
Received April 21, 2020, accepted April 29, 2020, date of publication May 6, 2020, date of current version May 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992709

Generation of Antifractals via Hybrid
Picard-Mann Iteration
WEI WANG 1, XIAOHUI HU 2, ABDUL AZIZ SHAHID 3, AND MINGYE WANG 1
1College of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
2Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
3Department of Mathematics and Statistics, The University of Lahore, Lahore 54000, Pakistan

Corresponding author: Wei Wang (ww56050006ww@aliyun.com)

This work was supported in part by the Key Project of NSFC-Big Data Method and Solution for Complex Information under
Grant U143520.

ABSTRACT The aim of this paper is to generate antifractals using fixed point iterative algorithms, i.e.,
we aim to generate anti Julia sets, tricorns and multicorns for the anti-polynomial z→ zk +c of the complex
polynomial zk+c, for k ≥ 2.A hybrid Picard-Mann iterative procedure used to establish escape criterion and
explore the geometry of antifractals. A visualization of the antifractals for certain complex antipolynomials
is presented and their graphical behavior is compared with antifratals generated via Mann iteration. We also
explain the effects of parameters on shape of antifractals.

INDEX TERMS Antifractals, fixed point iterative schemes, escape criterion, tricorns and multicorns.

I. INTRODUCTION
The branch of mathematics known as fixed point theory is
a powerful tool to study natural phenomena that are usually
nonlinear and has many applications in almost every area of
research including biology, computer sciences, image gener-
ations, complex graphics, etc [1], [2]. Fractal and antifractal
images can be generated by using iterative algorithms for
finding fixed points of particular mappings [1]. Very first
time, Julia in the year 1918 [3] studied graphics of the follow-
ing complex function (1) and lead the foundation of Fractal
geometry:

zn+1 = z2n + c, (1)

where z ∈ C and c is a fixed complex number. Later this
complex set named as Julia set, which is the classical example
of Fractal.
Definition 1 ( [4]): Let us consider a complex valued

polynomial f : C −→ C with degree ≥ 2. Then the set
of complex numbers Ff whose orbits does not converge to
infinity is known as filled Julia set of f . Mathematically the
filled Julia set is:

Ff = {x ∈ C : {
∣∣f n(x)∣∣}∞n=0 is bounded }.

The associate editor coordinating the review of this manuscript and

approving it for publication was Haiyong Zheng .

The Julia set is denoted by J (fc) and is the boundary of
filled Julia set Ff and the complement of Julia set is called
Fatou set [5].

The word Fractal was introduced by Mandelbrot and intro-
duced Mandelbrot set [6]. He took c as a complex variable
in (1) and utilized the idea of Gostan Julia to observe the
behaviour of Julia sets that are connected sets [6]. Fractals
don’t have a conventional definition, anyway they are distin-
guished through their irregular structure that can’t be found
in Euclidean geometry.
Definition 2 ( [7]): For the complex polynomial Qc(z) =

z2 + c, the Mandelbrot set is the collection of all c for which
the orbit of 0 is bounded and is denoted byM . Mathematical,
we can write

M = {c ∈ C : {Qnc(0)}; n = 0, 1, 2, . . . is bounded}.

The 0 has been taken as initial point because it is the only
critical point for Qc.
The Julia sets andMandelbrot sets are the fundamental sets

in fractal geometry and got special place in fractal art [8].
These sets are most complex sets till the date and can not be
seen without computer [9]. There are many ways to generate
Fractals and fixed point theory is one of them in which
iterative algorithms are used to find fixed point of complex
polynomials [10], [11]. Different researcher used different
iterative algorithms to generate Fractals, for example, see
[10]–[14]. Generation of Fractals is an aesthetic endeavor,
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a sooting diversion or only a numerical model and fractal art
is totally different from other computer activities [15].

In [16], Crowe et al., first time studied the connected locus
and dynamics of the quadratic antiholomorphic polynomials
z2+ c and this connected locus is called ‘‘tricorn’’ by Milnor
in [17].

Tricorn, being a complex subset of complex numbers, plays
an important role in quadratic and cubic polynomials and
very much similar with Mandelbrot set. The nature of tricorn
is three-cornered and the style of its self similarity exactly
same as that of Mandelbrot set. In the year 1983, Crowe with
his coauthors [16] studied the relationship between tricorn
and Mandelbrot set, named it “Mandelbar sets” and proved
that the features bifurcations of tricorn is along arcs rather
than at points. Later in [18], Winters proved that the bound-
ary of tricorn contains a smooth arc and in [19], Lau and
Schleicher investigated symmetries of tricorn and multicorn.
In continuation of these works, the tricorn set is generalized
and multicorn set has been introduced [20]. In fact multicorns
is the generalization of tericorns or multicorn set is a tricorn
set of higher order. Moreover they proved that the Julia set
of mapping Ac(z) = zk + c for k ≥ 2 is either connected or
disconnected. Now we define the multicorn sets.
Definition 3 ( [7]): Let us consider the mapping Ac(z) =

zk + c for k ≥ 2. The multicorn det is denoted by M∗c which
is the collection of all complex numbers c for which the orbit
of 0 is bounded. Mathematical, we can write as:

M∗c = {c ∈ C : A
n
c(0) does not tend to∞},

where Anc is the nth iterate of the function Ac(z).
In the above definition, if we take k = 2, multicorn set

become tricorn set. In literature, one can find many ways to
generate antifractals and oneway is to use iterative algorithms
for finding fixed point of mappings. The aim of this paper
is to generate antifractals by using Picard-Mann iterative
algorithm. For a complex valued mapping T : C → C , the
Picard orbit (PO) is defined as [21]:

xn+1 = T (xn) (2)

where n ≥ 0. The Mann orbit (MO) is defined as [22]:{
x0 ∈ C,
xn+1 = (1− θ)xn + θTxn, n ≥ 0,

(3)

where θ ∈ (0, 1].
This is one step iterative algorithm and antifractals via MO

process were studied by Rani in [23], [24]. Many authors
studied the dynamical behaviour of antiholomorphic complex
mappings and various fixed point iterative algorithms were
utilized [25]–[27].

The following two-step Ishikawa iteration process [28] is
used in [25] to generate tricorns and multicorns:

x0 ∈ C,
xn+1 = (1− θ )xn + θTyn,
yn = (1− δ)xn + δTxn, n ≥ 0,

(4)

where θ and δ ∈ (0, 1].

Kwun et al. [29] and Chen et al. [30] explored tricorns and
multicorns via Noor iteration with s-convexity and modified
S-iteration respectively. Kang et al. [31] visualized tricorns
and multicorns by using following S-iteration process [32]:

x0 ∈ C,
xn+1 = (1− θ )Txn + θTyn,
yn = (1− δ)xn + δTxn, n ≥ 0,

(5)

where θ and δ ∈ (0, 1].
Recently, Li et al. [33] introduced the antifractals by uti-

lizing CR-iteration with s-convexity. It is seen that for each
iterative process the behaviour and dynamics of the tricorn
and multicorns differ. Now we define the Picard-Mann orbit
(PMO) [34].
Definition 4: Consider the mapping f : C → C , where C

is a subset of complex plane. Then the PMO is the following
sequence of iterates with initial guess x0 ∈ C{

xn+1 = f (yn),
yn = (1− θ )xn + θ f (xn); n ≥ 0,

(6)

where 0 < θ ≤ 1.
The PMO is a function of three variables (f , x0, θ) which

can be written as PMO(f , x0, θn).
Khan in [34] proved that the PMO converges faster than PO,
MO and Ishikawa iteration process.

Now, for polynomialQc(zn) of any degree, we have follow-
ing PM scheme:{

zn+1 = Qc(un),
un = (1− θ)zn + θQc(zn), n ≥ 0,

(7)

where θ ∈ (0, 1].
In this paper we consider the iteration process of unicritical

antiholomorphic polynomials fc(z) = zk + c, for any degree
k ≥ 2 and c ∈ C via PMO and attained diverse graphical pat-
terns of tricorn, multicorn and anti-Julia sets that are totally
different from those generated by using MO.

II. ESCAPE CRITERION FOR ANTIFRACTALS
Many techniques are used to generate and analyze fractals,
such as iterated function systems, random fractals, escape
time fractals etc. The escape time algorithm depends on the
maximum number of iterations necessary to measure if the
orbit sequence tends to infinity or not. This algorithm gives
a useful mechanism applied to demonstrate some features
of dynamic system under iterative procedure. Usually, the
escape criterion for fractal sets is:
Theorem 1 ( [7]): Let Qc(z) = z2 + c where c ∈ C. Also

let n ≥ 0 and ∣∣Qnc(z)∣∣ > max{|c| , 2},

then
∣∣Qnc(z)∣∣→∞ as n→∞

Here max{|c| , 2} is called escape radius threshold which
may be different for different iterative processes. Now we
obtain a general escape criterion that is necessary to construct
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the antifractals for antipolynomials of the form Qc(z) = zk +
c, k ≥ 2 in PMO.
Theorem 2: Let |z| ≥ |c| > ( 2

θ
)

1
k−1 with k ≥ 2, 0 < θ ≤

1 and c be a complex number. Let z◦ = z and u◦ = u.
Define {

zn+1 = Qc(un)
un = (1− θ)zn + θQc(zn), n ≥ 0.

Then |zn| → ∞ as n→∞.
Proof: For Qc(z) = zk + c

|u| = |(1− θ )z+ θQc(z)|

=

∣∣∣(1− θ )z+ θ (zk + c)∣∣∣
≥

∣∣∣θzk + (1− θ)z
∣∣∣− |θc|

≥

∣∣∣θzk ∣∣∣− |(1− θ )z| − |θz| ∵ |z| ≥ |c|
≥ θ

∣∣∣zk ∣∣∣− |z| + |θz| − |θz|
≥ |z| (θ |z|k−1 − 1).

Also for

|z1| = |Qc(u)|

=

∣∣∣uk + c∣∣∣
≥

∣∣∣(∣∣z∣∣ (θ ∣∣z∣∣k−1 − 1))k + c
∣∣∣

≥

∣∣∣(|z| (θ |z|k−1 − 1))k
∣∣∣− |c| ∵ ∣∣z∣∣ = |z|

≥ (|z| (θ |z|k−1 − 1))k − |z| ∵ |z| ≥ |c| (8)

As |z| ≥ |c| > ( 2
θ
)

1
k−1 so

θ |z|k−1 − 1 ≥ 1

(θ |z|k−1 − 1)k ≥ 1

|z|k (θ |z|k−1 − 1)k ≥ |z|k (9)

Putting in (8), we have

|z1| ≥ |z|k − |z|

= |z| (|z|k−1 − 1)

Since |z| > ( 2
θ
)

1
k−1 > 2

1
k−1 so |z|k−1−1 > 1.Hence we have

µ > 0, for which |z|k−1 − 1 > 1+ µ > 1. Consequently

|z1| ≥ (1+ µ) |z| .

Repeatedly applying same argument, we get

|z2| ≥ (1+ µ)2 |z| ,
...

|zn| ≥ (1+ µ)n |z| .

Hence |zn| → ∞ as n→∞.
�

Now, we can get following escape criterion immediatly.

Corollary 1: If |z| > max
{
|c| ,

(
2
θ

) 1
k−1
}
then |zn| → ∞

as n→∞.

Algorithm 1 Visualization of Multicorn and Tricorn

Input: Qc(z) = zk + c, where c ∈ C and k ≥ 2, A ⊂ C –
area, K – iterations, θ ∈ (0, 1] – parameter for the
PMO, colourmap[0..M − 1] – withM colours.

Output: Tricorn or multicorn for A.

1 for c ∈ A do
2 R = max{|c| , ( 2

θ
)1/k−1}

n = 0
z0 = 0
while n ≤ K do

3 un = (1− θ )zn + θQc(zn),
zn+1 = Qc(un)
if |zn+1| > R then

4 break

5 n = n+ 1

6 i = b(M − 1) nK c
colour c with colourmap[i]

III. VISUALIZATION OF ANTIFRACTALS
In this section antifractals like anti-Julia sets, tricorns and
multicorns are visulized forQc(z) = zk+c, k ≥ 2 viaMO and
PMO by arranging escape time algorithm for visualization of
antifractals with the help of software Mathematica 9.0.

Algorithm 1 demonstrates pseudocode for the multicorns
and tricorns, whereas the pseudocode for the anti-Julia set is
the Algorithm 2.

Algorithm 2 Visualization of Anti-Julia Set

Input: Qc(z) = zk + c, where c ∈ C and k ≥ 2, A ⊂ C –
area, K – iterations, θ ∈ (0, 1] – parameter for the
PMO, colourmap[0..M − 1] – withM colours.

Output: Anti-Julia set for A.

1 R = max{|c| , ( 2
θ
)1/m−1}

2 for z0 ∈ A do
3 n = 0
4 while n ≤ K do
5 wn = (1− θ)zn + θQc(zn),

zn+1 = Qc(wn)
6 if |zn+1| > R then
7 break

8 n = n+ 1

9 i = b(M − 1) nK c
10 colour z0 with colourmap[i]

A. TRICORNS FOR THE FUNCTION Qc (z) = z2
+ c

In Fig. 1 tricorn is generated in POwhereas in Figs. 2–5 and in
Figs. 6–9, tricorns are visualized for quadratic function z→
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FIGURE 1. Tricorn generated via PO.

FIGURE 2. Tricorn generated via PMO for θ = 0.2.

FIGURE 3. Tricorn generated via PMO for θ = 0.6.

z2 + c in PMO and MO respectively. The maximum number
of iterations are fixed at 30.
• Fig. 1 A = [−2.2, 1.2]× [−1.7, 1.7].
• In Fig. 2 with A = [−6, 4.7] × [−5.5, 5.5] tri-
corn generated in PMO and in Fig. 6 with A =

[−6, 4.7]×[−5.5, 5.5] tricorn generated inMO for same
value θ = 0.2.

• In Fig. 3 and Fig. 7 tricorn generated in PMO and MO
respectively for θ = 0.6,A = [−3.7, 2.7]× [−3.2, 3.2].

• In Fig. 4 and Fig. 8 tricorn obtained in PMO and MO
respectively for θ = 0.35,A = [−6, 4.7]× [−5.5, 5.5].

• In Fig. 5 with A = [−4.4, 3.4] × [−3.9, 3.9] tri-
corn generated in PMO and in Fig. 9 with A =

[−6, 4.7]×[−5.5, 5.5] tricorn generated inMO for same
value θ = 0.06.

FIGURE 4. Tricorn generated via PMO for θ = 0.35.

FIGURE 5. Tricorn generated via PMO for θ = 0.06.

FIGURE 6. Tricorn generated via MO for θ = 0.2.

FIGURE 7. Tricorn generated via MO for θ = 0.6.

B. MULTICORNS FOR THE FUNCTION Qc (z) = z3
+ c

Multicorns are visualized for cubic function Qc(z) = z3 + c
via PMO in Figs. 11–14 and MO in Figs. 15–18 by choosing
K = 30 and varying parameters as:
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FIGURE 8. Tricorn generated via MO for θ = 0.35.

FIGURE 9. Tricorn generated via MO for θ = 0.06.

FIGURE 10. Multicorn generated via PO for k = 3.

• Fig. 10 A = [−1.7, 1.7]× [−1.7, 1.7],
• In Fig. 11 and in Fig. 15 multicorns are generated via
PMO with θ = 0.3,A = [−2, 2]× [−2, 2].

• In Fig. 12 with A = [−4, 4] × [−4, 4] and in Fig. 16
with A = [−6, 6] × [−6, 6] multicorns are generated
via PMO and MO for same value of θ = 0.04.

• In Fig. 13 with A = [−3.5, 3.5] × [−3.5, 3.5] and in
Fig. 17 with A = [−5.5, 5.5] × [−5.5, 5.5] multicorns
are visualized via PMO and MO for same value of θ =
0.06.

• In Fig. 14 with A = [−3.2, 3.2] × [−3.2, 3.2] and in
Fig. 18 with A = [−5.2, 5.2] × [−5.2, 5.2] multicorns
are presented in PMO and MO for similar value of θ =
0.08 respectively.

FIGURE 11. Multicorn generated via PMO for θ = 0.3 and k = 3.

FIGURE 12. Multicorn generated via PMO for θ = 0.04 and k = 3.

FIGURE 13. Multicorn generated via PMO for θ = 0.06 and k = 3.

FIGURE 14. Multicorn generated via PMO for θ = 0.08 and k = 3.

C. MULTICORNS FOR HIGHER DEGREE FUNCTIONS
Multicorns are visualized for Qc(z) = zk + c, k ≥ 4 in PMO
in Figs. 19–24 and MO in Figs. 25–30 by fixing K = 30 and
choosing varying parameters as:
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FIGURE 15. Multicorn generated via MO for θ = 0.3 and k = 3.

FIGURE 16. Multicorn generated via MO for θ = 0.04 and k = 3.

FIGURE 17. Multicorn generated via MO for θ = 0.06 and k = 3.

FIGURE 18. Multicorn generated via MO for θ = 0.08 and k = 3.

• Fig. 19 generated via PMO and Fig. 25 generated via
MO for θ = 0.5,A = [−2.2, 2.2] × [−2.2, 2.2] and
k = 4,

FIGURE 19. Multicorn generated via PMO for θ = 0.5 and k = 4.

FIGURE 20. Multicorn generated via PMO for θ = 0.07 and k = 4.

FIGURE 21. Multicorn generated via PMO for θ = 0.3 and k = 5.

• Fig. 20 generated via PNO and Fig. 26 generated viaMO
for θ = 0.07,A = [−3.4, 3.4]× [−3.4, 3.4] and k = 4,

• Fig. 21 generated via PMO and Fig. 27 generated via
MO for θ = 0.3,A = [−2.2, 2.2] × [−2.2, 2.2] and
k = 5,

• Fig. 22 generated via PMO and Fig. 28 generated via
MO for θ = 0.05,A = [−2.5, 2.5] × [−2.5, 2.5] and
k = 5,

• Fig. 23 generated via PMO and Fig. 29 generated via
MO for θ = 0.2,A = [−2.2, 2.2] × [−2.2, 2.2] and
k = 7,

• Fig. 24 generated via PMO and Fig. 30generated viaMO
for θ = 0.4,A = [−2.0, 2.0]× [−2.0, 2.0] and k = 8.

It is observed that tricorns and multicorns generated via
PMO and MO presented in Figs. 2–30, maintain symmetry
along x-axis when k is even and when k is odd the symmetry
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FIGURE 22. Multicorn generated via PMO for θ = 0.05 and k = 5.

FIGURE 23. Multicorn generated via PMO for θ = 0.2 and k = 7.

FIGURE 24. Multicorn generated via PMO for θ = 0.4 and k = 8.

FIGURE 25. Multicorn generated via MO for θ = 0.5 and k = 4.

ofmulticorn is around both x-axis and y-axis. Alsomulticorns
maintain (k + 1)-fold rotational symmetries. Tricorns and
multicorns generated in PMO are quite different from those

FIGURE 26. Multicorn generated via MO for θ = 0.07 and k = 4.

FIGURE 27. Multicorn generated via MO for θ = 0.3 and k = 5.

FIGURE 28. Multicorn generated via MO for θ = 0.05 and k = 5.

FIGURE 29. Multicorn generated via MO for θ = 0.2 and k = 7.

generated in MO for similar value of θ (see Figs. 2 and 6,
Figs. 3 and 7, Figs. 11 and 15, Figs. 12 and 16 etc). Patterns
generated in PMO are more clear than those generated in MO
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FIGURE 30. Multicorn generated via MO for θ = 0.4 and k = 8.

FIGURE 31. Anti-Julia set generated via PMO.

and interesting changes are seen in the figures for various
values of θ .

D. ANTI-JULIA SETS FOR QUADRATIC FUNCTION
In Figs. 31–35 anti-Julia sets forQc(z) = z2+c are presented
in PMO and in Figs. 36–40 anti-Julia sets are visualized in
MO. The usual parameters used to generate the images are
the following:
• In Fig. 31 with A = [−3.5, 2.5]× [−3.0, 3.0] anti-Julia
set is displayed in PMO and in Fig. 36 with A =
[−20, 12]× [−16, 16] anti-Julia set is visualized in MO
for similar value of c = 0.001+ 0.005i and θ = 0.1.

• In Fig. 32 with A = [−5.5, 2.5] × [−4.0, 4.0] while in
Fig. 37withA = [−7.5, 4.5]×[−6.0, 6.0] anti-Julia sets
are presented via PMO and MO respectively for same
value of c = 0.001+ 0.005i and θ = 0.3.

• In Fig. 33 and in Fig. 38 with A = [−3.5, 2.5] ×
[−3.0, 3.0] for same value of c = 0.03 − 0.02i and
θ = 0.5 anti-Julia sets are presented via PMO and MO
respectively.

• In Fig. 34 with A = [−6.1, 4.3]× [−5.2, 5.2] anti-Julia
set is presented in PMO and in Fig. 39 with A =
[−10.0, 6.0]× [−8.0, 8.0] anti-Julia set is visualized in
MO for similar value of c = 0.001+0.005i and θ = 0.2.

• In Fig. 35 with A = [−3.5, 2.5]× [−3.0, 3.0] anti-Julia
sets is visualized in PMO and in Fig. 40 with A =
[−35, 25]× [−30, 30] anti-Julia set is presented in MO
for the same value of θ = 0.06 and c = 0.023− 0.35i.

FIGURE 32. Anti-Julia set generated via PMO.

FIGURE 33. Anti-Julia set generated via PMO.

FIGURE 34. Anti-Julia set generated via PMO.

FIGURE 35. Anti-Julia set generated via PMO.

E. ANTI-JULIA SETS FOR CUBIC FUNCTION
In Figs. 41–45 anti-Julia sets for the function Qc(z) = z3 + c
are presented in PMO and in Figs. 46–50 anti-Julia sets are
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FIGURE 36. Anti-Julia set generated via MO.

FIGURE 37. Anti-Julia set generated via MO.

FIGURE 38. Anti-Julia set generated via MO.

FIGURE 39. Anti-Julia set generated via MO.

displayed in MO. The usual parameters used to generate the
images are: K = 30 and A = [−2.5, 2.5] × [−2.5, 2.5].
Whereas, the varying parameters are the following:

FIGURE 40. Anti-Julia set generated via MO.

FIGURE 41. Anti-Julia set generated via PMO for θ = 0.3 and
c = 0.001+ 0.005i.

FIGURE 42. Anti-Julia set generated via PMO for θ = 0.5 and
c = 0.001+ 0.005i.

• In Fig. 41 anti-Julia set in PMO and in Fig. 46 anti-Julia
set in MO are presented for similar value of θ = 0.3 and
c = 0.001+ 0.005i.

• In Fig. 42 anti-Julia set in PMO while anti-Julia set in
MO visualized in Fig. 47 for same value of θ = 0.5 and
c = 0.001+ 0.005i.

• Anti-Julia sets visualized in Fig. 43 and Fig. 48 via PMO
and MO for θ = 0.2 and c = −0.25i.

• Anti-Julia sets presented in Fig. 44 and Fig. 49 in PMO
and MO for same value of θ = 0.4 and c = −0.25i.

• Anti-Julia sets displayed in Fig. 45 and Fig. 50 in PMO
and MO respectively for same value of θ = 0.5 and c =
−0.25i.

We observed that connected anti-Julia sets generated for
quadratic function via PMO maintain symmetry along x-axis
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FIGURE 43. Anti-Julia set generated via PMO for θ = 0.2 and c = −0.25i.

FIGURE 44. Anti-Julia set generated via PMO for θ = 0.4 and c = −0.25i.

FIGURE 45. Anti-Julia set generated via PMO for θ = 0.5 and c = −0.25i.

FIGURE 46. Anti-Julia set generated via MO for θ = 0.3 and
c = 0.001+ 0.005i.

while anti-Julia sets for cubic function preserve symmetry
around both x-axis and y-axis. Anti-Julia sets generated in
PMO are entirely different from those generated in MO for

FIGURE 47. Anti-Julia set generated via MO for θ = 0.5 and
c = 0.001+ 0.005i.

FIGURE 48. Anti-Julia set generated via MO for θ = 0.2 and c = −0.25i.

FIGURE 49. Anti-Julia set generated via MO for θ = 0.4 and c = −0.25i.

FIGURE 50. Anti-Julia set generated via MO for θ = 0.5 and c = −0.25i.

similar values of θ and c (see Figs. 31 and 36, Figs. 32 and 37,
Figs. 33 and 38, Figs. 34 and 39, Figs. 41 and 46, Figs. 42
and 47 etc).
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IV. CONCLUSION
In the present paper we introduced and visualized antifractals
in hybrid PMO and compare it with antifractals generated
in MO. Escape criterion for antifractals has been established
corresponding to PMO and visualized the pattern of tricorns,
multicorns and anti-Julia sets. In the dynamics of antipoly-
nomials z → zk + c for k ≥ 2, we obtained various
patterns of tricorns and multicorns for the same value of k
and choosing different values of θ in PMO. We observed
that the number of branches attached to the main body of the
tricorns and multicorns are k + 1 and many branches have
subbranches. We also found that the symmetry of multicorn
is about both x-axis and y-axis when k is odd but for k is
even the symmetry is preserved only along x-axis. A few
examples of connected anti-Julia sets have been presented for
quadratic and cubic functions. Interesting changes are seen
in the figures for different values of parameter θ . Tricorn
prints are utilized commercially such as tricorn mugs and
tricorn dresses like tricorn T-shirts. We think that results of
this paper will impress those who are interesting in creating
automatically aesthetic patterns.
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