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ABSTRACT In this paper, we propose a new state estimator called the two-layer nonlinear finite impulse
response (TLNF) filter and adopt this new filter and unscented Kalman filter (UKF) as subfilters to create the
fusion TLNF/UK filter. The TLNF filter is constructed with measurements that are redefined by weighting
the estimated states acquired through minimizing the cost function based on the Frobenius norm. The
efficient iterative form of the TLNF filter is also developed in this paper. Using the fact that the UKF and
the TLNF filter each takes a different type of memory structure, the fusion TLNF/UK filter is designed as
a robust nonlinear state estimator taking both advantages of each filter. To obtain the best fusion estimates,
probabilistic weights are computed based on Bayes’ rule and the likelihood of each filter. Both simulation
and experimental results for mobile robot indoor localization have shown that the fusion TLNF/UK filter
achieves a higher level of accuracy and robustness under practical situations.

INDEX TERMS State estimation, fusion algorithm, finite impulse response (FIR) filter, unscented Kalman
filter (UKF).

I. INTRODUCTION
In the area of signal processing and control, designing an
optimal and robust state estimator for dynamic systems is of
great importance. In linear systems, various state estimators
have been studied for decades; in particular, the Kalman
filter has been widely used as an optimal solution in many
fields, such as communication, data assimilation, and target
tracking. However, most industrial processes in the real world
have nonlinear characteristics. To tackle nonlinear model
complexity, nonlinear state estimators have been suggested.
The most notable nonlinear state estimator is the unscented
Kalman filter (UKF) [1], [2], which supplements the inherent
disadvantage of linearization errors generated in the extended
Kalman filter (EKF) [3], [4] with less computational bur-
den than the particle filter (PF) [5]–[7]. The UKF gives an
accurate estimate for nonlinear systems in ideal conditions
because it minimizes variance in the estimation error and does
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not undergo the linearization procedure. However, because
the UKF is an infinite impulse response (IIR) filter that uses
all past measurements, mismodeling errors can accumulate,
which often leads to divergence of the filter. Furthermore,
in many practical situations, the model parameters are not
a priori or only known to some extent so that the impact of
model uncertainty is inevitable. To tackle the disadvantages
of the IIR filter, the finite impulse response (FIR) filter has
been proposed in many studies [8]–[10].

Instead of using all the past measurements, the FIR fil-
ter uses the most recent measurement data on a fixed time
interval, called a horizon, which determines the performance
of the filter [11]. It prevents old errors from accumulating
beyond the horizon size while estimating states. Furthermore,
a benefit of using the FIR filter resides in the fact that it
shows robust performance against incorrect noise statistics
and model uncertainty. While the IIR filter may diverge due
to mismodeling or accumulated errors, the FIR filter does not
diverge and is less sensitive to mismodeling [12]–[14].
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Initially, the FIR structural state estimator was proposed
by Jazwinski [15], and Kwon and Han [13] developed
the general minimum variance FIR (MVF) filter, which
is bounded-input bounded-output stable assuming unbiased
constraints. Followed by [13], Ahn and Shmaliy developed
several solutions for uncertain linear models [14], [16]–[23].
Furthermore, the iterative unbiased FIR (UFIR) filter [24]
was derived by Shmaliy for a discrete time-varying linear
system, and the robustness was proved by applying it to the
GPS-based steering of oscillator frequency in [25]. Beyond
the linear estimator, for a nonlinear dynamic system, Pak
designed the nonlinear extension of a general MVF filter
called the extended MVF filter and combined it with horizon
group shift (HGS), which is a method for adjusting the hori-
zon size. The combined filter, called the HGS-FIR filter [26],
was realized to compute all the estimates of the extended
FIR filter taking different horizon sizes. The HGS-FIR filter
was proven its performance through comparison with the
EKF, PF, and UKF; however, it has a fatal drawback of
taking 60 times longer to compute estimates compared with
the UKF. In addition to the computational burden, the HGS
method cannot be the solution preventing the extended
FIR filter from experiencing unexpected severe disturbance
or noise.

Furthermore, research on fusion estimation or information
fusion has been actively carried out beyond the single fil-
ter. Sun and Deng [27] proposed a new fusion criterion for
multi-sensor optimal information fusion using the decentral-
ized KF. Hao et al. [28] proposed a weighted measurement
fusion (WMF) algorithm that showed asymptotic optimality
using the UKF for a nonlinear system with multiple sensors.
Hao et al. [29] proposed a distributed fusion CKF weighted
by matrices (MW-CKF) based on the KF framework and
spherical cubature rule for multisensory nonlinear systems.
Sun et al. [30] reviewed various distributed fusion estima-
tion (DFE) algorithms for multisensor networked systems
comparing performance. Most of the existing fusion estima-
tion algorithms are proposed for multi-sensors and based on
the IIR structured filter. Therefore, research on the fusion
algorithm for a filter that can combine the advantages of two
different types of filters is required. In particular, research on
a fusion algorithm for the fusion of IIR and FIR filters and
application in nonlinear systems is notably insufficient.

In this paper, a new FIR filter, called the TLNF filter,
is proposed to overcome the drawback of the HGS-FIR filter.
The TLNF filter is developed based on measurements that
are redefined by weighting the estimated states obtained from
the cost function based on the Frobenius norm. In the first
layer, the estimated states are obtained to stabilize the aug-
mented measurement stack. The weighted estimated states
are combined with the measurement stack to acquire the
filter gain of the second layer. Then, an iterative form of
the TLNF filter is developed. By stabilizing the measure-
ment stack in the second layer, the TLNF filter can be
highly robust compared with the existing FIR filter [26]
especially in circumstances where the unexpected noise

would contaminate the measurements or time-varying noise
would exist.

Furthermore, we propose a new fusion TLNF/UK filter.
The fusion TLNF/UK filter is developed to take advantage
of both the TLNF filter and the UKF so that it can obtain
highly accurate states under practical conditions. The fusion
estimates are computed through the process of initialization,
prediction, and updating for estimates, error covariance and
weights. The estimates and the error covariance of the TLNF
filter are computed in an iterative form. The probabilistic
weights for combining two filters are calculated using the
Markov transition matrix based on Bayes’ rule and the likeli-
hood of each filter. The performance of the fusion TLNF/UK
filter is verified by applying it to the mobile robot indoor
localization system, in which noisy measurements must be
filtered to estimate themobile robot’s position accurately. The
nonholonomic mobile robot kinematic model is considered in
this paper. The fusion TLNF/UK filter is presented based on
simulation first; finally, experiments are conducted to show
its performance.

The structure of this paper is as follows. The UKF is
introduced for preliminaries in Section II and the details of
the TLNF filter and the fusion TLNF/UK filter are developed
in Section III. In Section IV, a demonstrative simulation is
given, and experimental results follow to present the perfor-
mance of the fusion TLNF/UK filter in Section V. Finally,
Section VI presents the conclusion.

Throughout this paper, In is the n-dimensional iden-
tity matrix, <k is the k-dimensional Euclidean space;
diag(e1 · · · em) is a diagonal matrix with elements e1, · · · , em;
E{·} denotes the statistical averaging; and (·)T denotes the
transpose matrix operator.

II. UNSCENTED KALMAN FILTER
We first recall the general UKF [2]. We consider a nonlinear
dynamic system represented in discrete time as:

xk+1 = fk (xk )+ wk , (1)

yk = hk (xk )+ vk , (2)

where fk and hk are smooth nonlinear functions, k is the
discrete time index, and xk ∈ <p and yk ∈ <

q are the state
vector and the observation vector, respectively. The process
noise vector wk ∈ <p ∼ N(0,Qk ) and measurement noise
vector vk ∈ <q ∼ N(0,Rk ) are assumed to be zero-mean,
white Gaussian and mutually uncorrelated.

The general UKF estimate x̂k can be obtained by carrying
out the following steps, recursively.
Step 1. Calculate sigma points.
A set of deterministic sample points with associated

weights are chosen as

x̂(0)k = x̂k−1,

x̂(i)k = x̂k−1 + (
√
LPk−1)Ti , i = 1, · · · ,L

x̂(i)k = x̂k−1 − (
√
LPk−1)Ti , i = L + 1, · · · , 2L

w(m)
0 = γ /(L + γ ),
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w(c)
0 = γ /(L + γ )+ (1− α2 + β),

w(m)
i = w(c)

0 = 1/2(L + γ ), (3)

where x̂(i)k and wi represent sigma points and corresponding
weights, respectively; (

√
Pk−1)i denotes the ith row of the

matrix square root; L is the dimension of xk ; γ = α2(L+κ)−
L is a scaling parameter; κ , which is a secondary parameter,
is usually selected as 0; and β is used for the prior distribution
of xk .
Step 2. Time Update.
The predicted mean and covariance are calculated using

the sample points which are propagated through the nonlinear
equations as follows:

x̂(i)k|k−1= f (x̂
(i)
k−1), (4)

x̂−k =
2L∑
i=0

w(m)
i x̂(i)k|k−1, (5)

P−k =
2L∑
i=0

w(c)
i [x̂(i)k|k−1−x̂

−

k ][x̂
(i)
k|k−1−x̂

−

k ]
T
+ Qk , (6)

ŷ(i)k|k−1= h(x̂
(i)
k−1), (7)

ŷ−k =
2L∑
i=0

w(m)
i ŷ(i)k|k−1, (8)

Pyy=
2L∑
i=0

w(c)
i [ŷ(i)k|k−1−ŷ

−

k ][ŷ
(i)
k|k−1 − ŷ

−

k ]
T
+ Rk , (9)

Pxy=
2L∑
i=0

w(c)
i [ŷ(i)k|k−1−x̂

−

k ][ŷ
(i)
k|k−1 − ŷ

−

k ]
T . (10)

Step 3. Measurement Update.
The state and covariance are updated using the Kalman

gain.

Kk = Pxy,kP
−1
yy,k , (11)

x̂k = x̂−k + Kk (yk − ŷ
−

k ), (12)

Pk = P−k − KkPyyK
T
k . (13)

Given the initial state x0 and initial covariance P0, the gen-
eral UKF procedure can be iteratively conducted.

III. TWO-LAYER FIR FILTER AND UKF FUSION
A. TWO-LAYER NONLINEAR FIR (TLNF) FILTER
The TLNF filter estimate starts from the linearization of state
equations (1) and (2). The equation of the linearization using
Taylor series expansions at the estimated state x̂k is

xk+1 ≈ fk (x̂k )+ Fk (xk − x̂k )+ wk (14)

= Fkxk + [fk (x̂k )− Fk x̂k ]+ wk (15)

= Fkxk + ũk + wk , (16)

where

Fk =
∂fk
∂x
|x̂k ,

ũk = fk (x̂k )− Fk x̂k .

ũk means a linearization error. Since it can increase filter
estimation errors, we use ũk as a pseudo-control input for the
TLNF filter. The linearization equation of the measurement
equation is

yk ≈ hk (x̂k )+ Hk (xk − x̂k )+ vk
= Hkxk + [hk (x̂k )− Hk x̂k ]+ vk
= Hkxk + zk + vk , (17)

where

Hk =
∂hk
∂x
|x̂k ,

zk = hk (x̂k )− Hk x̂k .

We also deal with the linearization error in the measure-
ment equation by defining the auxiliary measurement signal
ỹk = yk − zk . Now, (17) becomes the new measurement
equation:

ỹk = Hkxk + vk . (18)

Linearized systems (16) and (18) can be reformulated in
a batch form on the recent N number of time intervals,
[k −N , k − 1], called the horizon. To derive the TLNF filter,
the batch form is expressed as follows:

xk = Fn,mxk−N +KNUN +KNWN , (19)

YN = H̄n,mxk−N + ḠNUN + ḠNWN + VN , (20)

where

Fg,h , Fg × Fg−1 × Fg−2 × · · · × Fh(g ≥ h),

Fg,g , Fg,

KN , [Fn,m+1 Fn,m+2 · · · Fn,n I ],

H̄n,m ,


Hm

Hm+1Fm,m
Hm+2Fm+1,m

...

HnFn−1,m

 ,

ḠN ,


0 0 · · · 0 0

Hm+1 0 · · · 0 0
Hm+2,m+1 Hm+2 · · · 0 0

...
...

...
...

...

Hn,m+1 Hn,m+2 · · · Hn 0

 ,
Hg,h , HgFg−1,h (g > h),

WN , [wTm wTm+1 · · · wTn ]
T ,

VN , [vTm vTm+1 · · · vTn ]
T ,

YN , [ỹTm ỹTm+1 · · · ỹTn ]
T ,

UN , [ũTm ũTm+1 · · · ũTn ]
T .

Note thatm denotes the initial point, k−N , and n denotes the
final point, k − 1 on the horizon.
The first layer of the TLNF filter is designed to obtain prior

estimated state x̂k|YN which is obtained from measurement
stack YN as follows:

x̂k|YN = LNYN + L̄NUN , (21)

where LN and L̄N are the gains for the first layer.
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Considering the unbiased condition,

E[x̂k ] = E[xk ], (22)

(22) can be expressed as follows after taking the expectations
of (19) and (21) which substituted (20) in YN :

(LN H̄n,m−Fn,m)E[xk−N ]= (KN−LN ḠN−L̄N )UN . (23)

From (23), the condition to satisfy the unbiased condition
becomes

Fn,m = LN H̄n,m, (24)

L̄N = KN − LN ḠN . (25)

Now, we define cost function JLN which is based
on the Frobenius norm for the filter gain function as
follows [18], [19]:

JLN = ‖LN‖F =
√
tr{LNLTN }, (26)

where ‖ · ‖F denotes the Frobenius norm. To gain a solution
for LN that satisfies constraint (24) and minimize cost func-
tion (26), the Lagrange function can be written as follows:

LLN = tr{LNLTN } +9(LN H̄n,m − Fn,m), (27)

where 9 is a Lagrange multiplier. The partial derivative
of (27) with respect to LN gives

∂LLN

∂LN
= 2LN +9H̄T

n,m = 0. (28)

An analytical solution for (28) can be found as

LN = Fn,m(H̄T
n,mH̄n,m)

−1
H̄T
n,m. (29)

Then, L̄N can be easily obtained by substituting (29) into (25).
Furthermore, using x̂k|YN obtained in (21), the second

layer of the TLNF filter is designed to enhance the robust-
ness against unexpected measurement noise. The TLNF filter
redefines the measurement stack ỸÑ as follows:

ỸÑ = (1− α)YÑ + α(ĤÑ x̂k|YN − ĜÑUÑ ),

ĤÑ ,


HnF−1n,m̃

Hn−1F−1n−1,m̃
...

Hm̃F−1m̃,m̃

 ,

ĜÑ,


Hm̃F−1m̃,m̃ Hm̃F−1m̃+1,m̃ · · · Hm̃F−1n,m̃

0 Hm̃+1F−1m̃+1,m̃+1 · · · Hm̃+1F−1n,m̃+1
0 0 · · · Hm̃+2F−1n,m̃+2
...

...
...

...

0 0 · · · HnF−1n,n

,
(30)

where α is a weight parameter and Ñ is a newly defined
horizon size. α is a number between 0 and 1 that is determined
experimentally. According to the horizon size Ñ , m̃ is also
redefined as k − Ñ .

The TLNF filter is designed similar to (21) as

x̂k|ỸÑ
= L̃Ñ ỸÑ +

˜̄LÑUÑ , (31)

where L̃Ñ and ˜̄LÑ are gain matrices for the TLNF filter.
By substituting (30) into (31) and applying the unbiased
condition, E[x̂k|ỸÑ

] = E[xk ], the constraint for L̃Ñ becomes

L̃Ñ [(1− α)H̄n,m̃ + αĤÑLÑ H̄n,m̃] = Fn,m̃.

However, by using (24) and ĤÑFn,m̃ = H̄n,m̃, L̃Ñ is gain
that following condition:

Fn,m̃ = L̃Ñ H̄n,m̃, (32)

Finally, L̃Ñ can be solved the same as LN shown in (26)-(29)
by substituting Ñ instead of N .

B. ITERATIVE FORM OF TLNF FILTER
Now, to derive the iterative form of the TLNF filter, let k be
an iterative variable t , and rewrite (31) as

x̂t|ỸÑ ′
=Ft,m̃(H̄T

t,m̃H̄t,m̃)
−1

H̄T
t,m̃ỸÑ ′+(KÑ ′−L̃Ñ ′ḠÑ ′ )UÑ ′ ,

(33)

where Ñ ′ denotes the horizon size of the interval [m̃, t].
We define Xt

−1 as

Xt
−1
= H̄T

t,m̃H̄t,m̃, (34)

and following [24], (34) can be expanded as

Xt
−1
= Xt−1

−1
+ FT

t,m̃H
T
t HtFt,m̃. (35)

Using Sherman-Morrison-Woodbury formula [31],

(P+ Q)−1 = P−1 − P−1(I + QP−1)
−1
QP−1, (36)

and Xt is derived from (35) as follows:

Xt = Xt−1 − Xt−1(I+ Ft,m̃H
T
t HtFt,m̃Xt−1)

−1

×FT
t,m̃H

T
t HtFt,m̃Xt−1. (37)

Now, let H̄T
t,m̃ỸÑ ′ be expanded as

H̄T
t,m̃ỸÑ ′ = H̄T

t−1,m̃ỸÑ ′−1 + (HtFt,m)T ỸÑ (t − 1), (38)

and at t − 1, (33) can be rewritten as follows:

x̂t−1|ỸÑ ′−1
= Ft−1,m̃(H̄T

t−1,m̃H̄t−1,m̃)
−1

H̄T
t−1,m̃ỸÑ ′−1

+ (KÑ ′−1 − L̃Ñ ′−1ḠÑ ′−1)UÑ ′−1. (39)

Here, ỸÑ (t−1) denotes the redefined measurement vector at
t − 1.

From (34) and (35), we can express

Xt−1
−1
= H̄T

t,m̃H̄t,m̃, (40)

Xt−1
−1
= Xt

−1
− FT

t,m̃H
T
t HtFt,m̃, (41)
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and H̄T
t−1,m̃ỸÑ ′−1 is expressed as

H̄T
t−1,m̃ỸÑ ′−1

= (X−1t − FT
t,m̃H

T
t HtFt,m̃)F−1t−1,m̃

× [x̂t−1|ỸÑ ′−1
−(KÑ ′−1−L̃Ñ ′−1ḠÑ ′−1)UÑ ′−1]. (42)

Finally, after routine transformation, (33) can be repre-
sented as the iterative form as follows:

x̂t|ỸÑ ′
=Ft x̂t−1|ỸÑ ′

+ũt+K̄t [ỸÑ (t−1)−Ht x̂t−1|ỸÑ ′
], (43)

where

K̄t = PtHT
t ,

Pt = Ft,m̃XtFT
t,m̃, (44)

and Pt can be obtained iteratively as

Pt = [HT
t Ht + (FtPt−1FTt )

−1
]
−1
. (45)

The iterative form starts at t = m̃ + n′ − 1 where n′ is
the number of states. The final estimate x̂k|ỸÑ

is produced
at t = k . By deriving the TLNF filter in an iterative form,
the likelihood utilized in the fusion process can be computed.

C. FUSION TLNF/UK FILTER
This section presents the process of the fusion algorithm. The
fusion algorithm which is based on the estimates of the UKF
and TLNF filter, undergoes four steps: initialization, time
update, measurement update and fusion. Through this paper,
we assignWk andWk|ỸÑ

as the weights of the UKF and TLNF
filter, x̂k and Pk as the estimate and error covariance of the
UKF, and x̂k|ỸÑ

and Pk|ỸÑ
as the TLNF filter estimates and

error covariance, respectively.

1) INITIALIZATION
Provided the horizon size Ñ , the TLNF filter produces the
first estimate at time step Ñ and cannot provide the estimates
before Ñ . Therefore, while k < Ñ , we use the estimates of the
UKF for that of the fusion algorithm. For k ≥ Ñ , the Markov
transition probability matrix 5 is defined as follows:

5 =

[
π11 π12
π21 π22

]
,

where the notation πij, a design parameter that can be set arbi-
trarily, denotes the transition probability between the UKF
and the TLNF filter. Matrix 5 determines which filter is to
be a dominant subfilter. In case the UKF is selected as a dom-
inant subfilter, π11 and π21 are larger than π12 and π22. The
opposite case leads π12 and π22 to be larger.5 is determined
experimentally, and the constraint for5 is that

∑2
j=1 πij = 1,

where i = 1, 2. Matrix5 should be designed appropriately in
this manners, but if no prior information is available, all the
elements can be set to 0.5.

For the UKF, the initial state x̃k and initial covariance P̃k
can be obtained by weighting each subfilter estimate and
covariance as follows [32]:

x̃k = Wk x̂k +Wk|ỸÑ
x̂k|ỸÑ

, (46)

P̃k = WkP
(1)
k +Wk|ỸÑ

P(2)k , (47)

where

P(1)k = Pk + (x̃k − x̂k )(x̃k − x̂k )T , (48)

P(2)k = PUB
k|ỸÑ
+ (x̃k − x̂k|ỸÑ

)(x̃k − x̂k|ỸÑ
)T . (49)

In contrast to the UKF, the TLNF filter does not require
a previous estimate and covariance. Instead, the iterative
TLNF filter starts with the initial values x̄s and P̄s =
E(xs − x̄s)(· · · )T .

2) TIME UPDATE
For the UKF, the traditional UKF prediction step is conducted
to compute the predicted state and variance. However, in the
fusion TLNF/UK filter, the prior state and covariance of the
UKF become x̃k and P̃k .
For the TLNF filter, the prediction of the state is conducted

iteratively from x̄s.
The prediction of the upperbound (UB) covariance is com-

puted as follows:

PUB−
k|ỸÑ
= Fk P̄k−1FTk + Qk−1, (50)

where P̄k−1 is computed through the following equation iter-
atively starting from i = s+ 1 until i = k − 1:

P̄i = E{(xi − x̄i)(xi − x̄i)T }

= E{[Fi−1xi−1 + ũi−1 + wi−1 − x̄−i
− K̄i(yi − Hix̄

−

i )][Fi−1xi−1 + ũi−1 + wi−1
− x̄−i K̄i(yi − Hix̄

−

i )]
T
}

= (I − K̄iHi)(FiP̄i−1FTi + Qi−1)

× (I − K̄iHi)T + K̄iRiK̄T
i . (51)

PUB
k|ỸÑ

can be obtained by computing using (51) iteratively

until i becomes k .
The prediction of weights is calculated based on Bayes’

rule as follows:

W−k−1 = π11Wk−1 + π21Wk−1|ỸÑ
, (52)

W−
k−1|ỸÑ

= π12Wk−1 + π22Wk−1|ỸÑ
. (53)

3) MEASUREMENT UPDATE
The measurement update process for the UKF is as follows:

x̂k = x̂−k + Kk (yk − ŷ
−

k ), (54)

Pk = P−k − KkPyyK
T
k , (55)

where

Kk = PxyP−1yy . (56)

The likelihood of the UKF can be computed as follows:

3k = |2πPyy|−
1
2 exp[−

1
2
(ŷk )P

−1
yy × (ŷk )

T ]. (57)
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For the TLNF filter, the state and covariance are updated
as follows:

x̂k|ỸÑ
= x̂−

k|ỸÑ
+ Kk|ỸÑ

(ỹk − Hk x̂
−

k|ỸÑ
),

PUB
k|ỸÑ
= (I − Kk|ỸÑ

Hk )P
UB−
k|ỸÑ

(I − Kk|ỸÑ
Hk )T

+Kk|ỸÑ
RkKT

k|ỸÑ
. (58)

The likelihood of the TLNF filter is computed by

3k|ỸÑ
= |2πSk|ỸÑ

|
−

1
2 exp[−

1
2
(ỹk − Hk x̂

−

k )S
−1
k|ỸÑ

× (ỹk − Hk x̂
−

k|ỸÑ
)T ], (59)

where

Sk|ỸÑ
= HkP

UB−
k|ỸÑ

HT
k + Rk . (60)

Using the likelihood of each set of two filters, the weights
W−k and W−

k|ỸÑ
are updated as follows [32]:

Wk =
3kW

−

k

3kW
−

k +3k|ỸÑ
W−
k|ỸÑ

,

Wk|ỸÑ
=

3k|ỸÑ
W−
k|ỸÑ

3kW
−

k +3k|ỸÑ
W−
k|ỸÑ

. (61)

4) FUSION
Finally, the fusion filter estimate can be obtained by combin-
ing x̂k and x̂k|ỸÑ

appropriately with the updated weights Wk

and Wk|ỸÑ
as follows:

x̃k = Wk x̂k +Wk|ỸÑ
x̂k|ỸÑ

. (62)

IV. SIMULATION FOR MOBILE ROBOT LOCALIZATION
In this section, the fusion TLNF/UK filter is verified via a
simulation example for mobile robot localization. Simula-
tions are carried out for two cases: the first for the case of
abrupt change in noise statistics and the second for the case
of the existence of temporarymodel errors. These simulations
are performed in MATLAB 2019a.

We consider the scenario of two-dimensional local-
ization. Four anchors are installed; their locations are
(−20,−5),(20,−5),(−5, 40) and (20, 40), respectively. It is
assumed that the locations of the anchors are exactly known.
The starting position of a mobile robot is chosen as (0, 0),
and it is asked to move along a circular trajectory with the
appropriate control input.

The kinematic model of the wheeled mobile robot under
nonholonomic constraints is as follows [33]:xk+1yk+1
θk+1

=
xkyk
θk

+4T
cos θk −d sin θk
sin θk d cos θk
0 1

[vk
ωk

]
+wk ,

(63)

where the triple (xk , yk , θk ) are the x-position (m), y-position
(m), and orientation (radian) of a mobile robot with respect

to the two-dimensional world coordinate. d is the distance
between the center of mass and the center of axis of the rear
wheels. vk and ωk which denote the linear and angular veloc-
ity with respect to the world coordinate OXY, respectively,
are the control inputs of the mobile robot. 1T is a sampling
interval. wk is the process noise vector, which is assumed
to be white Gaussian noise with zero mean. The schematic
description of the kinematic model is shown in Fig. 1.

FIGURE 1. Schematic description of a mobile robot.

The measurement equation is as follows [34]:

zl,k =
√
(xk − xl)2 + (yk − yl)2 + nl,k , l = 1, 2, 3, 4,

(64)

where zl,k for l = 1, 2, 3, 4 is the measurement from the lth
anchor. xl and yl are the coordinates where the anchors are
located. nl,k is the lth measurement noise vector and assumed
to be white Gaussian noise with zero mean.

A. CASE IN TIME-VARYING NOISE STATISTICS
In practical conditions, noise statistics are usually time-
varying. We thus consider the time-varying noise in which
the variance takes different values at certain intervals. Here,
sampling interval 1T is set to 0.01 and the total number of
range measurements is set to 2000. We assume that the noise
variance has values of σ 2

w1 = σ 2
w2 = 0.1, σ 2

w3 = 0.05, and
σ 2
v1 = σ 2

v2 = σ 2
v3 = σ 2

v4 = 0.1 in the normal situation, and
changes to σ 2

w1 = σ
2
w2 = 0.3, σ 2

w3 = 0.1, and σ 2
v1 = σ

2
v2 =

σ 2
v3 = σ

2
v4 = 3 when 100 ≤ k ≤ 300 and 1000 ≤ k ≤ 1300.

To prove the performance of the fusion TLNF/UK filter,
we test four nonlinear filters, which are the UKF, HGS-FIR,
TLNF, and the fusion TLNF/UK filters. For the UKF and
HGS-FIR filters, noise covariance design parameters are
set according to the initially set noise value. The design
parameters for the HGS-FIR filter are taken as j = 3,
d = 1,Nmin = 3, and Nmax = 30; for the TLNF fil-
ter, they are taken as α = 0.8, N = 12, and Ñ = 7.
The horizon size for the TLNF filter is determined by
references [26], [35], [36]. The initial state and covariance
are set to x̃0 =

[
0 0 0

]T and P0 = I3, respectively.
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Markov transition matrix 5 is designed as follows:

5 =

[
0.5 0.5
0.5 0.5

]
As can be seen in Fig. 2, theUKF, theHGS-FIR, TLNF, and

fusion TLNF/UK filters are applied for tracking the circular
trajectory of the mobile robot. We assume that there are two
intervals at which measurements are severely contaminated
by unexpected noise in which the variance is very high com-
pared with the normal situation.

FIGURE 2. Estimated position using the UKF, HGS-FIR, TLNF and fusion
TLNF/UK filters.

The simulation results are shown as the estimation errors of
each state in Fig. 3.While the UKF gives accurate estimates at
the interval where noise is not severe, the TLNF filter gives
less accurate estimates. However, at the interval where the
noise statistic changes, the error of the UKF is significantly
higher than that of the TLNF filter. The accuracy of the
fusion TLNF/UK filter is higher and stable both in the normal
situation and at the interval where the noise statistics change
because the fusion TLNF/UK filter follows the filter for
which the error is relatively low. The result of the HGS-FIR
filter is also presented and shows a similar performance to
that of the TLNF filter; however, its computational cost is
about three times higher than that of the TLNF and the fusion
TLNF/UK filters, as shown in Table 1. The RMSEs of four
filters can be clearly seen in Table 2.

TABLE 1. Total operation time comparison.

B. CASE IN TEMPORARY MODEL ERRORS
Nowwe verify the performance of the fusion TLNF/UK filter
in a situation with temporary model errors. Here, 1T is set

FIGURE 3. (a) x error comparison in case of time-varying noise statistics
(b) y error comparison (c) θ error comparison.

to 0.01 and the total number of range measurements is set
to 2000. We assume that the kinematic model undergoes
unpredictable model uncertainty in parameter d when 100 ≤
k ≤ 400 and 1000 ≤ k ≤ 1300. However, the filters applied
are still designed using the kinematic information in a normal
situation. We assume that the noise variance has values of
σ 2
w1 = σ 2

w2 = 0.1, σ 2
w3 = 0.05, σ 2

v1 = σ 2
v2 = σ 2

v3 =

σ 2
v4 = 0.5, σ 2

w1 = σ 2
w2 = 0.1, σ 2

w3 = 0.05, and σ 2
v1 =

σ 2
v2 = σ

2
v3 = σ

2
v4 = 0.1. For the UKF and HGS-FIR filters,

the design parameters of noise covariance are set according
to the initially set noise value. The design parameters for the
HGS-FIR filter are taken as j = 3, d = 1,Nmin = 3, and
Nmax = 30; for the TLNF filter, they are taken as α = 0.7,
N = 12, and Ñ = 7. The initial state and covariance are set to
x̃0 =

[
0 0 0

]T and P0 = I3, respectively. Markov transition
matrix 5 is designed as follows:

5 =

[
0.5 0.5
0.5 0.5

]
Fig. 4 shows the estimation errors produced by four filters,

the UKF, HGS-FIR, TLNF, and the fusion TLNF/UK filters.
For a clear comparison, the root mean square error (RMSE)
is compared and shown in Table 2 in relation to each of the
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FIGURE 4. (a) x error comparison in case of temporary model error
(b) y error comparison (c) θ error comparison.

TABLE 2. RMSEs by different algorithms.

two cases. It can be observed that the estimation errors of
the fusion TLNF/UK filter are always lower than those of the
UKF and TLNF filters.

V. EXPERIMENTS FOR MOBILE ROBOT LOCALIZATION
In this section, the fusion TLNF/UK filter is tested in
real-world applications. We demonstrate two examples of its
practical applications for a mobile robot localization system.
In the first experiment, the mobile robot moves along a cir-
cular trajectory, and in the second experiment, it moves from
the starting point, to the final point, avoiding obstacles. The
ultra-wideband, which is the wireless sensor network, is used
for the mobile robot localization system.

FIGURE 5. Experimental environment.

The discrete-time nonlinear state space model can be spec-
ified by (63) and (64) as explained in Section IV for designing
four filters which are applied to the experiment. The compo-
nents of the localization system are shown in Fig. 5. There are
four anchors installed at the corner of a 6-meter square and
their locations are set to (−1m,−1m), (−1m, 5m), (5m,−1m)
and (5m, 5m) in two-dimensional XY coordinates.

A. CIRCULAR TRAJECTORY
The measurements are sampled with 1T = 0.4s. Because
the noise in the localization system is not known exactly,
we analyze the process to some extent and assign σ 2

w1 =

σ 2
w2 = 0.2, σ 2

w3 = 0.1, and σ 2
n1 = σ

2
n2 = σ

2
n3 = σ

2
n4 = 0.1 to

the filters. The Markov transition matrix is the same as that
in Section IV. The horizon size of the HGS-FIR and TLNF
filters are both set to 7. α is determined as 0.7 experimentally.
We apply filters to the mobile robot which moves along a
circular trajectory. The circular trajectory experiment results
are shown in Fig. 6.

FIGURE 6. Estimated position using the UKF, HGS-FIR, TLNF, and fusion
TLNF/UK filters.

Fig. 7 shows the absolute estimation error of the mobile
robot’s x,y position obtained using four filters. According to
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FIGURE 7. (a) x absolute error comparison in circular
trajectory (b) y absolute error comparison.

the figure, the UKF shows the worst performance in the prac-
tical condition. The absolute estimation error of the HGS-FIR
filter is slightly higher than the TLNF filter, which shows the
most accurate performance. Because the fusion TLNF/UK
filter is designed to follow the estimate of the most accurate
filter, the fusion TLNF/UK filter shows similar results to the
TLNF filter.

B. OBSTACLE AVOIDANCE TRAJECTORY
In this experiment, we apply filters to the mobile robot
which moves from the starting point to the set point avoiding
obstacles. Measurements are sampled with 1T = 0.4s. We
assigned noise statistic values of σ 2

w1 = σ 2
w2 = 0.1, σ 2

w3 =

0.05, and σ 2
n1 = σ 2

n2 = σ 2
n3 = σ 2

n4 = 0.1 to the filters. All
the elements of the Markov transition matrix are set to 0.5,
as in the case of circular motion. The horizon sizes of the
HGS-FIR and TLNF filters are both set to 7. α is determined
as 0.8 experimentally.

The trajectory of experiment results is shown in Fig. 8.
Three cuboid-shaped obstacles are installed and represented
by black rectangles in the XY coordinates.

Fig. 9 shows the absolute estimation error of the mobile
robot’s x,y position obtained using four filters: the UKF,
HGS-FIR, TLNF, and fusion TLNF/UK filters. According
to the figure, the UKF shows the worst performance in the
practical condition.

In the real mobile robot localization experiments,
the TLNF filter shows the most accurate performance so
that the fusion TLNF/UK filter follows the results of the
estimated states of the TLNF filter. This is because the noise
statistics are unknown and model uncertainty always exists in
the real world. However, depending on the various situations
of localization and the tuning of the noise statistics values,

FIGURE 8. Estimated position of the mobile robot avoiding obstacles.

FIGURE 9. (a) x absolute error comparison in obstacle avoidance
(b) y absolute error comparison in obstacle avoidance.

the fusion TLNF/UK filter may follow the estimated states of
the UKF.

VI. CONCLUSION
In this paper, we have proposed a fusion TLNF/UK filter
based on the TLNF and UKF for nonlinear state estimation.
The TLNF filter is proposed for an alternative nonlinear FIR
filter that shows robust performance and has a lower compu-
tational burden compared with the HGS-FIR filter. The fusion
TLNF/UK filter is designed to show accurate performance in
well-specified environments while also remaining robust in
uncertain conditions for the discrete-time nonlinear system.
The simulation results show that the fusion TLNF/UK filter
guarantees reliable estimation performance compared with
each of the nonlinear filters. A practical example of indoor
localization of a mobile robot, whose measurements are
contaminated by unexpected noise, has demonstrated good
correspondence with the theory.
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