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ABSTRACT We present a novel approach for timely classification and verification of network traffic using
Gaussian Mixture Models (GMMs). We generate a separate GMM for each class of applications using
component-wise expectation-maximization (CEM) to match the network traffic distribution generated by
these applications.We apply our models for both traffic classification, where the goal is to identify the source
application fromwhich the traffic originates, by evaluating the maximum posterior probability, and for traffic
verification, where the goal is to verify whether the application that claims to be the source of the traffic is
as expected, by likelihood testing. Our models use only the first initial packets of truncated flows in order
to provide more efficient and timely traffic classification and verification. This allows for triggering timely
countermeasures before the end of flows. We demonstrate the effectiveness of our approach by experiments
on a public dataset collected from a real network. Our traffic classification approach outperforms other
state-of-the-art approaches that are based on machine learning, and achieves up to 97.7% flow classification
accuracy when using only 9 first initial packets of flows. We show that 96.6% flow classification accuracy
can still be obtained when training the GMMs using only 0.5% of all flows. Our traffic verification approach
achieves a minimum Half Total Error Rate (HTER) of 7.65% when using only 6 first initial packets of flows.

INDEX TERMS Gaussian mixture model (GMM), traffic classification, traffic anomaly detection.

I. INTRODUCTION
The number of internet applications and the variety of end-
users is increasing continuously, as well as the number of
online network attacks and advanced generations of malware.
This has caused that both classification and verification of
network traffic have becomemore difficult. The task of traffic
classification is to identify the source application from which
the traffic originates, while the task of traffic verification is to
verify whether the application that claims to be the source of
the traffic is as expected. Accurate classification and verifica-
tion is essential, particularly for network operators in network
management tasks such as resource allocation, accounting,
traffic scheduling, quality of service, lawful interception of
IP traffic, and network security. Continuous research on both
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traffic classification and traffic verification is required to
mitigate these problems.

In this paper, we present a novel generative approach
for timely traffic classification and traffic verification. The
key idea in our approach is that we generate a separate
Gaussian Mixture Model (GMM) for each application class,
where an application class is a group of related applications
such as e-mail clients. Before generating the GMM for an
application class, we first derive feature vectors from the
network traffic generated by the applications in the class.
The feature vectors include features such as the number of
packets in network flows, and statistics on the size of packets
and the interarrival times between packets. Subsequently, we
apply the feature vectors in a training stage to generate the
GMM for the application class. The GMM is a probabilistic
model that represents the probability density function of the
feature vectors. Hence, the GMM models the probabilistic
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distribution of feature vectors for that application class.
We apply component-wise expectation-maximization (CEM)
to generate the GMM [1].

Once the GMMs are generated, we can apply them for
both traffic classification and traffic verification. For traf-
fic classification, we monitor network flows in the network
traffic, we extract feature vectors, and evaluate which of the
GMMs correlates best with these feature vectors by means
of a maximum a posteriori probability (MAP) estimate. For
traffic verification, we consider network traffic that is labelled
with its application class, and we verify whether it matches
the GMM of the specified application class by means of
likelihood testing.

Our approach can tackle the problem of concept drift in
network traffic, which occurs for instance when the number
of applications is growing in time. We can simply generate
GMMs for the new application classes and add them to the
set of GMMs, without the need for keeping all past training
data and retraining GMMs. Hence, our approach facilitates
smooth adaption for changing traffic profiles.

This paper contributes the following:

1) We extend our prior work on traffic classification and
verification and present in more detail the parame-
ters estimation and model selection when training the
GMMs [2].

2) We present a novel set of 59 statistical features that
are derived from the first initial packets of truncated
flows. We obtain optimal feature subsets for different
numbers of first initial packets of flows for both traffic
classification and traffic verification, and explore their
effectiveness for generating GMMs.

3) We present experimental results to demonstrate that we
are able to classify and verify network traffic in a timely
way. This may for instance facilitate early detection of
zero-day attacks.

4) We demonstrate that our approach outperforms state-
of-the-art approaches for traffic classification that are
based on machine learning.

The rest of the paper is organized as follows. In Section II
we review prior work on traffic classification and traffic
verification. In section III we present our approach to con-
struct GMMs that subsequently can be applied for GMM-
based traffic classification and verification. In Section IV we
present the details of our experimental setups and evaluation
results. We conclude the paper in Section V.

II. LITERATURE REVIEW
A. TRAFFIC CLASSIFICATION
Traffic flows play a key role in traffic classification. Network
traffic generated by different individual applications running
on one or multiple hosts can be aggregated and separated by
traffic flows. Each flow can be defined as a (unidirectional
or bidirectional) sequence of IP packets sharing typically a
5-tuple identifier (source IP address, destination IP address,
source port, destination port, protocol type) within a certain

period of time. The aim of traffic classification is to map each
specific flow to a group of applications of interest.

Traditional classification approaches are port-based or
payload-based. In the port-based approach, applications are
simply identified by the TCP or UDP port numbers. However,
many applications, such as P2P applications and Skype, are
increasingly using arbitrary port numbers to avoid detection,
which downgrades classification accuracy and renders the
use of port-based identification suboptimal. In the payload-
based approach, applications are identified by the actual
payloads of packets or the reassembled contents of flows,
looking for characteristic signatures of known applications.
Payload-based approaches provide high accuracy, however
they require high computational cost, privacy is a major con-
cern, and they are likely to fail with encrypted payloads [3].

An alternative approach is to rely on statistical character-
istics of traffic flows, regardless of their payloads, which can
overcome the limitations of port-based and payload-based
approaches [4]. The main assumption behind this approach is
that the statistical characteristics (features or discriminators)
of network traffic flows are distinct for different applications
and can be used to distinguish applications from each other.
A lightweight approach that is not hampered by encrypted
payloads, is to consider statistical characteristics extracted
from packet headers only while ignoring the packet pay-
loads. Relying on completed flows, which requires to wait
for the end of flows, is less practical or suboptimal in cases
where quick and timely classification is required. This can be
relaxed by considering statistical characteristics from trun-
cated flows, in which only the first few packets of flows
are considered. It has been shown by multiple researchers
that such truncated flows may provide sufficiently distinctive
properties that allow to distinguish applications from each
other in an early stage of traffic flows [5]–[11]. However,
most prior work only considered simple features such as size,
direction, and sequence of the first non-zero payload packets
of flows [5], [6], [8], [9]. Furthermore, they did not consider
TCP control features, such as SYN and ACK, and statisti-
cal features, such as mean and variance of packet size and
packet interarrival time. Consequently, attackers can evade
such classification by simply padding the packet payloads. Li
and Moore [7] extracted more sophisticated features from the
first few packets of flows, starting from the SYN-packet up to
a duration of 5 seconds. However, their features also included
the port number pairs, and hence classification results may
be biased towards port numbers. Consequently, attackers can
evade such classification by performing port masquerading.
Liu et al. [10] used 11 statistical features from the first
few packets of flows. Garcia and Korhonen [11] captured
distributional characteristics of the initial packets of flows
considering histogram fractions.

The use of machine learning for traffic classification has
been explored extensively, partly due to the availability of
off-the-shelf learning algorithms and their efficiency in deal-
ing with statistical information [3]. Several challenges and
requirements have to be considered [12]: an appropriate
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definition of a set of classes is required to specify the classes
of network traffic that should be distinguished from each
other (e.g. P2P versus web traffic [13]) or to identify specific
application protocols [14]; tools are required to extract (near
real-time) flow features that have the potential to be deployed
in online real-world settings (e.g. TIE [15] and Netmate-
flowcalc); benchmarking tools (e.g. [16], [17]) or network
architectures (e.g. [18]–[21]) are required that generate ’reli-
able ground truth’ [16], [22] aiming at evaluating various
traffic classification approaches [23]; measurements should
provide byte accuracy in addition to flow accuracy [24];
and the temporal stability of classification schemes should
be examined [25]. Most prior work has focused on dis-
criminative algorithms, including Support Vector Machines
(SVM) [26] and Decision Trees (DT) [7], where a single
conditional distribution model is trained for all classes and
used next to discriminate the classes from each other [27].
This however may suffer from concept drift when the number
of applications is constantly growing in time. The model has
to be updated with the advent of a new class, which requires
retraining for which also all past training data likely need to
be accessible. This makes discriminative approaches in their
current forms suboptimal.

More recently also deep learning has been applied for traf-
fic classification and anomaly detection [28]–[31]. Different
deep learning methods vary in their performance, but most of
them provide high accuracy and are also well able to detect
previously unknown attacks. However, more training data is
required to gain sufficient accuracy, and also the time and
computational power required to train models is in general
much larger when compared to machine learning. If the pri-
mary goal is to reduce training time and computational costs,
as we consider in this paper, deep learning methods are not
preferred.

Also the use of GMM as a generative approach for traffic
classification has been explored in prior work [6], [32], [33].
Bernaille et al. [6] proposed amethod in which a single GMM
is used to approximate the underlying feature distributions
of all classes. Moore and Zuev [32] proposed to model the
underlying feature distributions of each class by a Gaussian
distribution, using a single component for all the classes.
Dusi et al. [33] proposed an internet traffic classifier that
utilizes class-specific GMMs to approximate the underlying
feature distribution of each (type of) application injecting
traffic on SSH-encrypted tunnels. These methods assign any
unseen observation to the class that maximizes the posterior
probability.

Regardless of whether traffic classification is based
on class-conditional GMMs or a single class-independent
GMM, a model selection technique is needed to provide
good performance. Prior GMM-based traffic classifiers build
a set of candidate GMMs with different numbers of compo-
nents and then select the one that provides the best perfor-
mance [6], [33]. However, training an entire set of GMMs
along with the EM-associated problems is a main drawback
(see Section III-B2).

The approach proposed by Figueiredo and Jain [34] auto-
matically selects the optimal number and shape of mixture
components in a single algorithm. The semi-supervised traf-
fic classification framework presented by Qian et al. [35]
utilizes the GMM learning approach proposed by Figueiredo
and Jain [34]. However, they only consider a single GMM
that models all network traffic, and each GMM component
is assigned to an application. Our approach also adopts
the GMM learning approach proposed by Figueiredo and
Jain [34], but to the best of our knowledge, our approach is
the first attempt to automatically find the best GMM for each
individual application in traffic classification.

B. TRAFFIC VERIFICATION
Network traffic anomalies are inferred from patterns in net-
work traffic data that deviate from (or do not conform to) the
normal network behaviour (profiles) [36]. Signature-based
intrusion detection systems match observed traffic against
a pre-configured set of (known) intrusion signatures, while
anomaly-based intrusion detection systems notice deviations
from pre-defined models (profiles) describing normal traffic.
The latter may detect new types of (still unknown) intru-
sions and zero-day attacks, but have to be adapted constantly
due to changing profiles. García-Teodoro et al. presented
an overview of various anomaly-based intrusion detection
systems [37].

Anomaly-based detection relies on the assumption that
the statistical characteristics of traffic differ between normal
and anomalous traffic. Statistical characteristics of normal
network traffic are used to build users’ profiles. These statis-
tical characteristics can be extracted from one or more traffic
features, such as packet header, payload, flow, bandwidth
usage or packet distribution.

Payload-based approaches [38] are probably one of the
most promising ways of detecting traffic anomalies that orig-
inate from infected applications. These methods have the
ability to provide near real-time detection with high accuracy
levels. However, as for payload-based classification, also
payload-based verification suffers from high computational
costs, privacy concerns, and difficulties when dealing with
encrypted or otherwise securely encapsulated traffic [39].
Alternative approaches utilise the information available in
the non-encrypted IP packet header and analyse statistical
characteristics of flows regardless of packet payload.

Much of the research on anomaly-based detection has
been devoted to build network normality profiles from aggre-
gated network traffic, and flows are a fundamental object
of study [40], [41]. Prior flow-based and payload-based
approaches may be able to detect some intrusion-infected
traffic, but they are unable to identify the source applica-
tion responsible for the traffic. Moreover, they cannot detect
abnormal traffic generated by an intrusion-infected appli-
cation whenever such traffic is very similar to the normal
traffic of other known applications. To address this problem
a detection system needs to evaluate whether traffic is nor-
mal for its source application. An anomaly-based detection
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system therefore should meet two requirements: (i) iden-
tify the claimant (source application) that is responsible
for the traffic, and (ii) model or profile the genuine traffic
of each application present in the network. To meet the
first requirement, we proposed architectures that provide a
binding between network traffic and source application that
allows checking whether a packet/flow claimed by an appli-
cation conforms to its expected traffic model [42], [43]. For
the second requirement, we proposed GMM with automatic
learning to model per-application traffic [2], [39], [44]. How-
ever, our prior application-specific models were still trained
with features obtained from the entire packet flows and were
not accurate enough for detecting anomalies in a timely man-
ner before the end of a flow.Moreover, this approach suffered
from the difficulty of finding an optimal number of mixture
components. We tackled the latter issue by applying GMM
learning [2], but the problem of timely detection remained
to be addressed. Also Bahrololum and Khaleghi [45] applied
GMM in anomaly-based detection, however they only con-
sidered full flows. Since sophisticated intrusions may meet
their illicit purposes through one single flow, timely detection
and prevention is important. In the present paper, we address
this issue and explore the effectiveness of truncated flows for
different numbers of initial packets in order to provide more
efficient and timely detection.

III. GMM DESIGN
We apply a GMM-based approach for both traffic classifi-
cation and verification. In this section we first describe the
GMMused and its parameterization. Next, we describe traffic
classification and verification.

A. MODELLING APPLICATIONS
GMMs are an effectiveway for data analysis and systemmod-
elling, including those involving random processes. A GMM
is a probabilistic model for representing the probability den-
sity function of a population of data points as a weighted
mixture of probability density functions of normally dis-
tributed sub-populations (components). For each application
class a we compute a separate GMM using traffic packets
from truncated flows generated by the application(s) in the
class. We extract D-dimensional feature vectors x from these
flows, and model their probability distribution by a GMM
with M components. The GMM of an application class a is
defined as:

p(x|2a) =
M∑
m=1

ωamp(x|θ
a
m) (1)

where 2a
= {θa1 . . . θ

a
M , ω

a
1 . . . ω

a
M } is the set of all param-

eters in the model. Here, ωam is a mixture weight that satisfies

the constraints ωam > 0 and
M∑
m=1

ωam = 1, and θam is a set

of parameters containing the mean D × 1 vector µam and the
D×D covariance matrix6a

m. The unimodal Gaussian density

function of component m is defined as:

p(x|θam) =
1√

(2π )D|6a
m|

e−
1
2 (x−µ

a
m)

T (6a
m)
−1(x−µam) (2)

Here, |6a
m| denotes the determinant of the covariance matrix,

(6a
m)
−1 denotes the inverse covariance matrix, and T denotes

transposition. The covariance matrix can either be free (unre-
stricted) or diagonal (restricted). Additionally, the covariance
matrix can be constrained to be the same across mixture
components.

B. PARAMETERS ESTIMATIONS
For a given set of N feature vectors X = {x1, x2, . . . , xN }
that is extracted from (truncated) flow samples generated by
an application class a, the GMM is defined as (assuming that
the feature vectors are independent, which may be incorrect
but assumed to make the problem tractable):

p(X |2a) =
N∏
n=1

p(xn|2a) (3)

The set of feature vectors is used as a training set to
construct the GMM. The goal is to estimate the parameters
in 2a such that the GMM matches the distribution of the
training samples. These parameters estimates can be obtained
using either theMaximum Likelihood (ML) estimate

2̂a
ML = argmax

2a

{
log p(X |2a)

}
(4)

or the Maximum A Posteriori (MAP) estimate (given some
prior p(2a))

2̂a
MAP = argmax

2a

{
log p(X |2a)+ log p(2a)

}
(5)

through an Expectation-Maximization (EM) algorithm.

1) THE EM ALGORITHM
With feature vector xn we associate a label zn, which is an
M -dimensional vector indicating which of the M GMM
components produces xn. The EM algorithm interprets X
as incomplete data, with the missing part being the corre-
sponding set of labels Z = {z1, . . . , zN } in which zn =
[zn,1, . . . , zn,M ] is a binary vector with zn,m = 1 and
∀p∈{1,...,M}\m : zn,p = 0, meaning that xn was produced by
the mth GMM component. Assuming that all xn are indepen-
dent, the complete data log-likelihood function for the GMM
can be written as [46], [47]:

log p(X ,Z |2a) =
N∑
n=1

M∑
m=1

zn,m log
[
ωamp(xn|θ

a
m)
]

(6)

The EM algorithm begins with an initial estimate of
parameters 2̂a(0) and iteratively generates a sequence of
estimates {2̂a(t)|t = 1, 2, . . .} by alternatively applying
two steps, namely Expectation (or E-Step) andMaximization
(or M-Step), as follows:

E-Step computes the expected value of the conditional
probability of the log-likelihood, given the observed data X
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and the current parameter estimates 2̂a(t), yielding the
following Q-function:

Q(2a, 2̂a(t)) ≡ E
[
log p(X ,Z |2a)|X , 2̂a(t)

]
= log p(X , 9|2a) (7)

where 9 ≡ E
[
Z |X , 2̂a(t)

]
. The latter equality is obtained

from the linearity of log p(X ,Z |2a) with respect to Z
(see Equation 6). Since the members of Z are binary, their
conditional expectations can be expressed as the posterior
probability that xn was produced by themth GMMcomponent
for application class a:

ψa
n,m ≡ E

[
zn,m|X , 2̂a(t)

]
= Pr

[
zn,m = 1|xn, 2̂a(t)

]
=

ω̂am(t)p(xn|θ̂
a
m(t))∑M

j=1 ω̂
a
j (t)p(xn|θ̂

a
j (t))

(8)

M-Step updates the parameter estimates using a MAP
estimation according to:

2̂a(t + 1) = argmax
2a

{
Q(2a, 2̂a(t))+ log p(2a)

}
(9)

The term log p(2a) is removed in the case of ML estimation.
The EM algorithm is iterated until either the changes in

the estimated parameters, the number of iterations, or the
log-likelihood exceed some specified threshold (whichever
comes first).

2) ESTIMATING THE NUMBER OF COMPONENTS
Since the data distribution likely differs for different appli-
cation classes, exploring the best fit for each individual
application seems worthwhile. One of the key choices in
training a GMM is choosing the number of components M .
The general trend observed in literature is to apply a deter-
ministic approach that first builds a set of candidate models
for a range of values of M (from Mmin to Mmax), and
next selects from the entire set of available models the
one that best fulfils a given selection criterion such as
the Bayesian Inference Criterion (BIC) [48], the Minimum
Description Length (MDL) [49], or the Minimum Message
Length (MML) [50]. Although some of these approachesmay
perform well, building a whole set of candidate models is a
major drawback. Moreover, since they essentially utilize the
EM algorithm for building the models, they are prone to two
major EM-associated problems: sensitivity to initialization
of the parameters, meaning that different initial values of
parameters may converge to different local optima, and not
necessarily the global one, during the maximization process
(M-Step); and possible convergence of the sequence of EM
parameter estimates to the boundary of the parameter space
(where the likelihood is boundless).

To deal with these problems, we adopt the approach pro-
posed by Figueiredo and Jain [34], which facilitates a seam-
less integration of parameters estimation andmodel selection.
We assume that the number of components of each appli-
cation class is unknown and can be different for different

application classes. The method implements a variant of the
EM algorithm, named component-wise EM (CEM) [1], with
the aim of minimizing the following MML criterion as the
cost function:

0(2a,X ) =
K
2

M∑
m=1

log(
Nωam
12

)+
Mn,z

2
log(

N
12

)

+
Mn,z(K + 1)

2
− log p(X |2a) (10)

where K = D + D(D+ 1)/2 is the number of parame-
ters specifying each component and Mn,z ∈ {1, 2, . . . , M}
denotes the number of components whose probability is
nonzero. The cost function, for fixedMn,z, is mathematically
equivalent to an a posteriori probability density function
yielding from a Dirichlet-type prior for ωam and a flat prior
for θam’s. With some adjustments to minimize the cost func-
tion, the sequence of parameter estimates of the M-step is
summarized as follows:

ω̂am(t + 1) =

max
{
0,
(

N∑
n=1

ψa
n,m

)
−

K
2

}
M∑
j=1

max
{
0,
(

N∑
n=1

ψa
n,j

)
−

K
2

} (11)

µ̂am(t + 1) =

N∑
n=1

xn ψa
nm

N∑
n=1

ψa
n,m

(12)

6̂a
m(t + 1) =

N∑
n=1

x2n ψ
a
nm

N∑
n=1

ψa
n,m

− (µ̂am(t + 1))2 (13)

for m = 1, 2, . . . ,M and ψn,m given in the E-step. With
the use of Equation 11 and allowing M to move from a
large number Mmax to a smaller one Mmin, the algorithm not
only tackles the problem of ’convergence to the boundary of
parameter space’ by annihilating ’too weak’ components, but
also becomes less sensitive to the initialization problem [51].
However, the simultaneous (or batch) updating of ω̂am’s may
cause a failure in the determination of ωam’s. For a large value
of M , all components may not have enough initial support
(
∑N

n=1 ψ
a
n,m < K/2 for m = 1, . . . , M ) and, consequently,

all ωam’s cannot be determined. This problem is avoided by
the use of CEM. CEM performs the updating of all ω̂am and
θ̂am = {µ̂

a
m, 6̂

a
m} sequentially, rather than simultaneously.

In other words, CEM executes E-step for any single updating
of ω̂am and θ̂am, rather than for batch updating of all parameter
estimates. This allows immediate redistribution of the prob-
ability mass of a zero-component to the other components.
The CEM iteration is continued until the relative decrease in
0(2a(t),X ) drops below a given threshold ε. This conver-
gence results in a certain value for M . However, a smaller
value of Mn,z may lead to additional decrease in the value of
0(2a,X ). For this reason, after reaching convergence with
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a certain M , the component with smaller ω̂am is set to zero
and CEM is rerun until convergence. This process is repeated
while Mn,z ≥ Mmin. At the end, the estimated parame-
ters as well as the number of components are those which
minimize 0(2a,X ).

C. TRAFFIC CLASSIFICATION
In traffic classification we apply the GMMs and assign each
observed traffic flow to the most probable application class.
Given a set of K application classes Y = a1, a2, . . . , aK
represented by the models2a1 ,2a2 , · · · ,2aK , our objective
is to determine the applicationmodel which has themaximum
posterior probability for feature vector x. Hence, we assign
each flow to the class with the highest p(2ai |x):

ŷ = argmax
i∈{1, ...,K }

p(2ai |x) (14)

Using Bayes’ rule, Equation 14 evolves into:

ŷ = argmax
i∈{1, ...,K }

p(x|2ai )p(2ai )
p(x)

(15)

The term p(x|2ai ) is computed as in Equation 1, and p(2ai )
refers to the prior probability of application ai that is derived
in the training stage when generating the GMM for applica-
tion ai. The term p(x) is constant for all applications and can
be ignored.

D. TRAFFIC VERIFICATION
In traffic verification we decide whether traffic is normal or
abnormal for its source application. In the latter case, we
consider the traffic to contain an anomaly. Given a (truncated)
flow sample x along with its supposed source application ai,
we estimate whether or not x was generated by ai by consider-
ing model2ai for application ai. We perform a likelihood test
by evaluating p(x|2ai ) ≥ τ , which reflects whether traffic
sample x matches the normal traffic of its supposed source
application ai given threshold τ .
The verification decision can be erroneous in two ways:

False Acceptance (FA) and False Rejection (FR). FA occurs
when an actual anomaly in the traffic is considered as normal
traffic; FR occurs when traffic from a clean application is
considered as an anomaly. The False Acceptance Rate (FAR)
is the percentage of anomalies that are considered as normal
(i.e., p(xabnormal |2ai ) ≥ τ ); the False Rejection Rate (FRR) is
the percentage of clean samples that are considered as abnor-
mal (i.e., p(xnormal |2ai ) < τ ). We determine the optimal
value for τ based on the Equal Error rate (EER) criterion
where FAR is equal to FRR, using an evaluation set from the
traffic data. We consider two scenarios for determining τ :
the Global Threshold (GT) employs a single threshold for all
classes; theClass-Specific Threshold (CST) employs separate
thresholds for each individual class.

IV. EXPERIMENTAL METHODOLOGY
We performed various experiments to explore the effective-
ness of our GMM-based approach for traffic classification

and traffic verification. In this section we first describe in
detail the dataset used in our experiments. Next, we describe
the experimental setup and evaluation metrics. Finally, we
present the experimental results.

A. DATASETS DESCRIPTION
We conducted our experiments on the UNIBS-2009 dataset.1

This dataset was collected from 20 workstations in the cam-
pus network of the University of Brescia in Italy on three
consecutive working days (September 30, October 1, and
October 2, 2009). The data was collected by running tcpdump
on the edge router that connects the network to the Internet
via a dedicated 100Mb/s uplink. The dataset consists of four
files: three PCAP files (containing 27 GB data) and a logfile
(groundtruth.log).

1) FLOW DEFINITION
The traffic contains around 79,000 flows that were generated
by various types of applications employing web protocols
(HTTP and HTTPS), mail protocols (POP3, IMAP4, SMTP,
and their SSL variants), Skype, peer-to-peer, and other proto-
cols (FTP, SSH, and MSN).

We focused on the TCP traffic that represents more
than 98% of the data in the UNIBS dataset. A flow is
defined by a set of bidirectional consecutive packets travel-
ling between two endpoints (defined by source IP address,
source port number, destination IP address, and destination
port number) through a TCP connection started by a 3-way
handshake (SYN, SYN-ACK, and ACK) and terminated by
either observing FIN/RST packets or ’no packet seen’ for a
timeout of 60 s (whichever comes first). The first SYN-packet
seen in a flow determines the forward direction, and the
source endpoint is assigned as the client. We consider only
TCP flows that have at least one packet in each direction and
contain at least one non-zero payload packet.

2) FEATURE EXTRACTION
A flow associated with a particular application can be
described by a number of statistical properties, or features,
parameterizing its behaviour. We modified and employed the
Netmate-flowcalc tool2 to extract the bidirectional flows as
defined above, and calculated their statistical feature values
from the PCAP files. We checked the order of packets within
each flow and ignored out-of-order packets during the feature
calculation process. In order to also support truncated flows,
we modified Netmate-flowcalc to extract the statistical fea-
tures of a flow in a PCAP trace after observing the nth packet
counting from the SYN-packet.We refer to n as the Reference
Packet Count (RPC).

In prior studies on traffic classification using truncated
flows, Garcia and Korhonen [11] obtained best accuracy for
RPC values ranging from 12 to 15. However, they applied dis-
tributional flow features for the classification of video traffic,

1http://www.ing.unibs.it/ntw/tools/traces/
2http://sourceforge.net/projects/netmate-meter/files/netmate-meter/
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which only partially relates to our context. Peng et al. [8]
experimented with RPC values ranging from 2 to 10, but
they only considered packets with non-zero payload. They
concluded that using 5 to 7 non-zero payload packets is most
effective, since including more packets reduces the time per-
formance of a classifier, while including less packets reduces
the accuracy. They also concluded that the effective number
of packets varies with network environments. Liu et al. [10]
experimented with RPC values ranging from 5 to 10 for
the classification of network traffic using statistical features,
which more closely resembles our context. They observed
that classification accuracy gradually increased when ranging
the number of packets from 5 to 8, and slightly decreased
when taking 9 and 10 packets. Based on these prior studies,
we range RPC values from 3 to 10 in our experiments. We do
not consider RPC values larger than 10, also since we aim at
timely classification and verification of truncated flows. For
comparison, we also explore results obtained when consider-
ing complete flows. For each specific value of RPC, we built
a separate dataset. Some short-lived flows may not reach the
RPC. We still considered such flows in our analysis, since
they may carry infected payloads.

In total we derived 59 flow features. Table 1 lists the full
feature set, including their abbreviations and indexes.3 Most
of these features are calculated separately for the forward
and backward direction. In our experiments the features are
extracted from the packets within the RPC range. Features
that correspond to packets outside the RPC range (such as
features 40-59 that specify the length of individual packets
send in the forward direction or the backward direction)
are ignored. The statistical features are recomputed when a
new packet in a flow is encountered. The features include
no information about the payload, and hence the feature
set is content-independent, which removes privacy concerns,
avoids dealing with encrypted payloads, and provides that
features can be calculated at low computational cost. The
features also include no information about IP addresses and
port numbers, and hence the feature set is site-independent
and robust against port-masquerading strategies in which an
(unknown) application evades port-based detection by simply
changing its destination port number to that of a well-known
application.

3) GROUND TRUTH
The logfile in the UNIBS dataset contains all TCP and UDP
flows and their starting time associated with the source appli-
cations and protocols. Application-level ground truth was
assigned to the traffic flows through the architecture proposed
by Gringoli et al. [21]. Flows are assigned to the following
application categories: Web Browsers, MAILS, P2P, SKYPE,
and OTHERS.

3An idle time of 1 second was used to distinguish sub-flows. A sub-flow
ends when no packet is received within 1 second; the next new sub-flow starts
with the next packet.

TABLE 1. Features.

Table 2 summarizes the TCP flows/packets/bytes in
the UNIBS dataset per day and per application category.
We explicitly show the break-down per day since we use
temporal information in our experiments. For instance, we
built our GMMs with data from the first day and evaluated
the GMMs with data from the next two days. This kind
of evaluation clearly separates data for model training and
evaluation, and is more practical for real-world scenarios.
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TABLE 2. The UNIBS-2009 dataset: TCP flows/packets/bytes break-down by application category and day.

4) FEATURE SELECTION
We applied feature selection to find a subset of the full feature
set that yields the highest performance at the lowest compu-
tational cost. Finding the optimal feature subset is a NP-hard
problem and diverse feature selection approaches have
been proposed in the machine learning literature [52], [53].
We adopted the Sequential Forward Selection (SFS) algo-
rithm for selecting the optimal feature subset. The SFS algo-
rithm takes a greedy approach. It starts with an empty feature
set and gradually adds features to the feature set. At each
iteration, the feature is selected from the candidate feature
set that optimizes an evaluation function. This feature is then
added to the feature set and removed from the candidate set.
The algorithm continues until the addition of further features
does not improve the evaluation function. We selected the
SFS algorithm since we aim at minimizing computational
cost. The complexity of the SFS algorithm is O(n2), where n
is the number of features. More advanced feature selection
algorithms could have provided better results, but at larger
time complexity [54], [55].

B. EXPERIMENTAL SETUP AND EVALUATION METRICS
1) MODEL DESIGN SETUP
We trained the GMMs using the MATLAB-code as pro-
vided by Figueiredo and Jain [34].4 In both traffic classifica-
tion and verification experiments, we allowed the covariance
matrices to be free (unrestricted) when training the GMMs.
We experimentally observed that unrestricted covariance
matrices outperformed covariance matrices that are either
diagonal (restricted) or constrained to be the same across
mixture components. We set the regularizing factor for the
covariance matrices and the stopping threshold ε for CEM
iteration to 10−4. For both parameters, we experimentally
found that performance was rather insensitive to values in
the range from 10−6 to 10−2 and degraded for values larger
than 10−2. We set the initial minimum and maximum num-
ber of mixture components (Mmin and Mmax) to 1 and 10,
respectively.

2) TRAFFIC CLASSIFICATION EXPERIMENTS
In our traffic classification experiments we used the flows
from Day 1 for training and the flows from Days 2 and 3
for testing. We trained 4 models for the application classes

4www.lx.it.pt/∼mtf/mixturecode2.zip

MAILS, P2P, WEB Browsers, and SKYPE (see Table 2).
We excluded the applications class OTHERS during training
since it does not contain traffic of a coherent set of related
applications. We also excluded this class during testing, and
hence our classification experiments resemble a best-case
scenario in which only traffic is considered originating from
applications that the models have been trained for.

In our experiments we compared the performance of
our GMM-based approach with 6 of the most commonly
used supervised machine learning algorithms [56]: Naive-
Bayes (NB) [32], [57], [58], Decision Tree (DT) [7],
k-Nearest Neighbour (k-NN) [59], Support Vector Machines
(SVM) [26], [60], [61], Random Forest (RF) [11], [62], [63],
and Gradient Boosted Trees (GBT) [63]. We used scikit-
learn5 to implement all classifiers, except for GBT we used
XGBOOST6 as it is significantly faster. For the NB and
DT classifiers we used the default values. For the k-NN
classifier, we employed k = 1 since it achieved the highest
overall accuracy among k = 3, 5, 7, 9. For the SVM classi-
fier, we employed LibSVM [64] with RBF Kernel function.
Yuan et al. [60] showed that this kernel function achieved the
best traffic classification accuracy among three other kernel
functions, namely LINEAR, POLY, and SIGMOID. For the
RF and GBT classifiers, we applied RandomizedSearchCV
in scikit-learn to perform a randomized search over 6 hyper-
parameters, including a range of 10 to 500 for the number of
trees. The search involved 2-fold cross-validation over a set
of 20 different hyper-parameter settings. We used the average
F1-measure to select the best setting, and applied this setting
for training the classifier.

Our experiments included the following three steps:

1) We applied the SFS algorithm as shown in Algorithm 1
in order to select the best feature subset. In each itera-
tionwe apply k-fold cross-validation in which the train-
ing dataset is randomly split into k (approximately)
equal disjoint subsets. Each of the subset acts in turn as
the evaluation set for the models trained with the other
subsets. We apply 2-fold cross-validation to reduce
computational cost. At the end of each iteration we add
the feature that maximizes the average F1-measures of
the models.

5https://scikit-learn.org/
6https://xgboost.readthedocs.io/en/latest/python/python_api.html
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Algorithm 1 SFS for Feature Selection in Traffic
Classification
1: selected← ∅ // set of selected features
2: candidates← set of 59 features shown in Table 1
3: y← labels from dataset (ground truth)
4: Fpost ← 0 // average F1-measure
5: k ← 2 // k-fold cross validation
6: repeat
7: Fpre← Fpost
8: for all f ∈ candidates do
9: features← selected ∪ {f }

10: split dataset into k subsets data1 . . . datak
11: ŷ← ∅ // observed classification
12: for i = 1 to k do
13: train models with dataset \ datai and features
14: ŷi← test models with datai
15: ŷ← ŷ ∪ ŷi
16: end for
17: F fpost ← evaluate(ŷ, y)
18: end for
19: f ← feature yielding maxf ∈candidates(F

f
post )

20: Fpost ← F fpost
21: if (Fpost > Fpre) then
22: selected← selected ∪ {f }
23: candidates← candidates \ {f }
24: end if
25: until (Fpost ≤ Fpre)
26: train models with selected features and dataset
27: test models with test dataset

We applied the SFS algorithm for every method
(GMM, NB, DT, k-NN, SVM RF, GBT) and all RPC
values ranging from 3 to 10. All further classification
experiments were conducted using the selected feature
subsets.

2) We evaluated the performance of the models on
the level of correctly classified flows, packets and
bytes, using the Overall Accuracy and the aver-
age F1-measure over all classes as measures. The
Overall Accuracy determines the percentage of
all flows/packets/bytes that are correctly classified.
For per-class measures, Precision is the percent-
age of flows/packets/bytes correctly classified to a
class over the total number of flows/packets/bytes
assigned to that class, and Recall is the per-
centage of flows/packets/bytes from a given class
that are truly classified to that class. We con-
sider the F1-measure which takes the harmonic
mean of both precision and recall as a single
accuracy measure (i.e., 2 × (precision × recall)/
(precision+ recall)).

3) We examined the impact of the training set size on
the classification performance of our GMM-based
approach.

3) TRAFFIC VERIFICATION EXPERIMENTS
In our traffic verification experiments using our GMM-based
approach we considered three main stages, namely training,
evaluation, and testing. We used the flows from Day 1 for
training, the flows from Day 2 for evaluation, and the flows
from Day 3 for testing. We excluded the applications class
OTHERS during training, since it does not contain traffic of a
coherent set of related applications. We considered all appli-
cation classes, including the OTHERS class, during evalua-
tion and testing. Hence our verification experiments resemble
a scenario in which also traffic is considered originating from
applications that the models have not been trained for.

We applied the algorithm as outlined in Algorithm 2.
We applied the SFS algorithm to find the optimal subset of
features and determined the optimal value for the threshold
τ , while aiming to minimize the Equal Error Rate, using the
training dataset and the evaluation dataset. As indicated in
section III-D, we determined both theGlobal Threshold (GT)
over all classes, andClass-Specific Thresholds (CST) for each
individual class. In the testing stage, we tried different values
of RPC in order to find the optimal RPC value. We report
the Half Total Error Rate (HTER), which takes the average
of FAR and FRR as a single measurement. FAR, FRR, EER
and HTER range from 0% (best) to 100% (worst).

Algorithm 2 SFS for Feature Selection and Threshold Setting
in Traffic Verification
1: selected← ∅ // set of selected features
2: candidates← set of 59 features shown in Table 1
3: Epost ← 100% // EER
4: repeat
5: Epre← Epost
6: for all f ∈ candidates do
7: features← selected ∪ {f }
8: train GMMs with training dataset
9: (τ f ,E fpost )← evaluate GMMs with

evaluation dataset
10: end for
11: f ← feature yielding minf ∈candidates(E

f
post )

12: Epost ← E fpost
13: if (Epost < Epre) then
14: selected← selected ∪ {f }
15: candidates← candidates \ {f }
16: τ ← τ f

17: end if
18: until (Epost ≥ Epre)
19: test GMMs with test dataset

C. EXPERIMENTAL RESULTS
1) TRAFFIC CLASSIFICATION RESULTS
OPTIMAL FEATURE SUBSETS
Figure 1 shows the optimal feature subsets obtained by the
SFS algorithm for the different methods and RPC values.
It can be seen that the number of selected features per subset

VOLUME 8, 2020 91295



H. Alizadeh et al.: Timely Classification and Verification of Network Traffic Using GMMs

FIGURE 1. Best feature subsets obtained for each dataset (RPC) using the SFS algorithm. (See Table 1 for the features.)

varies lightly, but the selected features per subset vary con-
siderably, not only per method but also per RPC value. The
features 7 and 42 are selected most often and are included in
half of the subsets, while ten features are included only in a
single subset and six features are not selected at all.

The optimal feature subsets provide sufficient classifica-
tion capabilities. As an example, we illustrate the distinctive
capability of the optimal feature subset for the GMMmodels
for RPC = 9 in an ’Andrews plot’ [65] and a ’parallel
coordinates plot’ [66] shown in Figure 2. The Andrews plot
represents each feature vector x as a Fourier series where the
coefficients are equal to the feature values. The parallel coor-
dinates plot represents each feature vector by the sequence
of features plotted against their values. The figure shows the
feature vectors from 250 randomly selected flows for each
class from Day 1 of the UNIBS dataset. The Fourier series
in the example Andrews plot has 5 terms over the interval
[0,1]: a constant, two sine terms with periods 1/2 and 1,
and two similar cosine terms. The variations in these plots
demonstrate that the feature subset sufficiently discriminates
the different application categories.

Hereafter, we perform the classification experiments using
the optimal feature subsets as shown in Figure 1.

a: IMPACT OF RPC ON PERFORMANCE
Figure 3 compares the performance results of different meth-
ods, including the proposed GMM approach, in terms of
Overall Accuracy and average F1-measure at the level of
flows, packets, and bytes.

Figure 3a illustrates the Overall Accuracy at the level of
flows for differentmethods as a function of theRPC. It is clear
that by increasing RPC, the performance of all approaches
except NB improves, which indicates that using more data
packets for extracting the flow features provides higher Over-
all Accuracy. The improvement of GMM is significant and
GMM yields the highest Overall Accuracy when RPC ranges
from 4 to 10, clearly outperforming all other methods. The
Overall Accuracy with GMM increases up to 97.74% when
RPC increases from 3 to 9, and slightly decreases for larger
RPC. When using complete flows, RF achieves the highest
Overall Accuracy.

Figure 3b compares the average F1-measures at the flow
level for the different methods. Also here, best results are
obtained with GMM when RPC ranges from 4 to 10, except
for RPC is 6. NB and SVM do not perform well. The per-
formance of all approaches lacks behind when RPC ranges
from 3 to 6. We observed that this is mostly due to poor
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FIGURE 2. Andrews plot (left) and Parallel coordinates plot (right) for feature set of GMMs with RPC = 9.

performance for at least one rare class, mostly SKYPE. This
can be seen in Table 3a, where the classification results for all
classes are shown when RPC = 9. The average F1-measures
with GMM increases up to 93.66%when RPC increases from
3 to 10, and slightly increases when using complete flows.
RF achieves the highest average F1-measures for complete
flows.

Figure 3c illustrates the Overall Accuracy at the level of
bytes for different methods as a function of RPC. We see
that GMM still performs well, but not as outstanding as
for the level of flows as shown in Figure 3a. This can be
explained by the observation that GMM improved the Overall
Accuracy at the flow level by providing better classification
of ’mice flows’ (mostly belonging to Web Browsers) than
other classifiers. Flows with small and large payload sizes are
referred as ’mice’ and ’elephant’ flows, respectively [24].

Figure 3d compares the average F1-measures at the byte
level for different methods. GMM provides the best results
when RPC is 9 (68.74%) and 10 (69.30%). The F1-measures
for all approaches is (far) below 70%. These rather low
F1-measure values can be explained by the fact that all
approaches have poor performance at the byte level for at
least one class. This can be seen in Table 3b, which compares
performance at the byte level for all methods when RPC = 9.
It is clear that the poor performance results for SKYPE ham-
pered the overall performance results of all classifiers. We
observed that this is due tomiss-classification of five elephant
flows responsible for 96% of all bytes in the test subset.

Figure 3e and 3f illustrate the Overall Accuracy and the
average F1-measure at the level of packets for different meth-
ods as a function of RPC. We observe a behaviour similar to
the one at the byte level.

In summary, we conclude that the proposed GMM
approach outperforms all other methods at the flow level

when RPC ranges from 7 to 10, both for the Overall Accu-
racy and average F1-measures. The maximum Overall Accu-
racy (97.74%) is achieved for RPC = 9, and the maximum
average F1-measures (93.66%) is achieved for RPC = 10.
At the level of bytes and packets, best results are obtained
with GMM when RPC ranges from 9 to 10, while RF and
GBT perform almost equally well. The maximum Over-
all Accuracy (98.28% and 98.38%) as well as the maxi-
mum average F1-measures (69.30% and 79.57%) is achieved
for RPC = 10.
Table 3 shows the performance of the different classifiers

for RPC = 9 per class in terms of Overall Accuracy and
F1-measure for flows, bytes, and packets, respectively.

b: IMPACT OF TRAINING SET SIZE
Since preparing sufficiently large-scale, well-labelled train-
ing data is laborious, it is useful to determine how much
training data is needed for a desired accuracy. For this reason,
we evaluated the sensitivity of the proposed GMM approach
for the size of the training set when RPC = 9.

Figure 4 presents the Overall Accuracy as the number
of the training flows varies (on a logarithmic scale). Each
mark is the average result of running the GMM mod-
els 10 times. For each run, the models are trained on a
different training set of the same size that is randomly
selected from Day 1, and tested on the total number of
flows obtained from the combination of Day 2 and Day 3.
The error-bars in the figure show the standard deviation of
the mean. The figure shows that the performance steadily
improves and stabilizes as the training set size increases.
We observed that 96.58% and 96.89% Overall Accuracy can
be achieved with 403 and 1,097 randomly selected flows as
training set, respectively, which constitute around 0.5% and
1.5% of all flows. Such small training sets greatly reduce

VOLUME 8, 2020 91297



H. Alizadeh et al.: Timely Classification and Verification of Network Traffic Using GMMs

FIGURE 3. Assessment of the classifiers through their Overall Accuracy and Average F1-measure by Flow, Byte, and Packet for different
RPC values.

the time required to build the models. We also observed
that the classification speed was approximately constant at
3.7 × 105 flows/second. These observations make the

proposed approach promising for practical uses, where well-
labelled training data is scarce or re-training the models is a
serious concern.
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TABLE 3. Performance of the different classifiers for RPC = 9 per class in
terms of Overall Accuracy and F1-measure by flow, byte, and packet (best
results are marked in bold).

FIGURE 4. Average overall accuracy vs. size of training set.

2) TRAFFIC VERIFICATION RESULTS
Table 4 lists the CST -dependent and GT -dependent feature
subsets selected by the SFS algorithm for different values of
RPC. These results were obtained using the evaluation subset
for different values of RPC aiming at minimizing EER.
Figures 5a and 5b compare performance results of

our GMM-based traffic verification approach for different
values of RPC with both the CST and the GT thresholds.

TABLE 4. CST -dependent and GT -dependent feature subsets selected by
the SFS algorithm.

TABLE 5. Class-specific HTER of CST and GT on the test subset when
RPC is 8.

Figure 5a shows results when using the CST -dependent fea-
ture subsets (given in second column of Table 4); Figure 5b
shows results when using the GT -dependent feature subsets
(given in third column of Table 4). Both figures compare
HTER for both the evaluation and the test subset.

The figures show that using GT provides better results
than using CST. This is particularly the case when using
the GT -dependent feature subsets as shown in Figure 5b,
whereGT outperforms CST for all RPC values with both the
evaluation and the test subset. A HTER of less than 15% is
achieved withGT for all values of RPC, except for RPC = 3.
Even when using the CST -dependent feature subsets, shown
in Figure 5a, GT still outperforms CST in most cases, except
for RPC of 4 and 5 on the evaluation subset, and for RPC
of 5 and 10 on the test subset.

On the test set, a minimum HTER of 7.79% is achieved
with GT for RPC = 7 using the CST -dependent feature
subsets (Figure 5a), and 7.65% for RPC = 6 using the
GT -dependent feature subsets (Figure 5b).

Table 5 compares HTER for the test set per class when
using the CST -dependent feature set and RPC = 8, where
a minimum HTER of 9.9% is achieved by both GT and
CST (see Figure 5a). It clearly shows that while both CST
and GT achieved a comparable HTER for MAILS and P2P,
CST significantly outperformed GT for Web Browsers and
SKYPE. This is as expected, since the goal of CST is to
minimizeHTER of each individual application, while the goal
of GT is to minimize the overall HTER of all applications
combined.
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FIGURE 5. HTER by CST and GT as a function of RPC for both the evaluation and the test subset, using the CST -dependent (left) and GT -dependent
(right) selected features as shown in Table 4.

Hence, while CST yields a better HTER per application,
GT still yields a better overall HTER. This is due to the
fact that the number of likelihood scores available to deter-
mine the optimal GT threshold is larger than the number of
likelihood scores available for determining the optimal CST
thresholds.

V. CONCLUSION
In this paper we presented an almost real-time traffic clas-
sification as well as an equally fast application-aware traffic
anomaly detection system based on an original use of GMMs.
The learning algorithm used, unlike the basic Expectation-
Maximization (EM) algorithm, selects an optimal number of
mixture components automatically with a seamless integra-
tion of estimatingmixture parameters from givenmultivariate
data. The representation of each application (type) is provided
by a GMM fitted to the underlying distribution of flow-
level features of that application. The traffic classification
approach assigns any flow to the class with the highest poste-
rior probability. The traffic verification approach for anomaly
detection is based on class-specific and global thresholding
mechanisms, where a threshold is set at the EER operating
point to determinewhether a flow claimed by an application is
genuine. In order to provide a timely operation, only the first
initial packets of flows are considered in the learning process.
We adopted the SFS feature selection algorithm for selecting
the optimal feature subset. We evaluated the effectiveness of
our GMM-based approaches by conducting different sets of
experiments on a public dataset collected from a real network.
In order to provide efficient and timely traffic classification
and anomaly detection, the effectiveness of different num-
bers of first initial packets of flows has been explored and
evaluated. Our traffic classification approach considerable
improves on other state-of-the-art approaches that are based

on machine learning. Our GMM-based approach achieves
an Overall Accuracy for flows of 97.74% using 9 initial
packets of flows. We observed that 96.6% and 96.9% Overall
Accuracy at the flow level, respectively, can be maintained by
only using 0.5% and 1.5% of all flows for training the GMMs.
Our GMM-based anomaly detection achieved a minimum
Half Total Error Rate (HTER) of 7.65% by using only 6 initial
packets of flows.

In our future work we intend to extend our GMM-based
approach such that it also can be applied in an online
non-stationary environment, where both class evolution and
concept drift occur in time. We also consider to evaluate
our approach with other datasets (when available), and to
evaluate related approaches, such as Variational Bayesian
model selection [67], as well as deep learning methods.
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