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ABSTRACT Object 3D reconstruction from a single-view image is an ill-posed problem. Inferring the
self-occluded part of an object makes 3D reconstruction a challenging and ambiguous task. In this paper,
we propose a novel neural network for generating a 3D-object point cloud model from a single-view image.
The proposed network named 3D-ReConstnet, an end to end reconstruction network. The 3D-ReConstnet
uses the residual network to extract the features of a 2D input image and gets a feature vector. To deal
with the uncertainty of the self-occluded part of an object, the 3D-ReConstnet uses the Gaussian probability
distribution learned from the feature vector to predict the point cloud. The 3D-ReConstnet can generate
the determined 3D output for a 2D image with sufficient information, and 3D-ReConstnet can also generate
semantically different 3D reconstructions for the self-occluded or ambiguous part of an object. We evaluated
the proposed 3D-ReConstnet on ShapeNet and Pix3D dataset, and obtained satisfactory improved results.

INDEX TERMS 3D reconstruction, point cloud, uncertainty in reconstruction, 3D neural network.

I. INTRODUCTION
Reconstructing the shape of 3D objects from a single-view
is the fundamental task of robot navigation and grasp-
ing, CAD, virtual reality and so on. Therefore, data-driven
3D object reconstruction has attracted more and more
attention.

At present, there are two kinds of 3D object representa-
tions: voxel and point cloud. The voxel-based neural net-
works [1]–[3] can reconstruct 3D objects by generating vox-
elized three-dimensional occupancy grids. However, voxel
representation suffers from two problems: sparse informa-
tion and high computational complexity, especially in high
resolution 3D object processing. In order to make up for
the deficiency of voxel expression, Fan et al. [4] proposed
point cloud-based 3D object reconstruction which is a deep
learning method to study point cloud generation. The 3D
point cloud of an object is composed of three-dimensional
points uniformly sampled from the surface of the object. Point
cloud model has scalability and flexibility, so we use point
cloud as our 3D representation.

The difficulties of 3D point cloud reconstruction are:
1. When a 2D input contains enough information, the
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FIGURE 1. Single-view reconstruction for an unambiguous 2D input.

FIGURE 2. Multiple plausible reconstructions for an ambiguous 2D input.

reconstruction network needs to infer an accurate 3D recon-
struction; 2. When a 2D input is ambiguous or uncertain,
the reconstruction network needs to reconstruct multi-
ple plausible reconstructions 3D output for the 2D input.
As shown in Figure 1 (a), the view of the chair in the two
2D images provides enough information for reconstruction.
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Figure 2 (a) is the self-occluded view of the chair
in Figure 1 (a). It is unreasonable to predict a single determin-
istic output for an ambiguous input. In this work, we propose
a neural network called 3D-ReConstnet for single-view 3D
point cloud reconstruction. The 3D-ReConstnet uses residual
network to extract a feature vector from 2D input, and uses
probability distribution learned from the feature vector to
predict 3D point cloud. The 3D-ReConstnet can generate
the determined 3D output as shown in Fig. 1 (b) for a 2D
image with sufficient information (such as Figure 1 (a)), but
in the case of uncertainty or ambiguity in the input 2D image
(such as Figure 2 (a)), 3D-ReConstnet can generate multiple
plausible reconstructions as shown in Figure 2 (b)∼(d).

In summary, our contributions in this work are as follows:
1)We propose an end-to-end 3D point cloud reconstruction

network: 3D-ReConstnet. The end-to-end network structure
enables 3D-ReConstnet to infer 3D point cloud directly from
2D image features, avoiding the feature propagation across
the network like those multi-stage network [18], and avoiding
the loss of features.

2) For an ambiguous 2D input, our 3D-ReConstnet can
generate multiple plausible 3D reconstructions from a single
input image.

3) We evaluated 3D-ReConstnet on ShapeNet and Pix3D
datasets. The experimental results show that 3D-ReConstnet
outperforms the state-of-art reconstruction methods in the
task of single view 3D reconstruction.

The rest of this paper is organized as follows: Section II
introduces the related work. In Section III, we introduce
the 3D-ReConstnet in detail. In Section IV, we evaluate the
3D-ReConstnet on ShapeNet and Pix3D dataset. Section V
concludes this paper.

II. RELATED WORKS
A. SINGLE-VIEW 3D RECONSTRUCTION
The traditional 3D reconstruction method [5]–[7] needs
multiple view correspondence. As a result, single-view 3D
reconstruction has more advantages than traditional meth-
ods. Single-view point cloud reconstruction can be roughly
divided into voxel-based 3D reconstruction and point cloud-
based 3D reconstruction.

Voxel-based 3D reconstruction. As described below,
a number of works have based on voxel representations.
Choy et al. [1] trained a recurrent neural network to learn the
mapping from 2D image to 3D output from a large number of
synthetic data. In [8], a 3D local shape generation method is
proposed. This method infers a low resolution but complete
output by using a 3D encoder, and associates the output with
the 3D graphics in the shape database to obtain 3D voxel
reconstruction. Tulsiani et al. [9] proposed an unsupervised
3D voxel reconstruction neural network trained by multi-
view observations of unknown poses. Shubham et al. [10]
explored the way to reconstruct 3D outputs by using different
2D view projections, such as depthmaps, color images, image
semantics and so on. Although several studies [11], [12] are

devoted to solve the two defects of voxel: sparse information
and high computational complexity, and have achieved some
good results, the defects of voxel are still obvious compared
with point cloud.

Point cloud-based 3D reconstruction. Fan et al. [4] first
proposed a 3D reconstruction method based on point cloud.
In this method, Chamfer distance (CD) and Earth Mover’s
distance (EMD) were chosen as loss functions to train an
autoencoder point cloud generation network, and multiple
plausible reconstructions can be generated for ambiguous
input by variational autoencoder [14], [15]. In [16], a seg-
mented and point cloud reconstruction network: 3D-PSRNet
was proposed. In the training process, 3D-PSRNet propagates
the segmented or reconstruction information to another task,
and uses the CD and location aware segmentation loss as
the loss function. The main contribution of the work in [17]
is that the author proposed geometric adversarial loss with
two components: geometric loss and conditional adversarial
loss. Geometric loss is responsible for ensuring that the shape
of 3D reconstruction is close to ground-truth, while condi-
tional adversarial loss generates a semantically-meaningful
point cloud. Mandikal et al. [18] proposed a two-stage point
cloud reconstruction network: 3D-LMNet. First, 3D-LMNet
uses chamfer loss to train a point cloud auto-encoder. Then,
3D-LMNet uses diversity loss and latent matching loss to
map the vector of auto-encoder to a probability distribution
to solve the problem of uncertain 2D input. In [19], a deep
pyramid network for generating dense 3D point clouds was
proposed. The pyramid network is trained by CD and EMD
loss to predict a low-resolution point cloud. Then, the low-
resolution point cloud becomes a high-resolution point cloud
through dense reconstruction network. Chen et al. [20], pro-
posed a Point Auto-Encoder, which is implemented based
on the novel semi-convolutional and semi-fully-connected
layers proposed that can handle the problem of mapping from
single global feature vector to massive numbers of 3D points.
All the related work of point cloud-based 3D reconstruction
is devoted to two problems in 3D point cloud reconstruction:
1. Design a better point cloud reconstruction neural network.
2. Choose a more suitable loss function. Only by putting
forward better solutions to the above two problems, can
we reconstruct more accurate 3D output for 2D input with
sufficient information and reasonable output with multiple
possibilities for uncertain 2D input.

III. APPROACH
A. ARCHITECTURE OF 3D-ReConstnet
The architecture of the 3D-ReConstnet is shown in Figure 3.
Our 3D-ReConstnet is an end-to-end neural network. The
end-to-end network architecture enables the semantic fea-
tures of 2D images to be transferred only within the net-
work, rather than across the network like 3D-LMNet [18],
thus reducing the loss of features. The 3D-ReConstnet has
three main tasks: 2D input feature extraction, sampling a
probabilistic vector, point cloud generation. The depth neural
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FIGURE 3. The architecture of 3D-ReConstnet.

FIGURE 4. Leakey ReLU and derivative of Leakey ReLU.

network ResNet-50 is used to extract the features of 2D
images. The addition of residual makes the deep neural net-
work ResNet-50 easy to train, and it can extract sufficient
semantic features of 2D images without vanishing gradient.
The 3D-ReConstnet first uses the residual networkResNet-50
proposed in [21] to extract the features of 2D input image and
gets a feature vector Z. After that, the full connection layer
compresses the dimension of vector Z from 1000 to 100, and
obtains vector Zc.

We learn a probabilistic distribution from the vector Zc in
order to generate multiple possibility 3D shapes for uncer-
tain 2D input. We map the vector Zc of a specific 2D input
to a Gaussian vector Z ′, i.e. Z ′ ∼ N (µ, σ 2). We use
the ‘‘reparameterization trick’’ of Variational Auto-Encoders
[14], [15] to deal with the randomness in the network. The
network in the middle dotted box in Figure 3 is responsible

for predicting the mean µ and standard deviation σ of Zc,
sampling ε ∼ N (0, 1), and finally obtaining the Gaussian
probabilistic vector as Z ′ = µ + εσ . The mean µ of Z ′ is
unconstrained, and the standard deviation σ is constrained
by ε, so that the uncertain 2D input image can be recon-
structed meaningfully and diversely.

We use a multi-layer perceptron(mlp) with two hidden
layers and one output layer to transform the probabilistic
vector as Z ′ into point cloud data. The activation function
of the two hidden layers is Leaky ReLU [22], and that of
the output layer is tanh [23]. The output channels of the
two hidden layers are 512 and 1024 respectively. The output
channels of the output layer are N×3, where N is the number
of points in the point cloud.

Figure 4 (a) and (b) are schematic diagrams of the Leaky
ReLU and derivative of Leaky ReLU, respectively. The value
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FIGURE 5. Tanh and derivative of tanh.

of the ReLU function on the negative axis is zero. However,
the Leaky ReLU function has non-zero values on the negative
axis (Figure 4 (a)), and Leaky ReLU also has non-zero deriva-
tive values on the negative axis (Figure 4 (b)). Therefore,
using Leaky ReLU as the activation function, the negative
information in the neural network will not be lost. The range
of the normalized point cloud data coordinates are between
[−1,1], which indicates that there are many points with neg-
ative coordinates. In the process of forward propagation of
network information, the coordinate information contained in
the negative value will be transferred to the next layer through
Leaky ReLU. In the process of network information back
propagation, because the derivative value of Leaky ReLU is
not zero, the gradient corresponding to the negative value will
provide more help for the weight update of the network.

Using tanh as the activation function of the last layer
of multi-layer perceptron can quickly fit the generated
point cloud data between [−1,1]. Figure 5 (a) and (b) are
schematic diagrams of tanh and derivative of tanh, respec-
tively. As shown in Figure 5 (a), the tanh activation function
can restrict the coordinate value range of the generated 3D
point cloud data to [−1,1]. The ground truth read by the
reconstruction network is normalized, that is, the coordinates
of the ground truth are exactly between [−1,1]. In the early
stage of network training, the activation function tanh can
reduce the gap between the generated point cloud data and
the ground truth as much as possible, so as to accelerate the
fitting speed. However, we use Leaky ReLU as the activation
function in the first two layers of MLP instead of tanh. This is
because the gradient of neural network may disappear in the
process of training, and improper activation function is one of
the reasons for vanishing gradient. From Figure 5 (b), it can
be seen that the derivative of tanh is 1 when the horizontal
axis is 0, and the corresponding derivative values of other
positions are less than 1, even in the positive and negative
infinite fields, the derivative tends to 0, that is, the derivative
of tanh activation function is less than 1 in most cases. When
tanh is used as the activation function, the result of chain
derivationmay approach to 0 as the gradient accumulates, and

eventually the vanishing gradient. In order to reduce this risk,
we only use tanh as the activation function in the last layer of
the mlp.

B. LOSS FUNCTION
The loss function of the 3D-ReConstnet is defined as:

Loss = CD+ EMD+ DiversityLoss (1)

where the diversity loss is defined by [18]:

DiversityLoss =
(
σ − ηe−

(ϕi−ϕo)
2

δ2
)2 (2)

where ϕo is the azimuth angle of maximum occlusion view,
and ϕi is the azimuth angle of the 2D input image. The goal
of network training is to minimize the loss. The diversity loss
only acts on standard deviation σ of the probabilistic vector
Z ′ sampling network. The smaller the difference between
ϕo and ϕi, that is, the larger the occlusion of the 2D input,
the greater the value of σ . The larger the value of σ , the more
likely the 3D-ReConstnet is to generate multiple plausible
reconstructions.

Since point cloud is an unordered representation, we need
to use a loss function independent of the relative order of
the input points to train the point cloud generation network.
Fan et al. [4] proposed using Chamfer distance (CD) and
Earth Mover’s distance (EMD) [25] to train point cloud
generation network. This method was widely used in later
works [16]–[19].

Let Xgt ∈ RN×3 represent ground-truth and Xpred ∈ RN×3

represent the generated point cloud, where N represents the
number of points in the point cloud. The chamfer distance
between Xgt and Xpred is defined as:

dChamfer (Xgt ,Xpred ) =
∑
Xg∈Xgt

min
Xp∈Xpred

||Xg − Xp||22

+

∑
Xp∈Xpred

min
Xg∈Xgt

||Xg − Xp||22 (3)

The chamfer distance measures the square distance between
each point in set Xgt and its closest point in set Xpred .
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FIGURE 6. Different reconstruction with similar chamfer distance.

The EMD loss between Xgt and Xpred is defined as:

dEMD(Xgt ,Xpred ) = min
φ:Xgt→Xpred

∑
x∈Xgt

||x − φ(x)||2 (4)

where φ is a bijection. The EMD performs a point-to-point
mapping between set Xgt and set Xpred .

In [4], Fan et al. shows theMean-shape behavior of CD and
EMD through pictures. After that, in the process of training
3D reconstruction network with CD and EMD, other research
work found their characteristics as follows:

1) The chamfer distance is related to the contour of the
reconstructed point cloud. The 3D reconstruction network
trained by chamfer distance is easier to catch the rough
contour of 3D object [4], [26]. However, the reconstruction
network trained by CD is easy to generate a splash shape,
which blurs the geometry of the reconstructed shape, and
chamfer loss may confuse different reconstruction with sim-
ilar chamfer distance. Figure 6 illustrates the cause of this
confusion. Let the blue dot represent the ground-truth and the
yellow dot represent the predicted point cloud. Suppose that
the yellow dots in Figure 6 (a) and (b) represent two differ-
ent reconstruction results. D1 ∼ D6 represent the distance
between 6 ground-truth points and 6 points obtained from the
first reconstruction. D′1 ∼ D′6 represent the distance between
6 ground-truth points and 6 points obtained from the second
reconstruction. If the sum of D1 ∼ D6 is equal to the sum of
D′1 ∼ D′6, the CD will determine that the two reconstruction
results are equal. But this is not the case. In the EMD loss
function, φ represents the bijection relationship between the
truth value and the predicted point cloud, so EMD loss has no
defect of reconstruction confusion.

2) The EMD is related to the visual quality of the recon-
structed point cloud [4], [26]. The lower the EMD loss,
the better the visual quality of 3D reconstruction [26], [27].
However, the reconstructed network trained by EMD is not
good at grasping the whole contour of the reconstructed
object. We can see that the CD and the EMD loss have their
own advantages, so we take the combination of them as the
loss function of 3D-ReConstnet. The role of CD is to train
the network to form the contour of the reconstructed object,
and the role of EMD is to train the network to modify the
appearance of the reconstructed object.

IV. EXPERIMENTS
We evaluated the proposed 3D-ReConstnet on the
ShapeNet [28] dataset and the Pix3D [29] dataset, respec-
tively. ShapeNet dataset consists of 43809 CAD models
in 13 categories. Pix3D dataset consists of 7595 real images
and their corresponding metadata (masks, ground truth CAD
models and pose). In order to compare with these related
works [4], [18], we use the same partition of training set and
test set as [1]: the ratio of training set to test set is 4 to 1.
We use the training set divided from the ShapeNet to train the
3D-ReConstnet, and carry out 3D reconstruction experiments
on the test set divided from the ShapeNet and Pix3D data set
respectively.
Implementation Details: 3D-ReConstnet is trained using

the Adam optimizer, with batch size of 32 and learning rate
0.00005 for 50 epochs. We crop the size of a 2D input image
to 128 × 128 and use it as the input of 3D-ReConstnet. The
parameters of ResNet-50 [21] used to extract the features
of 2D pictures are shown in Table 1. We just want to extract
the features of 2D images, so we don’t use softmax at the end
of ResNet-50 like [21].
Evaluation Methodology: We use the Chamfer Distance

(Chamfer) and Earth Mover’s Distance (EMD) calculated on
1024 random sampling points to evaluate the reconstruction
quality in all our experiments. We selected three images
from each object category in ShapeNet and Pix3D datasets
and showed their qualitative 3D reconstruction results in
Figure 7-8. Figure 9 show the qualitative 3D reconstruction
results of ambiguous 2D input.

A. 3D RECONSTRUCTION ON ShapeNet DATASET
Figure 7 show the qualitative 3D reconstruction results of
three images of each object category in ShapeNet. The pre-
dicted resolution of 3D point cloud reconstruction in Figure 7
is 2048. Table 2 shows the CD and EMD values of point
cloud reconstructed by 3D-ReConstnet(ours), PSGN [4] and
3D-LMNet [18] on ShapeNet dataset. The smaller the values
of CD and EMD, the better the reconstruction quality. The
values of CD and EMD of 3D-ReConstnet are lower than
those of PSGN and 3D-LMNet, while also having lowest
mean scores of CD and EMD.
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FIGURE 7. Reconstructions on ShapeNet dataset.
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TABLE 1. Parameters of ResNet-50.

FIGURE 8. Reconstructions on Pix3D dataset.

TABLE 2. Single view reconstruction results on ShapeNet dataset.

B. 3D RECONSTRUCTION ON Pix3d DATASET
Figure 8 show the qualitative 3D reconstruction results of
three images of each object category in Pix3D. The pre-
dicted resolution of 3D point cloud reconstruction in Figure 8

is 2048. Table 3 shows the CD and EMD values of point
cloud reconstructed by 3D-ReConstnet(ours), PSGN [4] and
3D-LMNet [18] on Pix3d dataset. The smaller the val-
ues of CD and EMD, the better the reconstruction quality.
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TABLE 3. Single view reconstruction results on Pix3D dataset.

FIGURE 9. Qualitative 3D reconstruction results for ambiguous 2D input.

The values of CD and EMD of 3D-ReConstnet are lower
than those of PSGN and 3D-LMNet, while also having lowest
mean scores of CD and EMD.

C. GENERATING MULTIPLE PLAUSIBLE OUTPUTS
In this experiment, we select the 2D image with the parameter
ϕo = 180◦ in Formula 2 from the chair category of ShapeNet,
that is, the back-view image with the maximum occlusion.
For each chair image in the back-view, we generated three 3D
reconstruction outputs using 3D-ReConstnet. In Figure 9 we
show the back and side views of each 3D reconstruction
with different ε. The predicted resolution of 3D point cloud
reconstruction in Figure 9 is 1024. We show the consis-
tency between reconstruction results and 2D input through
back-view, and show the diversity of reconstruction results
through side-view. As shown in Figure 9, 3D-ReConstnet

can generate semantically different reconstructions which are
consistent with the ambiguous input image with the largest
occlusion. From Figure 9, we can see that the handle and
leg structures of these different reconstruction results are
different.

V. CONCLUSION
In this paper, we propose an end-to-end single view 3D
reconstruction network: 3D-ReConstnet. The 3D-ReConstnet
maps the feature learned from a 2D image to a normally
distributed vector to deal with the uncertainty of the self-
occluded part of an object. The proposed 3D-ReConstnet
can generate the determined 3D output for a 2D image with
sufficient information while generate semantically different
3D reconstructions for an ambiguous 2D input. We eval-
uated 3D-ReConstnet on ShapeNet and Pix3D datasets.
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The experimental results show that 3D-ReConstnet outper-
forms the state-of-art reconstruction methods in the task of
single view 3D reconstruction.
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