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ABSTRACT A Finite-Difference Time-Domain (FDTD) simulation of broadband electromagnetic metasur-
faces based on direct incorporation of Generalized Sheet Transition Conditions (GSTCs) into a conventional
Yee-cell region has been proposed for arbitrary wave excitations. This is achieved by inserting a zero thick-
ness metasurface inside bulk nodes of the Yee-cell region, giving rise to three distinct cell configurations -
Symmetric Cell (SC), Asymmetric Cell (AC) and Tight Asymmetric Cell (TAC). In addition, the metasurface
is modelled using electric and magnetic surface susceptibilities exhibiting a broadband Lorentzian response.
As a result, the proposed model guarantees a physical and causal response from the metasurface. Several
full-wave results are shown and compared with analytical Fourier propagation methods showing excellent
results for both 1D and 2D field simulations. It is found that the TAC provides the fastest convergence among
the three methods with minimum error.

INDEX TERMS Finite-difference methods, time-domain analysis, electromagnetic metamaterials, metasur-
faces, computational electromagnetics, electromagnetic diffraction, Lorentz dispersion, Yee-cell.

I. INTRODUCTION
Electromagnetic (EM) metasurfaces are two-dimensional
equivalents of volumetric metamaterials and are composed
of 2D arrays of sub-wavelength scatterers. By engineering
these scatterers across the surface, various impressive wave-
shaping transformations can be achieved for multiple applica-
tions such as generalized refraction, holography, polarization
control, imaging, and cloaking, to name a few [1], [2].
Metasurfaces perform such wave transformations as a result
of the complex interplay between the electric and magnetic
dipolar moments generated by the scatterers, which is some-
times also referred to as a Huygens’ configuration [3], [4].
A convenient implementation of such metasurfaces is using
all-dielectric resonators, which naturally produce the elec-
tric and magnetic dipoles moments, and when properly
designed, provide zero back-scattering, resulting in a perfect
transmission [5]–[7].

A recently growing area of interest is re-configurable and
time-varying metasurfaces, where the surface polarizabilities
are real-time tunable. A more general description of such
dynamic metasurfaces is a space-time modulated metasur-
face, where the surface polarizabilities are a function of both
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space and time, resulting in a traveling-wave type pertur-
bation on the metasurface. They are the 2D equivalents of
general space-time modulated media [8], [9], which have
found important applications in parametric amplifiers and
acousto-optic spectrum analyzers, [10]–[12], for instance.
Space-time modulation has led to various exotic effects such
as harmonic generation and non-reciprocity [13], [14], that
has also been recently explored using metasurfaces [15], [16]
for advanced wave-shaping applications. Their attractive
features lie in achieving non-reciprocity using purely non-
magnetic materials, which has important practical benefits in
engineering systems, related to the high-frequency operation
and no requirement of a magnetic bias. Another equally
important class is that of nonlinear metasurfaces exhibit-
ing field-dependent susceptibilities for applications in beam-
shaping and advanced temporal frequency control [17]–[20].

The EM modeling of metasurfaces with such advanced
wave manipulations necessitates a need for efficient time-
domain simulation of these structures. While practical meta-
surfaces are sub-wavelength in thickness (δ � λ0),
they can be efficiently modeled as space-discontinuities,
described using electric and magnetic surface suscepti-
bilities, i.e. χ̃ee(ω) and χ̃mm(ω), respectively. They thus
model practical metasurfaces as zero thickness structures,
thereby transforming them into a single-interface problem.
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Such space-discontinuities can be rigorously modeled using
Generalized Sheet Transition Conditions (GSTCs). Various
numerical approaches have been recently presented, where
the GSTC conditions are incorporated into bulk Maxwell’s
equations [21]–[23], including finite-difference formula-
tions in the frequency domain to accurately analyze the
transmitted and reflected fields of a general zero-thickness
metasurface [24]–[27].

In contrast to frequency-domain modeling, the rigor-
ous time-domain modeling of EM metasurfaces explicitly
requires causality considerations for accurate modeling of
practical metasurface responses. Since metasurfaces are con-
structed using sub-wavelength resonators, they are oper-
ated around the resonant frequencies where the EM waves
have maximum interaction with the metasurface. Conse-
quently, these metasurfaces are naturally very dispersive, i.e.
χ̃e,m(ω) 6= const. The geometrical shapes of the consti-
tuting scatterers are primarily responsible for their resonant
behavior, in spite of their design being generally based on
non-dispersive materials (typically metals and dielectrics).
This operation of the metasurface in a dispersive (and thus
broadband) regime, demands a physical description of these
resonators consistent with the causality requirements. This
in turn, requires a causal description of the equivalent sur-
face χe,m of the metasurface, in frequency (or time domain),
i.e. χ̃e,m = χ̃e,m(ω) or χe,m = χe,m(t). This require-
ment is also critical in the accurate time-domain modeling
of general space-time modulated metasurfaces and nonlin-
ear surfaces, where new spectral frequency components are
generated. This subsequently further necessitates a com-
plete description of the surface χe,m encompassing these
frequencies as well, in addition to the bandwidth of the input
excitation.

Consequently, little work has been done in time-domain
modeling of metasurfaces, which necessitates these addi-
tional requirements of specifying the surface in terms of its
temporal dispersion, i.e., frequency-dependent constitutive
parameters. The work in [28], [29] presented a GSTC-FDTD
formulation of a dispersive metasurface for the first time,
where the surface polarizabilities were described using phys-
ically motivated Lorentz-Drude models, typical of the phys-
ical sub-wavelength unit cell resonators used in constructing
practical metasurfaces. Such a specification requires the
introduction of auxiliary equations, with the Lorentz-Drude
dispersion expressed in the time-domain using second-order
differential equations. This approach, known as the Auxiliary
Differential Equation (ADE)method, is well understood to be
compatible with the standard FDTD update equations [30].
However, the metasurface modeling of [28], [29] did not
rigorously integrate the GSTCs inside the Yee-cell, and com-
putes the fields scattering in the transmission and reflection
regions separately.

Other FDTD techniques for modeling dispersive meta-
surfaces have been proposed in works such as [31]–[36].
An approach in some of these works was to restrict the
frequency dependence of the surface susceptibilities to simple

cases such as χ ∝ 1/ω [32], resulting in limited formulations
of the FDTD equations. A more general alternative suggested
is the piece-wise linear recursive convolution (PLRC)method
[33], [37], which has also been recently applied to model
metasurfaces [31]. PLRC is an integral approach, and numer-
ical convolution is needed for its implementation, unlike the
ADE method which is based on partial differential equations.
However, while methods based on recursive convolution,
including PLRCs, provide good accuracy and computational
efficiency, the formulation is non-physical, mathematically
opaque and requires the use of a partial fraction extraction
from a specified frequency response – which can pose prob-
lems with respect to passivity and causality. The method is
also limited to linear surfaces.

Conversely, the ADE method has a number of natural
advantages for modeling metasurfaces. For a complex sur-
face response, the extraction of the multiple Lorentz-Drude
resonances is relatively simple due to the underlying physics
being captured by the approach [21]. As the individual
Lorentz-Drude response is causal and, if required, passive,
the total response is guaranteed to be physical. The method
is also attractive as it can naturally be extended to model
nonlinear effects and thus is also a more suitable choice to
simulate space-time modulated metamaterials and metasur-
faces [38]. Moreover, the ADE method has identical accu-
racy and memory requirements for Lorentz media as the
PLRC [39], [40].

In this work, we develop a rigorous Finite-Difference
Time-Domain (FDTD)method, where theGSTCs are directly
integrated into the FDTD Yee-cell. Compared to the explicit
FDTD model presented in [28], [29], [38], where the meta-
surface is treated as a boundary of a given simulation domain,
the proposed method treats the metasurface as an EM scatter-
ing entity and is able to process arbitrary broadband excita-
tions. In this context, various strategies for integrating GSTCs
in a conventional FDTD Yee-cell are proposed and compared
here, assuming Lorentzian surface polarizabilities, which are
naturally causal and rigorously captures the fundamentally
dispersive nature of typical EM metasurfaces. Moreover,
issues related to the exact placement of themetasurface inside
the Yee-cell relative to the standard field node, are compre-
hensively discussed, which have important implications in
achieving desired computational accuracy.

The paper is structured as follows. Section II presents
the GSTC formulation of zero thickness metasurfaces, and
establishes analytical models for specific cases, for bench-
marking purposes. Section III proposes three possible dif-
ferent Yee-cell configurations where GSTCs can be incorpo-
rated in conventional cells. Section IV shows several simu-
lated results corresponding to these configurations, providing
detailed comparisons between them. Finally, Sec. V provides
concluding discussions and remarks on the applicability of
the Lorentzian surface susceptibilities, and conclusions are
provided in Sec. VI. Some important field derivations of the
proposed Yee-cell configurations are also provided in the
Appendix.
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FIGURE 1. A typical configuration of a zero-thickness uniform Huygens’
metasurface located at z = 0. It consists of orthogonal electric (p) and
magnetic (m) dipole moments, excited with a normally incident
plane-wave, resulting in reflected and transmitted fields governed by (1).
For simplicity, normal polarization is assumed without any variation of
the fields along the y−axis.

II. METASURFACE DESCRIPTION
A. GENERALIZED SHEET TRANSITION
CONDITIONS (GSTCs)
A zero thickness metasurface, such as the one in Fig. 1, is a
space-discontinuity. The rigorous modeling of such discon-
tinuities based on Generalized Sheet Transition Conditions
(GSTCs) was developed by Idemen in [41], which were
later applied to metasurface problems in [42]. The modified
Maxwell-Faraday and Maxwell-Ampere equations can be
written in the time-domain as,

ẑ×1H(x, t) =
dPs(x, t)

dt
(1a)

1E(x, t)× ẑ =
dMs(x, t)

dt
, (1b)

where 1ψ represents the differences between the fields on
the two sides of the metasurface for all the vector components
of the field ψ , i.e., H or E fields. The other terms Ps and
Ms represent the electric and magnetic surface polarization
densities, in the plane of the metasurface, which depend on
the total average fields around the metasurface [43]. They are
defined by,

P̃s(ω) = ε0χ̃ee(ω)Ẽs(ω) (2a)

M̃s(ω) = µ0χ̃mm(ω)H̃s(ω) (2b)

where χ̃ee and χ̃mm are the frequency dependent electric
and magnetic susceptibilities and Ẽs and H̃s are the aver-
age EM fields at the surface. The EM coupling related to
the bi-anisotropic term is assumed zero here, for simplicity.
Furthermore, the surface susceptibilities χ̃ee and χ̃mm are
also treated a scalars for simplicity, as opposed to their most
general tensorial forms that account for more general wave
transformations.

B. SURFACE POLARIZATION DENSITIES
A primary concern in modeling the metasurface response
is that a physical representation of the surface polarizations
must be consistent with causality. The metasurface unit cells
will have a number of natural resonances, and this response
must be captured for the correct broadband response to
be predicted. These resonances are naturally modeled by
Lorentzian functions, and a summation of correctly param-
eterized Lorentzians is an appropriate model of the surface,
chosen in this work, i.e.

χ̃ee(ω) =
N∑
n=0

ω2
ep,n

(ω2
e0,n − ω

2)+ jαe,nω
(3a)

χ̃mm(ω) =
N∑
n=0

ω2
mp,n

(ω2
m0,n − ω

2)+ jαm,nω
(3b)

A key consideration in the use of Lorentzians is that they rep-
resent a physical process and therefore are implicitly causal.
Besides, they naturally take into account the dispersive effects
of the metasurface, which have practical importance in the
EM interaction of metasurfaces with broadband excitations.

While a typical metasurface requires several Lorentzian
contributions to accurately model broadband surface suscep-
tibilities, such as for all-dielectric unit cells [28], here we
assume a single resonant Lorentz response for the electric
and magnetic polarizations, for the sake of clarity and simpler
forthcoming analytical expressions, so that

P̃s(ω) =
ε0ω

2
ep

(ω2
e0 − ω

2)+ jαeω
Ẽs(ω) (4a)

M̃s(ω) =
µ0ω

2
mp

(ω2
m0 − ω

2)+ jαmω
H̃s(ω), (4b)

where ωp, ω0, and α are the plasma frequency, resonant fre-
quency, and the loss-factor of the oscillator, respectively. The
subscripts e and m denote electric and magnetic quantities.
It should be noted that the use of a single Lorentzian here is
strictly for simplicity. Therefore, it is possible to extend the
proposed method for multiple resonance contributions due to
linear field superposition.

To formulate a time-domain Yee surface cell, we need a
time-domain representation for the surface polarizations and
must transform (4) to the time domain, using the inverse
Fourier transform, leading to

d2Ps

dt2
+ αe

dPs

dt
+ ω2

e0Ps = ε0ω
2
epEs (5a)

d2Ms

dt2
+ αm

dMs

dt
+ ω2

m0Ms = µ0ω
2
mpHs (5b)

It is convenient to formulate these two equations as a 1st

order system using two variables. For example, for the case
of Fig. 1, defining Ps and ωe0P′s = dPs/dt along the y−axis,
we obtain,[
1 0
0 1

]
d
dt

[
P′s
Ps

]
+

[
αe ωe0
−ωe0 0

] [
P′s
Ps

]
=

[
ε0ω

2
ep/ωe0
0

]
Es
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allowing us to write the first equation as,

[Cp]
d[Ps]
dt
+ [Gp][Ps] = [Fp]Es, [Ps] = [P′s Ps]

T (6)

In a similar manner we can define Ms and ωm0M ′s = dMs/dt
and obtain,

[Cm]
d[Ms]
dt
+[Gm][Ms]= [Fm]Hs, [Ms]= [M ′s Ms]T . (7)

C. FOURIER TRANSFORM SOLUTION FOR NORMALLY
INCIDENT PLANE-WAVE
Let us first consider a specific case of a linear and uniform
metasurface, which is excited with a normally incident pulsed
plane-wave. It represents a simple case whose time-domain
transmitted, and reflected fields can be obtained using a
standard Fourier propagation method [44]; which provides
a baseline for comparison to the Yee cell simulations. Now,
consider a Huygens’ metasurface illuminated with a normally
incident plane-wave, as shown in Fig. 1. For simplicity, but
without loss of generality, the problem is assumed to be 2D,
where all y−variations are considered to be zero.

Assume a monochromatic excitation with a frequency ω
and expressing Ẽs and H̃s in terms of Ẽt (ω), Ẽr (ω) and
Ẽ0(ω); the frequency domain representation of the transmit-
ted, reflected and incident plane-waves in the metasurface,
respectively. Substituting these corresponding fields into (2)
leads to,

P̃s(ω) = ε0χ̃ee(ω)
Ẽt (ω)+ Ẽr (ω)+ Ẽ0(ω)

2
,

M̃s(ω) = µ0χ̃mm(ω)
H̃t (ω)+ H̃r (ω)+ H̃0(ω)

2
, (8)

For a normally incident plane-wave, (1) becomes

(−Ẽt − Ẽr + Ẽ0) = jω
ε0η0χ̃ee

2
(Ẽt + Ẽr + Ẽ0) (9a)

(Ẽt − Ẽr − Ẽ0) = jω
µ0χ̃mm

2η0
(−Ẽt + Ẽr − Ẽ0). (9b)

Equations (9a) and (9b) can further be placed into a matrix
form by defining,

[G̃] =
[
−0̃e − 1 −0̃e − 1
0̃h + 1 −0̃h − 1

]
, and [F̃] =

[
0̃e − 1
−0̃h + 1

]
where 0e = jωε0η0χ̃ee/2 and 0̃h = jωµ0χ̃mm/2η0, resulting
in,

[G̃]
[
Ẽt (ω)
Ẽr (ω)

]
= [F̃]Ẽ0(ω)

Using this equation after specifying Ẽ0(ω) = F{E0(0−, t)},
we can then determine Et (0+, t) and Er (0−, t) using an
inverse Fourier transform, i.e.[

Et (0+, t)
Er (0−, t)

]
= F−1

{
[G̃]−1[F̃]Ẽ0

}
, (10)

which finally represents the time-domain reflection and
transmission of the metasurface.

FIGURE 2. Three different Yee-cell configurations integrating a zero
thickness metasurface in bulk nodes, investigated in this work.

III. YEE CELL FORMULATION
In this section, we will describe the integration of GSTCs
into bulk Yee-cells, using three possible configurations. The
formulation will be developed for 2D propagation in the x−z
plane. However, the proposed approach can be straightfor-
wardly extended into a full 3D simulation. The entire simu-
lation region consists of two types of nodes: bulk nodes for
modeling the reflection and transmission region following
Maxwell’s equations, and surface-nodes modeling the zero
thickness metasurface following the GSTCs. For a bulk 2D
Yee-cell defined for propagation on the x − z plane (see
Fig. 2), the basic equations for the electric and magnetic
fields, are given by conventional update equations,

Hz|
n+1/2
i,j+1/2 = Hz|

n−1/2
i,j+1/2 −

1t
µ0

(
Ey|ni,j+1 − Ey|

n
i,j

1

)

Hx |
n+1/2
i+1/2,j = Hx |

n−1/2
i+1/2,j +

1t
µ0

(
Ey|ni+1,j − Ey|

n
i,j

1

)

Ey|
n+1
i,j = Ey|ni,j +

1t
ε0

Hx |n+1/2i+1/2,j − Hx |
n+1/2
i−1/2,j

1

−
Hz|

n+1/2
i,j+1/2 − Hz|

n+1/2
i,j−1/2

1


where the subscript is the spatial position (with i and j rep-
resenting node positions in z and x respectively), and the
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superscript denotes the time-step. A field evolution is then
obtained by stepping in time using the following procedure:

1) Update the H’s at n + 1/2 (tn+1/2 = tn + 1t/2) using
previous E’s and the boundary conditions.

2) Update E’s at n + 1 (tn+1 = tn + 1t) using the H’s
calculated at n+ 1/2.

A key feature of this procedure is that it determines the
unknown current fields using only previously calculated
fields. For exampleEn+1’s are determined from theHn+1/2’s.
Therefore the method is a strict explicit time marching
method. As an explicit method the spatial step, 1, and the
time step, 1t , should always satisfy the Courant condition
u
√
21t ≤ 1 (where u is the local speed of light) to guarantee

stability [30].
Next is the metasurface region. When forming the update

equations for the metasurface cells, the nature of the GSTC
equations in (1) keep the Hx |n+1/2 and the Ey|n+1 fields
coupled, which not allows them to be solved in a simple
sequential manner. This is due to the polarizations being
naturally solved at the time point associated with their fields.
Thus, we solve forMs|

n+1/2 and Ps|n+1 by formulating a self-
consistent solution to the unknowns present in each cell and
then update all fields after a complete time step.

A. YEE-CELL CONFIGURATIONS
In this section, we present three different possibilities to
incorporate a zero thickness surface via GSTCs inside a bulk
Yee-cell region with minimal disruption. The three following
surface cells we wish to consider are shown in Fig. 2:

1) Symmetrical SurfaceCell (SC):This cell is identical in
form to the cell used in [28] for formulating an explicit
surface as an internal boundary condition. The surface
is inserted midway between two electric field nodes
(Ey|k−1 and Ey|k ) and theHx node present at the position
k-1/2 is split into two nodes on either side of the surface
denoted as Hx |s− and Hx |s+ .

2) Asymmetrical Surface Cell (AC): The second cell is
formed by simply inserting the surface midway between
an Hx node and Ey node. This requires no new nodes to
be defined but produces an asymmetrical cell structure.

3) Tight Asymmetrical Surface Cell (TAC): The third
structure is similar to the AC cell but inserts new nodes
either side of the surface. On the left side a new electric
field node is inserted (Ey|s− ) and on the right a magnetic
field node is inserted (Hx |s+ ).

B. YEE-CELL UNKNOWNS
A self-consistent solution for the surface cell requires a clear
identification of the variables defined at and near the surface.
Although most of the nodes are essentially bulk nodes, there
are still irregular nodes that require a special update equation.
See, for example, the Ey|k node in the SC cell, it relies
on the value of Hx |s+,j that is not known until the surface
cell is solved. Assuming all bulk nodes (Hx |n+1/2, Hz|n+1/2

and Ey|n+1) were updated, we obtain the following unknown

vectors, X, by inspecting each of the surface cells:

[XSC] =
[
Ey|

n+1
k−1,j Ey|

n+1
k,j Hx |

n+1/2
s−,j

Hx |
n+1/2
s+,j [Ps]|

n+1/2
j [Ms]|

n+1/2
j

]T
[XAC] =

[
Ey|

n+1
k,j Ey|

n+1
k−1,j Hx |

n+1/2
k−1/2,j

[Ps]|
n+1/2
j [Ms]|

n+1/2
j

]T
[XTAC] =

[
Ey|

n+1
k,j Ey|

n+1
s−,j Hx |

n+1/2
s+,j

Hx |
n+1/2
k−1/2,j [Ps]|

n+1/2
j [Ms]|

n+1/2
j

]T
.

Given these unknowns, we now need to formulate a linear
set of equations with the GSTCs of (1) and the polarization
responses in (6) and (7), so they can be integrated into the Yee
cell algorithm.

The update equations for the surface cells derived in the
following sections are complex requiring the self-consistent
solution of variables at two times (n+1/2 and n+1). To clar-

ify them we have used boxed variables such as Ey|
n+1
k,j to

denote the unknowns. Other values will be known at the time
of solution for the fields in the cell.

C. METASURFACE FIELD EQUATIONS
The first GSTC equation (1a) specifies a relationship between
the field across the surface (1Ey) and the magnetic polariza-
tion. To discretize this equation we have two choices:
(a) As a first choice, we naturally impose the electric field

across the surface at the time point n+ 1 and use central
difference in time for the polarization Ms (which will be
solved on the half steps n+ 1/2) providing,

1Ey|n+1s =

Ms|
n+3/2
j − Ms|

n+1/2
j

1t

This equation is problematic, however, as Ms|
n+3/2
j is in

the future and not part of our solution. We must therefore
make an approximation and use,

1Ey|n+1s ≈

Ms|
n+1/2
j −Ms|

n−1/2
j

1t
. (11)

(b) The second choice is to center 1Ey at the time step n,
allowing us to write,

1Ey|ns =
Ms|

n+1/2
j −Ms|

n−1/2
j

1t
However, this choice is also not useful, as for small χee,
the above equation becomes problematic. This can be
seen by setting χee = 0, which produces,

1Ey|ns = 0.

Such an equation does not provide a relationship between
any of the unknowns present in1Ey|s andwill produce an
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under-determined set of cell equations. We will therefore
use (11) in the subsequent formulation.

The use of this assumption may require the spatial and
time steps of the simulation to be smaller then that typically
used for Yee based FDTD modeling and as we will see in
the results section where convergence with respect to dis-
cretization is investigated the consequence of modeling the
dispersive surface is a need to use relatively fine meshes.

The first GSTC equation (1a) relating 1Hx to the electric
polarization can be handled more straightforwardly. Using
theHx values at the surface centered on the time step n+1/2,
we have,

1Hx |
n+1/2
s,j =

Ps|
n+1
j − Ps|nj

1t
. (12)

Both of these equations (11) and (12) differ for the three
surface cells only in the definition of 1Ey|s and 1Hx |s.
Defining the fields for the surface at the position (s, j) we have
for the three cells,

SC/AC: 1E|n+1s,j = Ey|
n+1
k,j − Ey|

n+1
k−1,j

TAC: 1E|n+1s,j = Ey|
n+1
k,j − Ey|

n+1
s−,j

and

SC: 1H |n+1/2s,j = Hx |
n+1/2
k+1/2,j − Hx |

n+1/2
k−1/2,j

AC: 1H |n+1/2s,j = Hx |
n+1/2
s+,j − Hx |

n+1/2
s−,j

TAC: 1H |n+1/2s,j = Hx |
n+1/2
s+,j − Hx |

n+1/2
k−1/2,j ,

where the difference is obtained by simply using the appro-
priate nodes on either side of the surface.

D. SURFACE POLARIZATION EQUATIONS
The time domain surface polarization equations (6) and (7)
need to be discretized in time. As these equations repre-
sent a 2nd order system, a trapezoidal formulation was used
producing,(

[Cp]+
1t[Gp]

2

)
[Ps]|

n+1
j

=

(
[Cp]−

1t[Gp]
2

)
[Ps]|nj

+1t[Fp]

(
Ey|

n+1
s,j + Ey|

n
s,j

2

)
(13a)(

[Cm]+
1t[Gm]

2

)
[Ms]|

n+1/2
j

=

(
[Cm]−

1t[Gm]
2

)
[Ms]|

n−1/2
j

+1t[Fm]

Hx |n+1/2s,j + Hx |
n−1/2
s,j

2

 . (13b)

For the three cells these two equations only differ in the nature
of the forcing terms Ey|s,j and Hx |s,j – the average field at the
surface. For the three cells, we have by inspection,

SC/AC: Ey|s,j =
Ey|k−1,j + Ey|k,j

2
(14a)

TAC: Ey|s,j =
Ey|s−,j + Ey|k,j

2
(14b)

and

SC: Hx |s,j =
Hx |s−,j + Hx |s+,j

2

AC: Hx |s,j =
Hx |k−1/2,j + Hx |k+1/2,j

2

TAC: Hx |s,j =
Hx |k−1/2,j + Hx |s+,j

2
. (15)

It is important to note that for the two asymmetrical cells
the fields applied to the surface Ey|s,j and Hx |s,j are not co-
incident in space. For the AC cell the Ey|s,j is applied at the
position k-1/2 andHx |s,j at k . For the TAC cellEy|s,j is applied
at the position k-1/4 and Hx |s,j at k-3/4. This mismatch can
be expected to produce some error in the It is largest for the
AC cell and a possible modification is to use,

AC: Hx |s,j =
Hx |k−3/2,j + Hx |k+1/2,j

2
(16)

which brings the forcing function into alignment at k − 1/2.
Unless otherwise noted, the AC cell will use the symmetrical
forcing formulation.

E. SPECIAL CELL UPDATE EQUATIONS
In addition to equations defining the GSTCs and the polariza-
tions, each cell has a number of nearby nodes which, although
placed in the bulk, are dependent on the surface equations and
thus must be solved at the same time.
(a) For the SC, we have special update equations for the

nodes Ey|
n+1
k−1,j and Ey|

n+1
k,j , given by

Ey|
n+1
k−1,j

= Ey|nk−1,j

+
1t
ε0

 Hx |
n+1/2
s−,j − Hx |

n+1/2
k−3/2,j

1
−
1Hz|

n+1/2
k−1,j

1


(17a)

Ey|
n+1
k,j

= Ey|nk,j

+
1t
ε0

Hx |
n+1/2
k+1/2,j − Hx |

n+1/2
s+,j

1
−
1Hz|

n+1/2
k,j

1


(17b)

where 1Hz|k,j = Hz|k,j+1/2 − Hz|k,j−1/2.
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(b) The AC cell only requires one special update for Ey|
n+1
k−1,j,

given by

Ey|
n+1
k−1,j

= Ey|nk−1,j

+
1t
ε0

 Hx |
n+1/2
k−1/2,j − Hx |

n+1/2
k−3/2,j

1
−
1Hz|

n+1/2
k−1,j

1

 .
(18)

(c) The TAC cell has two update equations, one for Ey|
n+1
k,j

and one for Hx |
n+1/2
k−1/2,j, given by

Ey|
n+1
k,j

= Ey|nk,j

+
1t
ε0

Hx |
n+1/2
k+1/2,j − Hx |

n+1/2
s+,j

0.751
−
1Hz|

n+1/2
k,j

1


(19a)

Hx |
n+1/2
k−1/2,j

= Hx |
n−1/2
k−1/2,j

+
1t
µ0

 Ey|
n+1
s−,j − Ey|

n+1
k−1,j

0.751

 . (19b)

F. IMPLEMENTATION
For each cell configuration, the equations (11-13) and one
of (17), (23) or (19) form a complete set of linear equations
defining the surface variables. These equations can be assem-
bled into a compact matrix form, given by

[0s][Xs] = [Fs]. (20)

For the specific case of the TAC cell, [0s] and [Fs] are
presented in the appendix as an example. A field evolution is
then simply obtained by stepping in time using the following
procedure:
(a) Update the bulk H’s at n+1/2 (tn+1/2 = tn+1t/2) using

previous E’s and the boundary conditions.
(b) Update bulk E’s at n+ 1 (tn+1 = tn +1t) using the H’s

calculated at n+ 1/2.
(c) Update surface Hs’s, and Ms at n + 1/2 (tn+1/2 = tn +

1t/2) and Es’s and Pss at n + 1 (tn+1 = tn +1t) using
[Xs] = [0s]−1[Fs].

IV. VALIDATION
To test the various Yee-cell configurations, the algorithm
above was integrated into a standard 1D/2D Yee-cell based
simulator, with a metasurface configured as an SC, AC or
TAC cell. The simulation setup was configured as a source
applied to the left side of the computation region, and

perfectly matched layers (PMLs) on the other three sides.
A metasurface was placed vertically half way along the
z-axis, at z = 0. The intent of this section is to evaluate the
robustness and accuracy of the three cell configurations, and
do a detailed comparison between them.

A. TRANSPARENT SURFACE
To provide an initial evaluation of the surface cells, simula-
tions were performed for transparent surfaces (or no metasur-
face), where Ps = Ms = 0. For such a case the GSTCs reduce
to

1Ey|n+1s = 0, and 1Hx |n+1/2s = 0 (21)

which gives,

SC: Ey|
n+1
k,j =Ey|

n+1
k−1,j, Hx |

n+1/2
s+,j =Hx |

n+1/2
s−,j ≡Hx |

n+1/2
k−1/2,j

AC: Ey|
n+1
k,j = Ey|

n+1
k−1,j, Hx |

n+1/2
k+1/2,j = Hx |

n+1/2
k−1/2,j

TAC: Ey|
n+1
k,j = Ey|

n+1
s−,j , Hx |

n+1/2
s+,j = Hx |

n+1/2
k−1/2,j.

As of course, the polarization equations are no longer relevant
for a transparent region with no metasurface, which can now
be represented by one of the update equations from (17-19)
and equation (21). More specifically, they are given for each
of the three Yee-cell configurations as follows:
(a) For the SC cell, we obtain,

Ey|
n+1
k−1,j

= Ey|nk−1,j

+
1t
ε0

Hx |n+1/2k−1/2,j − Hx |
n+1/2
k−3/2,j

1
−
1Hz|

n+1/2
k−1,j

1


(22a)

Ey|
n+1
k,j

= Ey|nk,j

+
1t
ε0

Hx |n+1/2k+1/2,j − Hx |
n+1/2
k−1/2,j

1
−
1Hz|

n+1/2
k,j

1


(22b)

These are identical to bulk equations in absence of a
metasurface, however, the relationship Ey|

n+1
k,j = Ey|

n+1
k−1,j

imposed by the GSTCs (21) is not correct for this config-
uration, and we can thus expect some errors to be present.

(b) For the AC cell we get,

Ey|
n+1
k−1,j = Ey|nk−1,j

+
1t
ε0

Hx |n+1/2k−1/2,j − Hx |
n+1/2
k−3/2,j

1
−
1Hz|

n+1/2
k−1,j

1

 .
This is again the bulk update equation. Unlike the SC
case, the relationship Ey|

n+1
k,j = Ey|

n+1
k−1,j produces the

correct update equation this time for the adjacent nodes.
The surface is essentially removed from the simulation
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mesh producing the bulk update equations, and we can
expect perfect transparency.

(c) For the TAC cell, we obtain the following update equa-
tions,

Ey|
n+1
k,j =Ey|

n
k,j

+
1t
ε0

Hx |n+1/2k+1/2,j−Hx |
n+1/2
k−1/2,j

0.751
−
1Hz|

n+1/2
k,j

1


Hx |

n+1/2
k−1/2,j

=Hx |
n−1/2
k−1/2,j

+
1t
µ0

Ey|n+1/2k,j − Ey|
n+1/2
k−1,j

0.751

 .
These are identical to the bulk update equations except
for a 0.75 factor due to a shortening of the cells either
side of the surface. This slight distortion of the cell is
due to the use of complimentary E and H field nodes
on either side of the surface. We can expect near perfect
transparency from this configuration.

Figure 3(a) shows the computed fields in the reflection
(z < 0) and transmission region (z > 0), when the meta-
surface is numerically removed (χ̃ee(ω) = χ̃mm(ω) = 0).
The figure shows the response of all three Yee-cell config-
urations (SC, AC and TAC), and compared with analytical
Fourier propagation method of Sec. II-C. The modulation
frequency of the input pulse is 230 THz throughout this paper.
The transmitted pulse shows a similar response for all Yee-
cell simulations with a slight discrepancy from the Fourier
propagation result. The spatial step size was 1 = λ0/100
and was chosen to produce a negligible amount of numeri-
cal dispersion. As this dispersion is the same for all cases,
this slight pulse distortion can be attributed to bulk effects,
which can be reduced by lowering the spatial step size. The
reflection, of course, should ideally be zero, and is found to be
negligible for AC and TAC cases. However, the SC exhibits a
significant amount of reflection due to not producing the bulk
update equations correctly (see (22)).

Next, a stepped continuous-wave (CW) Gaussian beam
with a width of λ0 was launched from the left side, with
strongly divergent wavefronts. Figure 3(b) shows the com-
puted steady-state E-field distribution obtained for each of the
three Yee-cell configurations. As can be seen, no significant
reflection is present except in the case of a SC configu-
ration. We can conclude from these observations, that for
transparent or nearly transparent surfaces (i.e, χee, mm ≈ 0),
the SC is inappropriate due to existence of spurious numerical
reflections.

B. LORENTZIAN METASURFACE
Let us now introduce a metasurface inside the computational
region, at z = 0. Fig. 4(a) shows the transmitted and reflected
pulses, corresponding to a normally incident Gaussian pulsed
plane-wave on a matched surface (χ̃ee = χ̃mm) for three

FIGURE 3. Scattered E-field distribution in the absence of the
metasurface (i.e. transparent region), emulated using χ̃ee = χ̃mm = 0, for
sanity-check purposes. (a) Uniform metasurface excited with a normally
incident Gaussian-pulsed plane-wave, compared with analytical Fourier
propagation method. (b) Steady-state scattered fields for a stepped
Gaussian beam. In all cases, fields obtained from all three Yee-cell
configurations of Fig. 2 are shown for comparison. The simulations
parameters are: Excitation frequency f0 = 230 THz, Gaussian pulse width
σt = 10−15 s, Gaussian beam width σx = λ0, Yee-cell step size
1 = λ0/400.

different step sizes (1 = λ0/25, λ0/100 and λ0/400) and
a symmetric forcing function in the surface susceptibilities.
As can be seen all three surfaces produce similar results. The
pulse is strongly dispersed by the presence of a metasurface
with Lorentzian susceptibilities. Furthermore, the metasur-
face response matches very well with the FT propagation
result albeit with some numerical dispersion determined by
the spatial step size. A matched metasurface should produce
no reflections, and the FT result does show this. For the larger
step sizes all of the surfaces produce non-negligible reflection
with the AC cell, arguably producing the most and the TAC
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FIGURE 4. Transmission and reflection response of a uniform metasurface excited with a normally incident Gaussian-pulsed plane-wave,
corresponding to (a) a matched metasurface [χ̃ee(ω) = χ̃mm(ω)] with gradually increasing spatial step-size 1, and (b) a mismatched metasurface
[χ̃ee(ω) 6= χ̃mm(ω)]. The Gaussian pulse parameters are the same as in Fig. 3. The metasurface susceptibilities are defined using a single Lorentzian,
for simplicity, with the following parameters: ωep = 3.01× 1011 rad/s, ωe0 = 2π(230 THz) and αe = 7.54× 1012. For the mismatched metasurfaces
ωe0 − ωm0 = 2π(15 GHz). The input pulse is Gaussian with full-width-half-maximum (FWHM) of 10−15 s with a modulation frequency of 230 THz.

the least. For all the Yee-cell configurations, the field reflec-
tion can be reduced to a negligible value by decreasing the
spatial step size to1 = λ0/400. Figure 4(b) further shows the
transmitted and reflected fields for a mismatchedmetasurface
(χ̃ee 6= χ̃mm) with a spatial step size of 1 = λ0/400,
where a significant amount of reflection is expected. All of
the Yee-cell configurations produce an excellent match to the
FT result, with again the TAC cell producing the least amount
of error. Finally, to further evaluate the impact of the forcing
function in the Lorentzian susceptibilities, a simulation using
the AC cell with asymmetrical forcing (15) is also shown
in Fig. 5. It can be clearly seen that even for a very small step
size (1 = λ0/400), significant reflections are produced. We
can therefore conclude that Lorentzian polarizabilities must
be excited with symmetrical forcing functions for all three
Yee-cell configurations.

Figure 6 further shows the impact of the spatial step size
on the scattered fields for both cases of matched and mis-
matched metasurfaces. The total normalized EM energy is
computed in both transmission and reflection regions as a
function of step size 1, and compared with the ideal results
obtained using the Fourier transform propagation method.
A monotonic convergence is observed for all the three Yee-
cell configurations, and in particular, AC and TAC are seen
to converge faster than the SC, in all cases. It should be noted
that the total normalized energy in the computation region is
less than 1, due to non-zero α’s accounting for dissipation
losses in the metasurface.

FIGURE 5. Comparison of the transmitted and reflected fields from a
uniform metasurface of Fig. 4, computed using the asymmetric cell (AC),
using a symmetric and asymmetric forcing function in the surface
polarization.

Finally, Fig. 7 shows the scattered fields from a matched
and mismatched metasurface, excited with a stepped CW
Gaussian beam, computed using the TAC configuration.
As expected, the matched surface produces a phase discon-
tinuity at the surface but with no disruption of the beam
propagation. On the other hand, the mismatched metasurface
creates a more complex response as the reflected waves from
the surface cause a standing wave to form in the reflection
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FIGURE 6. The convergence plots for the transmitted and reflected fields
of Fig. 4, as a function of Yee-cell grid spatial step size, for the cases of
(a) matched metasurface and (b) mismatched metasurface,
corresponding to all three Yee-cell configurations of Fig. 2, and compared
to analytical Fourier propagation results.

FIGURE 7. Steady-state scattered E-fields of a stepped Gaussian beam
input excitation, shown for a matched and mismatched metasurface. All
the simulation parameters are the same as in Fig. 4. The signal step is
modelled using a slowly rising Gaussian edge of FWHM 10−5 s.

region, as compared to purely forward propagating waves in
the transmission region.

While the use of the Lorentzian metasurface guarantees a
causal physical system, the numerical technique employed in
the description of the surface could introduce numerical insta-
bilities. Detailed simulations of the case of Fig. 7 were run to
harmonic steady state for up to 0.25 ns (roughly 6000 optical
cycles) without observing any instabilities. Moreover, for
broadband temporal pulses, such as the ones investigated
here, this approach has been found to be adequate.

V. CAUSALITY CONSIDERATIONS FOR CONSTANT
SURFACE SUSCEPTIBILITIES
The prime motivation for modeling metasurface suscep-
tibility densities using Lorentzian profiles inside of a
Yee-cell region, is to incorporate a physically motivated
causal response from the metasurface sub-wavelength unit
cells. While an assumption of a constant susceptibil-
ity will greatly simplify the proposed Yee-cell algorithm,
it fails to rigorously capture two important physical effects:
a) causality, and b) dispersion. While it is clear that con-
stant surface susceptibilities are inherently non-dispersive,
the causality aspect is not straightforward. This aspect is
clarified in this section, to emphasize the importance of
using Lorentzian susceptibilities in the proposed FDTD
method.

Let us consider a lossless uniform matched metasurface
[χ̃ee(ω) = χ̃mm(ω) = χ0, where χ0 ∈ R] excited with
a pulsed Gaussian plane-wave, whose envelope is given by
E0(t, z = 0−) = exp[−(t/T0)2]. The transmission function
of a matched metasurface is given by (9), as

T (ω) =
(
2c− jωχ0
2c+ jωχ0

)
= − exp

{
2j tan−1

(ωχ0
2c

})
, (23)

where the last equality is based on the fact that |T (ω)| = 1
∀ ω, i.e., an all-pass transfer function. For small arguments of
the inverse tangent function, T (ω) ≈ exp{−jωχ0/c}, so that
the output of the metasurface is given by

Et (t, 0+) = F−1{F[E0(t, 0−)]T (ω)}

= exp

[
−

(
t − k0χ0

T0

)2
]
,

where k0 = ω/c. Therefore, the metasurface output is also a
Gaussian pulse, as expected. However, its peak is now located
at a time instant tpeak = k0χ0. There are now two following
possibilities:
1) χ0 > 0: The output pulse is located at tpeak ≥ 0, i.e., a

positive time-delay.
2) χ0 < 0: The output pulse is now located at tpeak < 0,

i.e., a negative time-delay or a time advance.
While Case 1 is naturally causal, Case 2 represents a
non-causal response, as the output pulse appears before
the input. Therefore, for this simple case of a matched
metasurface, it can be concluded that negative and con-
stant surface susceptibilities, represent a non-physical sys-
tem, and thus are not allowed. This is consistent with the
fact that causal EM metamaterials with negative constitu-
tive parameters ε < 0 and µ < 0, must be dispersive
to allow positive time-average stored electric and magnetic
energies [45], [46].

To numerically demonstrate this, consider a broadband
pulsed excitation of a uniform metasurface with a very
short Gaussian pulse. Fig. 8 shows the computed response
corresponding to both analytical Fourier transform propa-
gation approach and the proposed Yee-cell using the TAC
configuration, for the two cases when Re{χ0} > 0 and
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FIGURE 8. Demonstration of a non-causal response from the metasurface
(assumed to be matched, for simplicity), whose surface susceptibilities
are defined as frequency independent. (a) Re{χ̃ee(ω)} ≥ 0 ∀ ω, and
χ̃ = 4.8731× 10−7 − j2.8616× 10−8. (b) Re{χ̃ee(ω)} < 0 ∀ ω, and
χ̃ = −5.0881× 10−7 − j3.1207× 10−8.

Re{χ0} < 0. As expected, the TAC simulation and the
FT simulation match perfectly for the first case providing a
positive time delay. The second case with negative real part of
χ0 produces a phase advance for the transmitted field, thereby
creating a non-causal response in the FT simulation with the
transmitted pulse running ahead of the excitation envelope.
As we would expect, for the Yee-cell simulation, this causes
an instability which is indicated by the amplification and
gross distortion of the transmitted pulse [47]. This further
demonstrates the need for the use of a physical causal surface
representation, such as a Lorentzian response in a numerical
Yee-cell model.

VI. COMPUTATIONAL IMPACT
The presence of a metasurface in the simulations above
has an impact on the simulation time due to an increase
in computational intensity. The surface Yee-cell updates are
considerably more numerically intensive then a simple bulk
Yee-cell update. However, this is mitigated by the fact that
there are far fewer of the surface cells than the bulk cells.
A primary consideration is that for simple geometries the
number of surface cells will scale linearly with the resolution
of themeshing, whereas the number of bulk cells will increase
geometrically.

This trade-off is illustrated in Fig. 9 where for two geome-
tries we present the simulation time as a function of the
spatial step size. The first geometry is a quasi-1D simulation
of 20 µm long strip with a fixed number of cells in the y
direction, and variable number in the x direction. The sec-
ond geometry is a 2D simulation of a rectangular region
20×20 µm2 as shown in Fig. 4. For all simulations the phys-
ical dimensions were kept constant, and simulations were
run for increasing mesh densities from 12 to 95 steps per
wavelength for all surfaces and the case of no surface, using
the later as a reference case. As can be seen from the figure,

FIGURE 9. Simulation time as a function of the spatial step size (on a
log-log scale) for two simulation geometries (Quasi-1D strip and a 2D
simulation) as presented in Fig 4. All three implicit surface configurations
are shown and compared with no surface present. Simulations were run
using Matlab on a iMac using an i5 processor (3.4 GHz).

for the quasi-1D case the presence of a surface produces a
noticeable increase in simulation time for lowmesh densities.
In this case the computation overhead is constant as the
number of surface cells is fixed.

For the second geometry, the situation is similar, but more
pronounced. At low mesh densities the CPU cost of the sur-
face calculations is substantial, however, as the mesh density
increases, the number of bulk cells increases geometrically,
as opposed to only a linear increase of number of surface
cells. Thus, for moderate or fine meshing, the CPU cost of
the surface becomes almost insignificant. In both examples,
the computation overload of the surface, expressed as a per-
centage of the total simulation time, decreases as the mesh
density increases, due to larger number of bulk cells.

VII. CONCLUSIONS
An FDTD simulation of broadband electromagnetic meta-
surfaces has been proposed based on direct incorporation of
GSTCs inside of Yee-cell region, for arbitrary wave excita-
tions. This has been achieved by inserting a zero thickness
metasurface inside bulk nodes of the Yee-cell region, giving
rise to three distinct cell configurations - SC, AC and TAC.
In addition, the metasurface has been modelled using electric
and magnetic surface susceptibilities exhibiting a broadband
Lorentzian response. As a result, the proposed model guar-
antees a physical and causal response from the metasurface.
Several full-wave results have been presented, and compared
with analytical Fourier propagation methods showing excel-
lent results, for both 1D and 2D fields simulations. It has
been further found that the TAC provides the fastest conver-
gence among the three methods with minimum error. While
the case of scalar surface susceptibilities exhibiting a single
Lorentzian resonant contribution is described here, and was
found to be adequate, the proposed method can be extended
to full tensorial susceptibilities with an arbitrary number

VOLUME 8, 2020 83037



T. J. Smy et al.: FDTD Simulation of Dispersive Metasurfaces With Lorentzian Surface Susceptibilities

of Lorentzians within a fully 3D simulation environment.
Finally, the Lorentzian description surface polarizabilities
enables a physical, intuitive and practically useful description
of the metasurface, thereby easily extendable to space-time
modulated metasurface cases, where for instance the resonant
frequency and the loss-coefficient of the Lorentz function can
be easily modulated in time [38]. In such cases, the ADE-
FDTD technique becomes a preferred choice compared to
other FDTD techniques for modeling material dispersion,
including PLRC methods. Future works include extension of
the proposed methods to model more exotic metasurfaces and
performing its detailed stability analysis.

APPENDIX
A. TIGHT ASYMMETRICAL SURFACE CELL MATRIX
FORMULATION
To illustrate the formation of field matrix equation (20), let us
take an example of a tight asymmetrical cell among the pos-
sible three configurations of Fig. 2. The equations describing
the tight asymmetric cell are given by (11-13) and (23). Using
them, we obtain the following set of field equations:
1) The pair of GSTCs for both E- and H -fields.

Ey|
n+1
k,j − Ey|

n+1
s−,j =

Ms|
n+1/2
j −Ms|

n−1/2
j

1t

Hx |
n+1/2
s+,j − Hx |

n+1/2
k−1/2,j =

Ps|
n+1
j − Ps|nj

1t

2) The pair of special update equations, for the nodes Ey|
n+1
k,j

and Hx |
n+1/2
k−1/2,j,

Ey|
n+1
k,j =Ey|

n
k,j

+
1t
ε0

Hx |
n+1/2
k+1/2,j− Hx |

n+1/2
s+,j

0.751
−
1Hz|

n+1/2
k,j

1



Hx |
n+1/2
k−1/2,j =Hx |

n−1/2
k−1/2,j +

1t
µ

 Ey|
n+1
s−,j − Ey|

n+1
k−1,j

0.751


3) The pair of Lorentzian surface polarization densities for
both E− and H -fields.(
[Cp]+

1t[Gp]
2

)
[Ps]|

n+1
j

=

(
[Cp]−

1t[Gp]
2

)
[Ps]|nj

+1t[Fp]

 Ey|
n+1
s−,j + Ey|

n+1
k,j + Ey|

n
s−,j + Ey|

n
k,j

4


(
[Cm]+

1t[Gm]
2

)
[Ms]|

n+1/2
j

[XTAC] =
[
Ey|

n+1
k,j Ey|

n+1
s−,j Hx |

n+1/2
s+,j Hx |

n+1/2
k−1/2,j P̄s|n+1j M̄s|

n+1/2
j

]T
(24)

[0TAC] =



1t −1t 0 0 [0 0] [0 − 1]
0 0 1t −1t [0 − 1] [0 0]

1 0
1t

ε00.751
0 [0 0] [0 0]

0 0 0 1 [0 0] [0 0]

−1tF̄p
4

−1tF̄p
4

[
0
0

] [
0
0

] (
C̄p +

1tḠp

2

) [
0 0
0 0

]
[
0
0

] [
0
0

]
−1tF̄m

4
−1tF̄m

4

[
0 0
0 0

] (
C̄m +

1tḠm

2

)



(25)

[FTAC] =



−Ms|
n−1/2
j

−Ps|
n−1
j

Ey|nk,j +
1t

ε00.751
Hx |

n+1/2
k+1/2,j −

1t
ε01

(1Hz|
n+1/2
k,j )

Hx |
n−1/2
k−1/2,j +

1t
µ00.751

(Ey|ns−,j − Ey|
n
k−1,j)

(C̄p −
1tḠp
2

)P̄s|nj +
1tF̄p
4

(Ey|nk,j + Ey|
n
s−,j)

(C̄m −
1tḠm
2

)M̄s|
n−1/2
j +

1tF̄m
4

(Hx |
n−1/2
k−1/2,j + Hx |

n−1/2
s+,j )


(26)
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=

(
[Cm]−

1t[Gm]
2

)
[Ms]|

n−1/2
j +1t[Fm]

×

 Hx |
n+1/2
k−1/2,j + Hx |

n+1/2
s+,j +Hx |

n−1/2
k−1/2,j+Hx |

n−1/2
s+,j

4

.
These equations can be placed in appropriate matrix forms
as given in (24)-(26), as shown at the bottom of the previous
page, which can be now used to update the subsequent fields
on the Yee-cell nodes.
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