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ABSTRACT This paper is concerned with the linear codes over the non-chain ring R = F2[v]/〈v4 − v〉.
First, several weight enumerators over R are defined. Then the MacWilliams identity is obtained, which
can establish an important relation respect to the complete weight enumerators. Meanwhile, the symmetric
weight enumerators between linear code and its dual over R are established by the Gray map from Rn to F4n

2 .
Finally, several examples are given to illustrate our main results and some open problems are also proposed.

INDEX TERMS Generator matrix, linear code, MacWilliams identity, weight enumerator.

I. INTRODUCTION
Codes over rings are very important in algebraic coding
theory and applications to combined coding and modulation.
So many researchers pay much attention to the study of codes
over rings, and a lot results are obtained [1, 3, 11]. In [4],
Dougherty et al. determined the Type II codes, where all self-
dual codes over the ring were classified for length up to 8.
ThenBetsumiya [2] andQian [9] generalized the results to the
ringF2m+uF2m andF2+uF2+u2F2, respectively. In addition,
it is worth noting that self-duality is preserved under Gray
maps.

Furthermore, (1 + u) constacyclic and cyclic codes over
the ring F2 + uF2 were introduced in [10]. It was showned
that every Gray image of a linear cyclic code over F2 + uF2
is equivalent to a cyclic code with odd length. In [16], Zhu,
Wang and Shi investigated the structure and properties of
cyclic codes over ring F2 + uF2. Cyclic codes over the ring
were principally generated and generator polynomial was
obtained in [16].

The weight distribution of a code with length n specifies
the number of codewords of each possible weight 0, 1, . . . , n.
When weight distribution does not uniquely determine a code
in general, it plays an important role in calculating the error
rate of decoding. As we know the weight distribution of C
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is uniquely determined by the weight distribution of C⊥ and
vice versa. The linear relation between the weight distribution
of C and C⊥ was first developed by MacWilliams [8]. Since
then there have been many different weight enumerators for
codes over finite fields and finite rings with respect to the
MacWilliams identity.

TheMacWilliams identities of various weight enumerators
for linear codes over Z4 were studied in [7]. The Lee and
Euclidean weight enumerators for linear codes over the ring
Z` were discussed in [11] and [15], sufficient conditions
for the existence of the MacWilliams type identities with
respect to the Lee and Euclidean weight enumerators for
linear codes were given. Meanwhile, the MacWilliams iden-
tities of various weight enumerators for linear codes over
non-principal rings were also widely studied. For instance,
Shi et al. determined the MacWilliams identities for linear
codes with respect to Lee weight enumerator over the rings
F2 + vF2 + v2F2 [12] and Fp + vFp [13], respectively. On
the other hand, Gao studied the linear codes over the ring
Fp + uFp + u2Fp with u3 = u, which was an open problem
of [12]. Later, the MacDonald codes over this non-chain ring
and the applications in constructing secret sharing schemes
were studied in [6].

Inspired by the work listed above, we investigate several
different weight enumerators of linear codes over a non-chain
ring R = F2[v]/〈v4 − v〉, and we also give the MacWilliams
identity on linear codes over R with respect to these weight
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enumerators. The remainder of this paper is organized as
follows. In section 2, we define the Leeweight of the elements
in the ring R and give the generator matrices for a linear code
C and its dual C⊥. In section 3, we define various weight
enumerators over the ring R and obtain the MacWilliams
identities for these different weight enumerators. In section
4, two examples are computed to describe the application.
Section 5 contains the conclusion of the paper and puts the
obtained results into perspective.

II. PRELIMINARY
In this section, we introduce some preliminary results as
follows. Assume that R is the non-principal ideal ring
F2[v]/〈v4− v〉 with characteristic 2, the ring is endowed with
addition and multiplication with v4 = v. The elements in R
can be written as x = a + bv + cv2 + dv3, a, b, c, d ∈ F2,
where 1, 1 + v + v3, 1 + v2 + v3 are units of R. A linear
code over R of length n is an R-submodule of Rn. For a code
C over R, a matrix G is a generator matrix for C if its row
vectors generate C .
Similar to the discussion of the generator matrix of a liner

code over F2 + vF2 + v2F2 in [13], every R-linear code
C containing some nonzero codewords is equivalent to an
R-linear code with a generator matrix G in the form of

G =



Ik1 A11 A12 A13 A14
0 vIk2 0 vA21 vA22
0 0 (1+ v)Ik3 (1+ v)A31 0
0 0 0 (v+ v2)Ik4 0
0 0 0 0 (1+ v+ v2)Ik5
0 0 0 0 0
0 0 0 0 0

A15 A16 A17
vA23 vA24 vA25

(1+ v)A32 (1+ v)A33 (1+ v)A34
0 0 (v+ v2)A41

(1+ v+ v2)A51 (1+ v+ v2)A52 (1+ v+ v2)A53
(1+ v3)Ik6 0 (1+ v3)A61

v (v+ v2 + v3)Ik7 (v+ v2 + v3)A71



where Iki are ki × ki identity matrices and C contains
24k1+3k2+3k3+2k4+2k5+k6+k7 codewords. Similarly, every R-
linear code containing some nonzero codewords is equivalent
to an R-linear code with a parity check matrix H as follows.

H =



J0,1 J0,2 J0,3
J7,1 J7,2 (1+ v)AT33
J6,1 J6,2 vAT32
J5,1 (v+ v2)AT22 0
J4,1 (1+ v+ v2)AT21 0

(v+ v2 + v3)AT12 0 (v+ v2 + v3)Ik3
(1+ v3)AT11 (1+ v3)Ik2 0

J0,4 J0,5 J0,6 J0,7 In−∑7
i=1 ki

0 (1+v)AT52 0 (1+v)Ik7 0
0 vAT51 vIk6 0 0
0 (v+v2)Ik5 0 0 0

(1+v+v2)AT31 (1+v+v2)Ik4 0 0 0
0 0 0 0 0
0 0 0 0 0


where J0,i, J7,1, J7,2, J6,1, J6,2, J5,1, J4,1 are R-matrix for
1 ≤ i ≤ 7. Furthermore, the code C⊥ contains
24n−4k1−3k2−3k3−2k4−2k5−k6−k7 codewords.

Definition 1: The Lee weight WL(r) of each element
r ∈ R is defined as

WL(r) =



0, if r ∈ D0 = 0;
1, if r ∈ D1 = {1+ v3, v, v2, v3};
2, if r ∈ D2 = {1, 1+ v+ v3, 1+ v2 + v3,

v+ v2, v+ v3, v2 + v3};
3, if r ∈ D3 = {1+ v, 1+ v+ v2 + v3, 1+ v2,

v+ v2 + v3};
4, if r ∈ D4 = {1+ v+ v2}.

According to the definition of the Lee weight of elements in
R, for x = (x1, x2, . . . , xn), we get WDj (x) =

∑n−1
i=0 δDj,xi ,

where

δDj,xi =

{
1, if xi ∈ Dj;
0, if xi /∈ Dj.

The Lee weight ofC is defined to be the rational sum of the
Lee weight of its components WL(c) =

∑n−1
i=0 WL(ci). Then

WL(c) is defined byWL(c) = WD1 (c)+2WD2 (c)+3WD3 (c)+
4WD4 (c). The Hamming weightWH (c) of a codeword c is the
number of nonzero components in C , i.e.WH (c) = WD1 (c)+
WD2 (c) + WD3 (c) + WD4 (c). For any x1, x2 ∈ C , the Lee
distance of C is given by dL(x1, x2) = WL(x1 − x2). The
Lee weight of C is the smallest nonzero Lee weight among
all codewords of C , and the Lee distance of C is the smallest
nonzero Lee distance between all paries of distinct codewords
of C .

Definition 2: The Gray map 8 from Rn to F4n
2 is defined

as8(a+bv+cv2+dv3) = (a, b, c, a+d) for a, b, c, d ∈ Fn2.
Obviously, 8 is an isometry from (Rn, Lee distance) to

(F4n
2 , Hamming distance). It is easy to verify that the Lee

weight of C is the Hamming weight of 8(C). Moreover,
we have the following theorem.

Theorem 1: IfC⊥ is the dual ofC , then8(C)⊥ = 8(C⊥).
Furthermore, if C is a self-dual code, so is 8(C).

Proof: Let c1 = a1 + b1v + c1v2 + d1v3 ∈ C , c2 =
a2 + b2v + c2v2 + d2v3 ∈ C⊥, where ai, bi, ci, di ∈ Fn2.
If c1 · c2 = 0 in R, which entails 8(c1) · 8(c2) = 0, so we
have 8(C)⊥ ⊆ 8(C⊥). Since 8(C) is a [4n, 4k1 + 3k2 +
3k3 + 2k4 + 2k5 + k6 + k7] code, then 8(C)⊥ is a [4n, 4n−
4k1−3k2−3k3−2k4−2k5−k6−k7] code. Therefore, we can
obtain |8(C)⊥| = 24n−4k1−3k2−3k3−2k4−2k5−k6−k7 . However,
|8(C⊥)| = |C⊥| = 24n−4k1−3k2−3k3−2k4−2k5−k6−k7 , hence,
8(C) and 8(C⊥) are dual F2-linear codes.
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According to the above theorem, we have the following
statement.

Remark 1: For X ,Y ∈ Rn, let WH (8(X )) be the Ham-
ming weight of 8(X ) over F4n

2 and WL(X ) be the Lee
weight of X . Then WL(X ) = WH (8(X )), dL(X ,Y ) =
dH (8(X ),8(Y )). Moreover, the minimum Lee weight of C
is the same as the minimal Hamming weight of 8(C).

III. SEVERAL WEIGHT ENUMERATORS OF LINEAR CODES
AND THEIR MacWilliams IDENTITIES OVER R
MacWilliams identity is one of the most important coding
theory that describes how the weight enumerators of a linear
code and of its dual code relate to each other. Let C be a code
over R with length n, and Bi denote the number of codewords
of Lee weight i in C . Then B0,B1, . . . ,B4n is called the Lee
weight distribution of C . The Lee weight enumerator of C is
defined as

LeeC (X ,Y ) =
4n∑
i=0

BiX4n−iY i,

or

LeeC (X ,Y ) =
∑
c∈C

X4n−WL (c)YWL (c),

and the Hamming weight enumerator of C asHamC (X ,Y ) =∑
c∈C

X4n−WH (c)YWH (c). Similarly, we define the symmetric

weight enumerator

sweC (X0,X1,X2,X3,X4)

=

∑
c∈C

X
WD0 (c)
0 X

WD1 (c)
1 X

WD2 (c)
2 X

WD3 (c)
3 X

WD4 (c)
4 .

Based on the definitions of three weight enumerators above,
we get four relational expressions below.

Theorem 2: Let C be a linear code over R. Then
(a) LeeC (X ,Y ) = sweC (X4,X3Y ,X2Y 2,XY 3,Y 4);
(b) HamC (X ,Y ) = sweC (X ,Y ,Y ,Y ,Y );
(c) LeeC (X ,Y ) = W8(C)(X ,Y );
(d) LeeC⊥ (X ,Y ) =

1
|C|LeeC (X + Y ,X − Y ).

Proof: According to the definition of the symmetrized
weight enumerator, we get (a) and (b) immediately. In addi-
tion, we can obtain (c) from the definition of Lee weight
enumerator. Combining 8(C⊥) = 8(C)⊥ with Theorem 1,
we have

W8(C⊥)(X ,Y ) =
1

|8(C)|
W8(C⊥)(X + Y ,X − Y ).

By |C| = |8(C)| and (c), we obtain

LeeC⊥ (X ,Y ) = W8(C⊥)(X ,Y )

=
1

|8(C)|
W8(C)(X + Y ,X − Y )

=
1
|C|

LeeC (X + Y ,X − Y ),

which completes the proof of (d).

Similar to the discussion of Theorem 3.1 in [12], we con-
clude the following theorem.

Theorem 3: Let C be a linear code of length n over
R, and B0,B1, . . . ,B4n be its Lee weight distribution. Let
B′0,B

′

1, . . . ,B
′

4n be the Lee weight distribution of C⊥. Then

B′k =
1
|C|

4n∑
i=0

BiPk (i, 4n),

where Pk (i, 4n) =
k∑
j=0

(−1)jC j
iC

k−j
4n−i is the krawtchouk poly-

nomial.
Now we introduce another weight enumerator of C , that is
complete weight enumerator

cweC (X0,X1, . . . ,X1+v+v2+v3 )

=

∑
c∈C

Xw0(c)
0 Xw1(c)

1 . . .X
w1+v+v2+v3 (c)

1+v+v2+v3
.

Before the study of MacWilliams identity with respect to
complete weight enumerator, we give some notes as follows.

The weight of x at a is defined to be Wa(x) =
n∑
i=1
δa,xi for

x = (x1, x2, . . . , xn), where

δa,xi =

{
1, if xi = a;
0, if xi 6= a.

Assume that λ is a function from R to the complex domain C
for all t = a+bv+ cv2+dv3 ∈ R. Then λ is a character with
λ(t) = (−1)d .

Lemma 1: Let C be a linear code of length n over R.
Then

∑
x∈C⊥

f (x) = 1
|C|

∑
x∈C

f ′(x) holds for all x, y ∈ C ,

where f ′(x) =
∑
y∈Rn

λ〈x, y〉f (y), f is a function from Rn to

complex C , and 〈x, y〉 is the inner product of x and y.
Theorem 4: Let C be a linear code of length n over R.

Then

cweC⊥ (X0,X1, . . . ,X1+v+v2+v3 )

=
1
|C|

cweC
(∑
r∈R

λ(0r)Xr ,
∑
r∈R

λ(1r)Xr , . . . ,∑
r∈R

λ((1+ v+ v2 + v3)r)Xr )

Proof: Let f (x) =
∏
XWr (x)
r . Then f ′(x) =∑

y∈Rn
λ〈x, y〉XW0(y)

0 XW1(y)
1 . . .X

W1+v+v2+v3 (y)

1+v+v2+v3
for any a ∈

R,Wa(y) =
∑n

i=0 δa,yi , and

f ′(x) =
∑
y∈Rn

(
λ(x1y1)X

δ0,y1
0 . . .X

δ1+v+v2+v3,y1
1+v+v2+v3

)

. . .
(
λ(xnyn)X

δ0,yn
0 . . .X

δ1+v+v2+v3,yn
1+v+v2+v3

)

=

∑
y1∈R

λ(x1y1)X
δ0,y1
0 X δ1,y11 . . .X

δ1+v+v2+v3 ,y1
1+v+v2+v3
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. . .
∑
yn∈R

λ(xnyn)X
δ0,yn
0 X

δ1,yn
1 . . .X

δ1+v+v2+v3,yn
1+v+v2+v3

=
(∑
r∈R

λ(x1r)Xr
)
. . .
(∑
r∈R

λ(xnr)Xr
)
.

Since the number of the components of X that equals j is
Wj(x), we have that

f ′(x) =
∏

(
∑

λ(jr)Xr )Wj(x)cweC⊥ (X0, . . . ,X1+v+v2+v3 )

=

∑∏
XWr (c)
r =

∑
f ′(x) =

1
|C|

∑
f ′(x)

=
1
|C|

cweC
(∑
r∈R

λ(0r)Xr ,
∑
r∈R

λ(1r)Xr ,

. . . ,
∑
r∈R

λ((1+ v+ v2 + v3)r)Xr )

which completes the proof.
The complete weight enumerator ofR−linear codemultiplied
by equal value may be different, while the symmetric weight
enumerator of it is identical. We get another definition of
the symmetric weight enumerator by the complete weight
enumerator below.

Definition 3: For any a ∈ Di, it has I (a) = i,
where i ∈ {0, 1, 2, 3, 4}. Then the symmetric weight
enumerator is defined as sweC (X0,X1,X2,X3,X4) =

cweC (XI (0),XI (1), . . . ,XI (1+v+v2+v3)).
Lemma 2: (a) If i ∈ D0, then

∑
r∈D0

λ(ir) =

1,
∑
r∈D1

λ(ir) = 4,
∑
r∈D2

λ(ir) = 6,∑
r∈D3

λ(ir) = 4 and
∑
r∈D4

λ(ir) = 1;

(b) If i ∈ D1, then
∑
r∈D0

λ(ir) = 1,
∑
r∈D1

λ(ir) =

2,
∑
r∈D2

λ(ir) = 0,
∑
r∈D3

λ(ir) = −2

and
∑
r∈D4

λ(ir) = −1;

(c) If i ∈ D2, then
∑
r∈D0

λ(ir) = 1,
∑
r∈D1

λ(ir) =

0,
∑
r∈D2

λ(ir) = −2,∑
r∈D3

λ(ir) = 0 and
∑
r∈D4

λ(ir) = 1;

(d) If i ∈ D3, then
∑
r∈D0

λ(ir) = 1,
∑
r∈D1

λ(ir) =

−2,
∑
r∈D2

λ(ir) = 0,∑
r∈D3

λ(ir) = 2 and
∑
r∈D4

λ(ir) = −1;

(e) If i ∈ D4, then
∑
r∈D0

λ(ir) = 1,
∑
r∈D1

λ(ir) =

−4,
∑
r∈D2

λ(ir) = 6,∑
r∈D3

λ(ir) = −4 and
∑
r∈D4

λ(ir) = 1.

Lemma 3:
∑
r∈R

λ(ir) =
∑
r∈R

λ(jr), (i, j ∈ Dl, l =

0, 1, . . . , 4).
Proof: According to Lemma 2, we get

∑
r∈R

λ(ir) =∑
r∈R

λ(jr) = 16, for i, j ∈ D0, and
∑
r∈R

λ(ir) =
∑
r∈R

λ(jr) = 0,

for i, j ∈ Dt , t ∈ {1, 2, 3, 4}.

By the introduction of symmetric weight enumerator,
we establish the MacWilliams identity with respect to it
between R−linear code and its dual code.

Theorem 5: Let C be a linear code of length n over R.
Then

sweC⊥ (X0,X1,X2,X3,X4)

=
1
|C|

sweC (X0 + 4X1 + 6X2 + 4X3 + X4,X0

+2X1 − 2X3 − X4,X0 − 2X2 + X4,X0 − 2X1
+2X3 − X4,X0 − 4X1 + 6X2 − 4X3 + X4).

Proof: Applying Theorem 4, we have that

sweC⊥ (X0,X1,X2,X3,X4)

= cweC⊥ (XI (0),XI (1), . . . ,XI (1+v+v2+v3))

=
1
|C|

cweC

(∑
r∈R

λ(0r)Xr ,
∑
r∈R

λ(1r)Xr ,

. . . ,
∑
r∈R

λ(1+ v+ v2 + v3)r)Xr

)

=
1
|C|

cweC

( 4∑
s=0

∑
r∈Ds

λ(0r)Xs,

4∑
s=0

∑
r∈Ds

λ(1r)Xs,

. . . ,

4∑
s=0

∑
r∈Ds

λ((1+ v+ v2 + v3)r)Xs

)
.

Meanwhile, for i, j ∈ Dt , by Lemma 3, we get

3∑
s=0

∑
r∈Ds

λ(ir)Xs =
3∑
s=0

∑
r∈Ds

λ(jr)Xs.

Then

sweC⊥ (X0,X1,X2,X3,X4)

=
1
|C|

sweC
( 4∑
s=0

∑
r∈Ds

λ(0r)Xs,
4∑
s=0

∑
r∈Ds

λ(1r)Xs,

4∑
s=0

∑
r∈Ds

λ((1+ v3)r)Xs,
4∑
s=0

∑
r∈Ds

λ(v3r)Xs,

. . . ,

4∑
s=0

∑
r∈Ds

λ((1+ v+ v3)r)Xs
)
.

By taking 0, 1+v3, v3, 1, 1+v+v3 fromD0,D1,D2,D3,D4,
we apply Lemma 2 and obtain that

•

4∑
s=0

∑
r∈Ds

λ(0r)Xs = X0 + 4X1 + 6X2 + 4X3 + X4;

•

4∑
s=0

∑
r∈Ds

λ(v3r)Xs = X0 − 2X2 + X4;

•

4∑
s=0

∑
r∈Ds

λ((1+ v3)r)Xs = X0 + 2X1 − 2X3 − X4;
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•

4∑
s=0

∑
r∈Ds

λ(1r)Xs = X0 − 2X1 + 2X3 − X4;

•

4∑
s=0

∑
r∈Ds

λ((1+v+v3)r)Xs = X0−4X1+6X2−4X3+X4.

IV. APPLICATION
As applications we provide two examples to illustrate our
results. Let C be a linear code of length 2 over R with
generator matrix

G =
(
v 0
0 v+ 1

)
.

Then the code C has 64 codewords. According to Section 2,
the dual code C⊥ is a linear code with generator matrix

H =
(

0 1+ v3

v3 + v2 + v 0

)
.

Then C⊥ has 4 codewords, i.e.C⊥ = {(0, 0), (0, v + v2 +
v3), (1+ v3, 0), (1+ v3, v+ v2+ v3)}. Therefore we get three
weight enumerators below,

sweC⊥ (X0,X1,X2,X3,X4) = X2
1 + 2X1X3 + X1X0,

LeeC⊥ (X ,Y ) = X6Y 2
+ 2X4Y 4

+ X7Y ,

HamC⊥ (X ,Y ) = X2
+ XY + 2Y 2.

Applying Theorem 5, we obtain the MacWilliams iden-
tity with respect to symmetric enumerator between R−linear
code and its dual code

sweC (X0,X1,X2,X3,X4)

=
1
|C⊥|

sweC⊥ (X0 + 4X1 + 6X2 + 4X3 + X4,X0 + 2X1

−2X3 − X4,X0 − 2X2 + X4,X0 − 2X1 + 2X3 − X4,

X0 − 4X1 + 6X2 − 4X3 + X4)

= X2
0 + 9X2

1 + 9X2
2 + X

2
3 + 6X0X1 + 36X0X2

+5X0X3 + 18X1X2 + 6X1X3 + 6X2X3.

Meanwhile, it follows by Theorem 2,

HamC (X ,Y ) = swec(X ,Y ,Y ,Y ,Y ) = X2
+ 49Y 2

+14XY ,

LeeC (X ,Y ) =
1
4

(
(X + Y )8 + 2(X + Y )7(X − Y )

+(X + Y )6(X − Y )2)

By listing the codewords of C literally, the conclusion is
proved to be completely correct under direct verification. The
Lee-weight distribution of C can also be computed by using
Theorem 3. By the relation of B′i and Bi, we get B0 = 4,
B1 = 8,B3 = 10,B4 = 6,B5 = 16 and B6 = 18,
B7 = 2,B8 = 2, which is consistent with the results
computed by Theorem 2. In addition, if |C| is far greater
than |C⊥|, then we can get the weight distribution of C
directly without requiring the specific codewords. The fol-
lowing example is a good illustration, assume C is a linear

code of length 4 over R with generator matrix

G =


v 0 0 0
0 v 0 0
0 0 1+ v 0
0 0 0 1+ v

 .
The code C has 212 codewords, the dual code C⊥ is a linear
code with generator matrix

H =


0 0 v+ v2 + v3 0
0 0 0 v+ v2 + v3

1+ v3 0 0 0
0 1+ v3 0 0

 .
C⊥ has 16 codewords, i.e. C⊥ = {(0, 0, 0, 0),
(0, 1+v3, 0, 0), (0, 0, v+v2+v3, 0), (0, 0, 0, v+v2+v3), (1+
v3, 0, 0, 0), (1+ v3, 1+ v3, 0, 0), (1+ v3, 0, 0, v+ v2 + v3),
(1+v3, 0, v+v2+v3, 0), (0, 1+v3, v+v2+v3, 0), (0, 0, v+
v2 + v3, v + v2 + v3), (0, 1 + v3, 0, v + v2 + v3), (1 + v3,
1 + v3, v + v2 + v3, 0), (1 + v3, 1 + v3, 0, v + v2 + v3),
(1 + v3, 0, v + v2 + v3, v + v2 + v3), (0, 1 + v3, v + v2 +
v3, v+ v2 + v3), (1+ v3, 1+ v3, v+ v2 + v3, v+ v2 + v3)}.
Therefore we get three weight enumerators below,

sweC⊥ (X0,X1,X2,X3,X4)

= X4
0 + 2X1X3

0 + 2X3X3
0 + X

2
1X

2
0 + 4X1X3X2

0

+X2
3X

2
0 + 2X2

1X3X0 + 2X1X2
3X0 + X

2
1X

2
3 ,

LeeC⊥ (X ,Y )

= X16
+ 2X15Y + X14Y 2

+ 2X13Y 3
+ 4X12Y 4

+2X11Y 5
+ X10Y 6

+ 2X9Y 7
+ X8Y 8,

HamC⊥ (X ,Y )

= X4
+ 4X3Y + 6X2Y 2

+ 4XY 3
+ Y 4.

Applying Theorem 5, we obtain the MacWilliams identity
with respect to symmetric enumerator between R−linear
code and its dual code

sweC (X0,X1,X2,X3,X4)

=
1
|C⊥|

sweC⊥ (X0 + 4X1 + 6X2 + 4X3 + X4,X0 + 2X1

−2X3 − X4,X0 − 2X2 + X4,X0 − 2X1 + 2X3 − X4,

X0 − 4X1 + 6X2 − 4X3 + X4)

= X4
0 + 8X3

0X1 + 12X3
0X2 + 8X3

0X3 + 22X2
0X

2
1

+72X2
0X1X2 + 52X2

0X1X3 + 54X2
0X

2
2 + 72X2

0X2X3
+22X2

0X
2
3 + 24X0X3

1 + 132X0X2
1X2 + 104X0X2

1X3
+216X0X1X2

2 + 312X0X1X2X3 + 104X0X1X2
3

+108X0X3
2 + 216X0X2

2X3 + 132X0X2X2
3 + 24X0X3

3

+9X4
1 + 72X3

1X2 + 60X3
1X3 + 198X2

1X
2
2

+312X2
1X2X3 + 118X2

1X
2
3 + 216X1X3

2

+468X1X2
2X3 + 312X1X2X2

3 + 60X1X3
3

+81X4
2 + 216X3

2X3 + 198X2
2X

2
3 + 72X2X3

3

+144X4
3 .
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In addition, it follows by Theorem 2,

HamC (X ,Y ) = swec(X ,Y ,Y ,Y ,Y )

= X4
+ 28X3Y + 294X2Y 2

+1372XY 3
+ 2536Y 4

LeeC (X ,Y ) = X16
+ 8X15Y + 34X14Y 2

+ 104X13Y 3

+247X12Y 4
+ 464X11Y 5

+ 700X10Y 6

+848X9Y 7
+ 799X8Y 8

+ 552X7Y 9

+258X6Y 10
+ 72X5Y 11

+ 9X4Y 12.

As B′1 = 1,B′2 = 1 and B′4 = 2, by the relation of B′i and Bi,
we get B0 = 1,B1 = 8,B2 = 34,B3 = 104,B4 = 247,
B5 = 464,B6 = 700,B7 = 848,B8 = 799,
B9 = 552,B10 = 258,B11 = 72,B12 = 9, which is
consistent with the results computed by Theorem 2.

V. CONCLUSION
In this work, we investigate several weight enumerators of the
linear codes over the non-principle ideal ring F2[v]/〈v4 − v〉.
The MacWilliams identity respect to the complete weight
enumerator and symmetric weight enumerator are deter-
mined. It is meaningful to consider the Type II codes over
this non-chain ring, and there is a natural problem to study
the existence of a mass formula for self-dual codes over R.
Furthermore, the construction of linear codes over R (image
codes) with few weight distribution is another research
direction.
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