these
three categories training samples are increased significantly,
the relatively small proportion of these three objects in projec-
tion images results in performance degeneration of Method 4
using the imbalance sample for training. In the overall eval-
uation of the three scenes, Method 5 achieved the high-
est values of 93.3%/56.7%/88.2%, 96.6%/56.2%/93.1% and
93.1%/50.2%/64.6% with regards to OA, mIoU and Kappa
in the three scenes, respectively. Compared with the results
in Table 6, it can be seen that the classification performance
of Method 5 is greatly improved which the OA, mIoU and
Kappa at least increase 4%, 13.1% and 25.4% for Scene2, and
Scene4, when the number of training data is increased accord-
ingly. Similarly, compared with Table 6, the classification
performance of voxel-based methods has greatly improved
in this group experiment. However, the overall evaluation
metrics of Method 7 are superior to Method 6, i.e., the OA,
mIoU and Kappa values of Method 7 are at least 1.6%, 2.2%
and 2.2% more than Method 6, which explains the increase
of voxel scales can effectively enhance the ability of feature
expression and classification model.

By making comparisons between Tables 6 and 7, although
the OA of Scene 5 in group 2 is lower than the group 1,
other metrics mIoU and Kappa of group 2 show that the
classification performance of Methods 5-7 on the three
scenes is improved. Thus, increasing the number of training
samples can indeed obviously improve the performance of
Methods 5-7.

3) GROUP 3 BENCHMARK
In the above two group experiments, the training and testing
sets come from the same scene. The above two group exper-
iments cannot evaluate the generalization ability of different
labeling algorithms. To test algorithms’ generalization ability,
in this group, we choose the training points and testing points
from different scenes. More specifically, for machine learn-
ing algorithms, we select the training points from Scene 2
and Scene 4 to train models separately and test labeling
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TABLE 7. Classification results of precision/recall, IoU/F1-score, OA and Kappa (%). The symbol ‘‘-’’ represents the class does not exist in the
corresponding scene. The highest metric values are highlighted in bold.

TABLE 8. Generalization ability test data for deep learning algorithms.

TABLE 9. Classification of Scene 5 results by the evaluation metrics of precision/recall, IoU/F1-score, OA and Kappa (%). Note that the upper Scene 5
results are trained using the point clouds in Scene 2. In contrast, the lower Scene 5 results are trained using the point clouds in Scene 4.

performance of these two models in Scene 5. For deep
learning algorithms, we choose the training and testing sets
according to the configurations depicted in Table 8.

The generalization capability of machine learning algo-
rithms is shown in Table 9. The statistics show that the
models of machine learning algorithms trained by Scene 2
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TABLE 10. Classification results of precision/recall, IoU/F1-score, OA and Kappa (%). The symbol ‘‘-’’ represents the class does not exist in the
corresponding scene. The highest metric values are highlighted in bold.

TABLE 11. Classification results of mIoU, OA and Kappa (%) for three groups of benchmarks. The symbol ‘‘-’’ represents the class does not exist in the
corresponding scene. The highest metric values are highlighted in bold.

and Scene 4 cannot accurately predict point labels in Scene 5.
The performance of Method 1 is superior to the other
two methods, although its generalization capability is still
unsatisfied. For example, the metrics mIoU and Kappa for
labeling Scene 5 are only 19.9%/9.27% and 28.8%/23.6%

using training point clouds from Scene 2 and Scene 4 due
to a pretty huge discrepancy in terms of point’s elevation
between different scenes, causing a big discrepancy between
coordinate-based features derived from different scenes.
Method 1 is moderately affected by these coordinate-based
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TABLE 12. The comparisons of different baselines for CSPC-dataset.

features; however, Method 2 and Method 3 are greatly
affected by coordinate-based features and the statistical fea-
tures, which have a huge discrepancy caused by the change
of scene. To sum up, machine learning based algorithms have
poor generalization performance due to the limited represen-
tation ability of features.

Four deep learning networks are trained by using the train-
ing data (Scene 1, Scene 3, and Scene 4) which contains
40,394,238 points, as shown in Table 8. Then, Scene 2 and
Scene 5 are classified by the trained model, and the com-
parison results of generalization ability for deep learning
networks are obtained, as shown in Table 10. In this table,
the classification performance of Method 4 is the worst in
both scenes. As this method requires a higher diversity of
training samples, it cannot effectively classify the point cloud
scenes that are significantly different from the training scene.
Method 5 achieves the best classification performance among
the four deep learning methods and has distinct advantages
in the overall classification evaluation metrics, achieving the
maximum of 96.6%, 56.7% and 93.05% regardingOA,mIoU
and Kappa. However, for categories with very few samples,
such as the poles, Method 4 is almost impossible to clas-
sify them, but voxel-based methods, such as Method 6 and
Method 7, can correctly classify some categories with few
samples. The performance of Method 6 in Scene 5 is superior
to Method 7, because Method 7 having more voxel scales
is more susceptible to the classification of point clouds with
varied density.

Through making a comparison between Table 9 and
Table 10, we can make a safe conclusion that machine learn-
ing algorithms are more suitable for labeling point clouds
with fewer training samples. The generalization ability of
the deep learning methods outperforms the machine learning
methods, which is because the features used in machine
learning algorithms are low-level features, weakening their
expression ability. In contrast, the deep learning algorithms
construct high-level features of point clouds, thereby enhanc-
ing the feature expression and semantic labeling accuracy.

D. DISCUSSIONS
The overall benchmark datasets for three groups of exper-
iments with three comprehensive evaluation metrics are
shown in Table 11. In this table, the overall performance of
different methods on each group and the overall performance
of the samemethod on different groups with different training
samples can be observed clearly. According to Table 11,
we can observe that with the increasing number of training
samples, the performance of Methods 4-7 has been improved
significantly. However, the projection-based Method 4 has
the worst performance, and the point set-based deep learning
Method 5 achieves the highest labeling accuracy. Therefore,
unlike projection-based methods and voxel-based methods,
which lose part of the original point cloud information,
direct processing of the original point cloud can extract more
expressive features of point clouds. In addition, Method 5
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(improved PointNet++) preprocesses the input point clouds
and uses coordinate transformation and segmentation of
large-scale point cloud into many point cloud blocks to
make the training data fully explored. Method 7 has many
voxel scales, while Method 6 has only one voxel scale. The
multi-scale voxels of Method 7 have more abundant repre-
sentation for various objects. Therefore, the performance of
Method 7 based on voxelization is better thanMethod 6 based
on a single voxel scale. Because DeepNet and Pointnet++
adopt the multi-scale method, the discriminating ability of
features extracted by the network is enhanced. More compar-
isons and summaries of different baselines for CSPC-dataset
are shown in Table 12.
In addition, as shown in Table 8, the training set used

in the experiments of Group 3 contains more samples than
Group 2, and the training scenes and test scenes are different.
Therefore, Table 10 can be further used to evaluate the effec-
tiveness of various deep learning algorithms for large-scale
point cloud semantic segmentation. Similar to Semantic3D,
the benchmark constructed fromTable 10 can be directly used
to evaluate the performance of deep learning algorithms.

According to the comparison results of Table 11, we can
conclude that most of the current labeling algorithms do
not obtain a promising result for labeling CSPC-Dataset.
Therefore, the point cloud semantic segmentation based
on CSPC-Dataset is challenging. It should be noted that
CSPC-Dataset contains five different scene types. Users can
also carry out different types of experiments on the datasets
according to specific user requirements.

VI. CONCLUSION
In this paper, we firstly analyze ubiquitous point clouds and
compare the existing point cloud datasets and benchmarks.
Besides, we also comprehensively review the point cloud
semantic segmentation algorithms for scene understanding
in Section I. After that, we introduce an improved backpack

mobile mapping robot for large-scale point cloud acquisition
and summary the characteristics of point clouds collected by
that robot through the comparisons of different laser scanning
systems in Section II. In Section III, we briefly describe
the dataset acquisition method and environment. Then,
we propose an improved backpack mobile mapping robot for
large-scale point cloud acquisition. Based on Cloudcompare
tools, we further propose a three-step point cloud labeling
method, which progressively labels point clouds from coarse
to fine labels in manual mode. Based on these labeled
point clouds, a high-quality outdoor point cloud dataset,
i,e., CSPC-Dataset is constructed, which contains nearly
68 million manually labeled points in 5 complex large-scale
scenarios. Next, four characteristics of CSPC-Dataset are
summarized. To show the point cloud semantic segmenta-
tion performance of different kinds of algorithms on CSPC-
Dataset, we select seven state-of-the-art algorithms, including
ML-based and DL-based algorithms, as the baselines for
benchmarking in Section IV. To provide a comprehensive
evaluation of the semantic labeling algorithms, we design
three groups of experiments for benchmarking using seven
representative evaluation metrics. In addiction, more com-
parisons, analysis and discussions of the benchmarks are
provided in Section V. We hope that in the future, more
semantic labeling algorithms and comparisons will be built
on our datasets as the proposed dataset can help the in-depth
study of the algorithm and promote significant progress in the
scene understanding.

APPENDIX A
UBIQUITOUS POINT CLOUDS
See Table 13.

APPENDIX B
COMPARISONS OF EXISTING POINT CLOUD DATASETS
See Table 14.

TABLE 13. Ubiquitous Point Clouds.
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TABLE 14. Comparisons of existing point cloud datasets.
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