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ABSTRACT Wireless Body Area Network (WBAN) as one of the primary Internet of Things (IoT) provides
real time and continuous healthcare monitoring and has been widely deployed to improve the quality of
peoples’ life. In edge-enabled WBANs, intensive computing tasks could be offloaded to Mobile Edge
Computing (MEC) servers, guaranteeing that the massive amount of health data with different user priorities
could be processed in lower delay and energy consumption. Efficient computation offloading schemes are
more critical to satisfy the massive data access and personalized service requirements for multiple Quality of
Service (QoS) parameters constraint WBANs. In this paper, we propose a Two-Stage Potential Game based
Computation Offloading Strategy (TPOS) to optimize resource allocation while taking into consideration the
task priorities and user priorities of WBANs. Firstly, we construct a system utility maximization problem
about the QoS of tasks. The reward, cost and penalty functions are given tomodel the computation offloading.
Then, we propose a two-stage optimization method to solve the problem of mutual restriction strategies
existing in the strategy space of the potential game model, reducing the computation complexity and
improving the feasibility of the algorithm. Finally, performance evaluations on average processing delay,
energy consumption and network utility are conducted to show the significance of the proposed TPOS
algorithm.

INDEX TERMS WBAN, edge computing, computation offloading, potential game, healthcare monitoring.

I. INTRODUCTION
Wireless Body Area Network (WBAN) is a kind of wireless
communication networks centered on the human body, which
can collect physiological, behavioral and other health-related
data in real time through multiple medical sensor nodes
arranged on the surface, inside or near the human body [1].
WBANs enable users to access healthcare services any-
time and anywhere. The application of WBAN satisfies the
urgent need for long-term, real-time and high-quality health-
care monitoring service requirements for the elderly, chronic
patients and even ordinary people. WBANs alleviate the
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health care problems precipitated by the shortage of medical
resources and an unbalancedmedical situation, promoting the
development of e-healthcare [2].

With the wide spread and application of WBANs, mas-
sive health related data access and user personalized ser-
vice requirements pose intra- and inter-WBAN interference
problems. Moreover, sensor nodes are usually wearable or
implanted devices with limited battery power. Battery replac-
ing or charging is difficult for these nodes. Data transmis-
sion to remote data centers and the cloud consumes more
energy. The critical quality of service (QoS) requirements of
WBANs could not be guaranteed in the resource-constrained
environment of health monitoring. The mobile/multi-access
edge computing (MEC) [3], [4] enabled WBANs to solve a
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key related problem, namely that the capability of centralized
cloud computing cannot match the explosive growth of mas-
sive edge data in the era of Internet of Everything.

Despite this, in the edge-enabled WBANs, the resource
allocation for multiple sensor nodes of intra- and inter-
WBANs still poses a great challenge. Moreover, when con-
sidering how to guarantee the agile connectivity, low delay
and energy consumption make resource allocation more
difficult. Stymied by the restriction of energy and differ-
ent delays of various user priorities (UP) data in WBAN,
the effective computation offloading strategies are transform-
ing into the multi-objective collaborative optimization prob-
lems. Resource allocation and offloading decision belong to
two different variables in mathematics. Resource allocation is
a continuous variable satisfying the interval, while offloading
decision is an 0-1 integral variable that cannot be solved
uniformly. Feng et al. [5] developed a cooperative computa-
tion offloading and resource allocation framework by jointly
optimizing offloading decision, power allocation, block size
and block interval. Cheng et al. [6] proposed a joint resource
allocation and task scheduling method. The application of
game theory can improve the autonomy and intelligence
of individual WBAN tasks. The authors [7] formulated the
virtual machine migration problem as a one-to-one contract
game model which can achieve higher resource utilization
rate and system throughput, as well as reduced service packet
loss rate and reduced service delay. However, the inherent
different user priorities of WBAN data are not considered.

In this paper, we propose a Two-Stage Potential Game
based Computation Offloading Strategy (TPOS) forWBANs,
which separates the strategy space in the game decision by
stages. We use task priority (TP) and user priority (UP) as
important criteria for resource allocation to make the allo-
cation problem transformed into a multi-user game problem.
At the first stage, we restrict the game space for intra-WBAN
to compete for local computing resources through games
among tasks. In the game progress, we increase the utility to
improve the competitiveness of high-reward tasks for more
computing resources, which can meet the service demand
of low time delay and low energy consumption. At the
same time, for the tasks with few resources obtained in
the game, we put them into the send queue to offload in
priority. At the second stage, the game space turn to inter-
WBAN. The offload tasks from each WBAN will play on the
MEC server, and each task games the resource of the MEC
server. Finally, through the two-stage optimization algorithm,
we can effectively reduce the influence between the mutu-
ally restricting decisions and improve the feasibility of the
TPOS algorithm. On the other hand, the game we used in
the optimization algorithm is potential game, which has a
good finite increment property (FIP) as one of special form
of non-cooperative games. The FIP ensures the existence of
the pure strategy equilibrium solution without the need to
prove the existence of the equilibrium solution. In summary,
the main contributions are summarized as follows:

• Firstly, we define a utility function that quantifies the
impact of resource allocation and offload decision on the
QoS of each task based on its characteristics. At the same
time, we use the penalty function to constrain the utility
of tasks with different TPs to make full use of the free
computing resources, and avoid the hunger phenomenon
of low-reward tasks.

• Secondly, we construct the utilitymaximization problem
and model it in game theory. As a result, the autonomy
and intelligence of each WBAN are improved and the
complexity of algorithm is reduced by solving the orig-
inal problem in a distributed manner. At the same time,
we build the model by the potential game, which is one
of the non-cooperative games. The potential game fur-
ther simplifies the problem without tedious verification
of the existence of equilibrium solutions.

• Thirdly, we put forward a two-stage optimization algo-
rithm, which is mainly used to solve the game problem
of complex decision space and mutual influence and
restriction of policy variables in MEC service scenarios.
In the two stages, we conduct the offloading and unload-
ing decisions and allocate different local and server
computing resources to tasks of certain WBANs with
different UPs. The two-stage optimization improves the
feasibility of the algorithm.

• Finally, we evaluate the average processing delay,
energy consumption and network utility on different data
arrival rates as well as the number of tasks and WBANs.
The comparison results validate the effectiveness of the
proposed TPOS method.

The remainder of the paper is structured as follows:
Section II organizes the related work and introduces the
potential game. Section III presents the network model of
edge-enabled IoT system. Section IV introduces the analysis
and formulation of WBAN computation offloading prob-
lem. Section V introduces the specific content of the TPOS
algorithm. Section VI discusses and analyzes the simulation
results. Section VII concludes the paper.

II. PRELIMINARIES
A. RELATED WORK
Wireless body area networks are human centered, highly reli-
able short-range wireless communication networks [8]. With
flexibility, scalability and low-cost characteristics, WBAN
technology has been envisioned as one of the primary tech-
nologies for the e-Health Internet of Things (IoT) [9], [10].
WBAN has been widely deployed in densely populated sce-
narios, like wards and waiting rooms in hospitals [11].

Due to the sensitivity and criticality of the data carried
and handled by WBAN, fault tolerance is a critical issue
and widely discussed [12]. Ye and Zhuang [13] proposed
a distributed and adaptive hybrid medium access control
(DAH-MAC) scheme for a single hop IoT-enabled mobile
ad hoc network supporting voice and data services. The
authors [14], [15] proposed an optimization algorithm to
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minimize the energy consumption of the offloading sys-
tem while taking into account the energy consumption of
task calculation and file transfer. Contrasting the more com-
plex multiuser scenario, a distributed iterative algorithm for
searching continuous convex approximation was proposed
in [16] which minimized energy consumption by jointly opti-
mizing radio and computational resources.

Mobile Edge Computing is a latest technology aimed at
offloading mobile devices to nearby resource-rich edge archi-
tectures, thus freeing them from computing-intensive work-
loads. Mobile edge computing enhanced base stations (BSs)
and powerful distributed edge devices make it possible for
local knowledge extraction from massive IoT data [17], [18].
MEC-based applications can achieve lower latency levels
than cloud-based applications [19]. Based on Lyapunov’s
optimization theory, a joint computation allocation and
resource management algorithm [20] was proposed by trans-
forming the original problem into a series of deterministic
optimization problems in each time block. In [21] the author
divided the research on computation offloading into three key
areas: decision-making on computation offloading; allocating
computing resources in MEC; and mobility management.

Dynamic heuristic algorithms were proposed to make deci-
sions on computation offloading [20], [22], [23]. In [24] a
heuristic collaborative content caching strategy was devel-
oped to determine the content items to be cached on each
MEC server. The region-based scheme performed better
than the average content delivery and other intermediate
computing strategies balanced the offloading when compar-
ing the delay of MEC servers. Du et al. [25] considered
a cognitive vehicular network which used the TV white
space(TVWS) band, and formulated a dual-side optimization
problem to minimize the cost of vehicular technology sand
of the MEC server at the same time. In [26]–[29], the authors
adopted adaptive schemes to optimize the allocation of
resources. Among the research of mobility management,
Liu et al. [30] used queuing theory to meet the demand for
high mobility and reliability. Besides the above-mentioned
articles, some researchers focus on the resource allocation
of vehicle edge calculation and networks, Hetnets or cellular
networks [31]–[35]. The application scenarios are in high
mobility and the service priority is not considered, which is
not suitable for WBANs. Without considering the priority
of tasks could result in too many high priority data obtain
insufficient resources [36]. However, in WBAN application
scenario, the service priority is very important to the quality
of service of users.

In this paper, we model the resource allocation prob-
lem of different tasks in different WBANs as multi-user
game problem. They play games as game players to deter-
mine the amount of computing resources and communication
resources acquired. Through the restriction of penalty func-
tion, we make the allocated resources meet the demand of
maximizing the service as much as possible, and make the
service allocation close to the proportion of its own service
value. According to our theoretical assumption, under the

premise of ensuring that all tasks can be executed within
the rated time delay, the resource allocation strategy will
prioritize the resource requirements of highUP users and high
TP tasks.

B. DEFINITION OF POTENTIAL GAME
Game theory is a theory of conflict and cooperation among
intelligent rational players. It can analyze the interaction
between multiple independent entities that need to compete
or work together to achieve their goals. The game is divided
into cooperative game and non-cooperative game accord-
ing to whether binding agreement can be reached. In [37],
the authors show some applications of game theory in solving
wireless network problems.

Non-cooperative game mainly studies how to make deci-
sions to maximize their own benefits in situations where
interests interact, which is discussed and applied in more
occasions. Nash equilibrium is an important concept in
non-cooperative games, but not every game has a Nash
equilibrium. Therefore, it is necessary to prove the exis-
tence of game equilibrium. If the game model itself con-
verges to the Nash equilibrium, the establishment of the
game model will be greatly simplified. As a special form of
non-cooperative game, potential game is the type of game,
which converges to the Nash equilibrium. Potential game
has FIP, aka, the increasing path of the game is of finite length
or the game subject can reach the Nash equilibrium after a
finite number of iterations.

In this paper, we use a potential game to solve resource
allocation and offload decision problems. On the one hand,
we can make use of the decentralized decision-making pro-
cess of network nodes in WBAN. Since each player may
have different needs and ultimately will not pursue the same
interests. A decentralized scenario is required where each
participant chooses the best possible strategy to achieve their
goals. By leveraging the intelligence of each node, the dis-
tributed solution will reduce the complexity of the problem.
On the other hand, in view of the problem P is a constrained
hybrid nonlinear programming problem, which is usually NP
hard. With potential games, the original centralized problem
is simplified to make it feasible.
Definition 1 (Potential Game): For the game 0 =〈

M , {Ym}m∈M, {Pm}m∈M
〉
, whereM is the number of players

and the set of players is expressed as M = {1, 2, . . . ,M},
Ym and Pm is the policy space and profit function of the
player m. If there is a function F : Y → R with ∀m ∈ M,
∀y−m ∈ Y−m and ∀x, z ∈ Ym can satisfy the following
function

Pm (x, y−m)− Pm (z, y−m) = F (x, y−m)− F (z, y−m) ,

0 could be called a perfect potential game. In the definition,
ym represents the strategy of the mth participant while y−m
represents the strategies of other participants.
Definition 2 (Nash Equilibrium): In optimization theory,

pareto optimality is often used to describe the ideal state
of resource allocation. In consideration of the number of
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subjects and the amount of resources which can be allocated,
pareto optimality is the change from one allocation state to
another. The change is impossible to make someone better
off without making anyone worse off. A Nash equilibrium is
a stable state of play in which all players have no incentive to
change their choices.Pareto optimality is considered from a
holistic perspective, which means that the sum of the total
benefits of all participants reaches the maximum, that is,
the whole optimal or social optimal. Nash equilibrium does
not necessarily satisfy pareto optimality. If the game results
reach pareto optimality, we can think the result of individual
rationality is the choice of collective rationality.

In the potential game model, the Nash equilibrium point
corresponds to the maximum value of the potential func-
tion. If the objective function of the optimization problem
is modeled as the potential function of the potential game,
the Nash equilibrium point corresponds to the optimal solu-
tion of the optimization problem, which is also the pareto
optimal solution.

To sum up, we derive the properties of potential game as
follows:

• Attribute 1: if the potential function of game 0 =〈
M , {Ym}m∈M, {Pm}m∈M

〉
is F : Y → R, the Nash

equilibrium of 0=
〈
M , {Ym}m∈M, {Pm}m∈M

〉
is consis-

tent with that of game:

0 =
〈
M , {Ym}m∈M, {Pm = F}m∈M

〉
.

• Attribute 2: every finite ordinal potential game has an
equilibrium solution of pure strategy.

• Attribute 3: each finite ordinal potential game has the
property of FIP.

These three attributes of potential game ensure that the
game model established based on potential game must have a
Nash equilibrium. So we only need to prove that the model is
a potential game, andwe do not need to prove the convergence
of the model.

III. NETWORK MODEL
We assume a scenario of edge-enabled IoT system with mul-
tiple WBANs and MEC servers in the network to provide
health monitoring, as shown in Fig.1. The MEC service
with much computation resources is deployed at the mobile
communication base station and other communication facili-
ties, which can provide real-time computing services for the
covered WBAN users. On the other hand, we assume that
N = [1, 2, . . . , N ] shows the set of active WBANs, which
can offload several tasks to the MEC server based on the
current WBAN system conditions like the communication
interference, system load and residual power and so on.

For WBAN n ∈ N , there are several sensor nodes
for real-time monitoring of user health information and
a hub with computation workload Xn (in CPU cycle
per bit) to receive and process the task from the sen-
sor nodes efficiently. These nodes deliver real-time tasks
to hub uniformly through IEEE 802.15.6 protocol in the

FIGURE 1. Network model.

WBAN network. The set of tasks in WBAN n is denoted
as In = [1, 2, . . . , In] and the task i ∈ In is described
by notation Tn,i = T

(
Dn,i,Kn,i

)
. Where Dn,i represents the

amount of data (in bits) of task i. Kn,i is the priority of the
task which subjects to IEEE 802.15.6 defined task priority
(TPk |k = 0, 1, 2, . . . , 7), as shown in Table 1. The higher
the priority, the lower the delay tolerance of the service, and
the more stringent the requirements for QoS in healthcare
monitoring.

TABLE 1. TP mapping of WBAN.

Given the bandwidth Wn of WBAN n, WBAN can release
local computing resources, reduce processing delay and
energy consumption and improve tasks processing efficiency
through utilizing the server’s rich computing resources.
Based on current conditions, WBAN can decide a task
to be executed locally or offloaded to the MEC server to
offloading the current computationally intensive tasks with
reasonable offloading strategy. We assume the central pro-
cessing units (CPUs) of MEC server are idle at the current.
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The maximum computing resources of WBAN and MEC are
represented by FWn and FM , and FM is much larger than FWn .

IV. PROBLEM FORMULATION
For mathematical modeling analysis of the process of tasks,
we assume that it is the process of buying and selling trans-
actions. A series of operations of the tasks are represented by
corresponding value functions, as follows

Un,i = Rn,i − Cn,i, (1)

where Un,i represents the utility of task i in WBAN n, which
maximizes the utility as much possible, while WBAN users
try best to maximize the total utility of tasks. At the same
time, Rn,i represents the reward function of the task, aka,
the inherent value that the user will obtain when finish the
task. Cn,i represents the cost function of the task in the
process.

A. REWARD FUNCTION
We assume that WBAN will receive a certain amount of
reward which is related to the data size and priority of the
task after finishing it. For task Tn,i, the reward function could
be expressed as

Rn,i =
(
1+ Kn,i

)2
· log2

(
1+ Dn,i

)
, (2)

where tasks reward is proportional to tasks data and priority,
and the impact of priority is greater.

B. COST FUNCTION
At the same time, we believe thatWBANneed to pay a certain
amount of cost to deal with the tasks, which is related to the
processing delay T and energy consumption E . The cost of
task i in WBAN n is denoted by Cn,i. Let λt and λe respec-
tively denote the delay factor and the energy consumption
factor to maximize the network life cycle of WBAN while
meeting the low latency and high reliability requirement of
the service. In summary, the cost function can be expressed
as

Cn,i = λtn,iTn,i + λ
e
n,iEn,i, (3)

where λtn,i is the delay factor of task i, while λ
e
n,i is its energy

consumption factor. Tn,i and En,i indicate respectively the
processing delay and energy consumption of task i.
In (3), different tasks can have different weighting param-

eters depending on the imagined application or even the
current system state. For example, if the node battery is low,
the energy consumption factor should be increased to save
more energy. For delay-sensitive tasks, delay factor is added
to reduce delays.

From the system model, WBAN can choose to unload the
tasks according to the current system situation, thus releasing
the local computing and communication resources. So the
tasks can be divided into local execution and offloaded to the
MEC server.

1) LOCAL EXECUTION
For the local execution task Tn,i in the WBAN user n.
We assume that f locn,i is the computing resources of WBAN
to complete the task, then the local execution time of the task
is given by

T locn,i =
Dn,i · Xn
f locn,i

. (4)

Meanwhile, the energy consumption of each CPU cycle

is h
(
f locn,i

)2
[38], where h is the constant associated with the

CPU. The local energy consumption can be denoted by

E locn,i = h0
(
f locn,i

)2
· Dn,i · Xn, (5)

where h0 is the CPU constants, which is the effective capac-
itance coefficient that depends on the chip architecture in
WBAN n.

2) OFFLOADING PROCESSING
For tasks that need to be uninstalled, the total time to finish
can be expressed as

T sern,i = T trn,i + T
c
n,i + T

r
n,i. (6)

From the formula, T rn,i is the time when the completed task
returns to WBAN, which is mainly determined by the MEC
server. And the processing result is usually much smaller
than the original data size with less impact on the final
experimental results. Therefore, in order to simplify the cal-
culation, we ignore the return time T rn,i in the processing of
the offloading task execution time. We assume that a task is
taken T trn,i to transmit fromWBAN to MEC, and it is given by

T trn,i =
Dn,i
Rn

. (7)

At the meantime, we assume that a task will transmit data
at a fixed subcarrier power Ptrn in WBAN n, and the com-
munication bandwidth of each WBAN is Wn. Furthermore,
we consider a flat fading environment that channel gain gn
remains constant during the offloading process. Considering
the wireless interference of cellular network, the channel gain
is gn = d−∂ , where d is the distance between the WBAN and
MEC server and ∂ is the path loss factor. The system noise
is in accordance with the zero expectation Gaussian distribu-
tion, and the variance is expressed as N0. The aggregated data
rate Rn is expressed as

Rn = Wnlog2

(
1+

Ptrn · gn
N0

)
, (8)

T cn,i is the computation time in the MEC server and can be
given by

T cn,i =
Dn,i · Xn
f sern,i

(9)

where f sern,i is the computing resources of MEC to complete
the task.
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On the other hand, the WBAN energy consumption of
offloading a task can be expressed as

Esern,i = Ptrn · T
tr
n,i + h1

(
f sern,i

)2
· Dn,i · XM , (10)

where XM is the MEC compute workload and h1 is the CPU
constant in MEC server. In this paper, we set h1 = 1× 10−26

to maintain the energy consumption per bit at the same order
of magnitude [39].

According to the equation (10), when a task is offloaded
to the MEC server for processing, the energy consumption
includes two aspects. One is the energy consumption during
the wireless transmission of the task, and the other is the loss
of the task in the MEC server.

We introduce u =
{
un,i ∈ {0, 1} ,∀i ∈ In

}
to indicate the

offloading strategy of the task i in WBAN n. It indicates that
the task is executed locally when un,i = 0, while un,i = 1
represents that the task is offloaded. We simplify the cost
formula by strategy value un,i with the local cost C loc

n,i and
the offloading cost Cser

n,i . The cost function is finally obtained
by

Cn,i =
(
1− un,i

)
· C loc

n,i + un,i · C
ser
n,i (11)

Finally, we can conclude that the utility function of each
WBAN is

Un =
In∑
i∈In

(
Rn,i −

(
1− un,i

)
· C loc

n,i − un,i · C
ser
n,i

)
. (12)

C. PENALTY FUNCTION
For one of the WBAN users, the result of resource allocation
is usually not satisfactory only by solving the utility function
of the whole tasks. Either the allocation of low-reward tasks
resources fails to meet the minimum demand, resulting in the
phenomenon of hunger; or it cannot meet the service of qual-
ity requirements of low delay and low energy consumption
in high reward tasks. Therefore, on the basis of the utility
function mentioned above, penalty function is introduced to
solve the problem. On the one hand, the overall performance
of resource allocation can be improved; on the other hand,
partial constraints are transformed into unconstrained nonlin-
ear programming problems, which simplifies the complexity
of the algorithm.

First of all, we give the function of balanced allocation
of resources, the purpose of which is to make the result of
resource allocation approximate to the benefit ratio of tasks.

Gn,i =
Rn,i

In∑
j
Rn,j−

In∑
k,k 6=i

Rn,k

−
fn,i

In∑
j
fn,j−

In∑
k,k 6=i

fn,k

(13)

where
In∑
j
Rn,j is the total reward for all current tasks, and

In∑
k,k 6=i

Rn,k is the reward from the tasks that have allocated

resources. Similarly,
In∑
j
fn,j and

In∑
k,k 6=i

fn,k represent the total

resources of the system and the allocated.
Secondly, with the resource equilibrium distribution func-

tion, we can get the penalty function as follows:

Penn,i = −α

(
Gn,i −

∣∣Gn,i∣∣
2

)2

· Rn,i (14)

where α is the penalty factor. As the penalty factor increases,
the more severe the utility penalty is for the task, the less
computing resources are allocated and tend to be proportional
to the reward.

From the penalty function (14), when the resource allo-
cation ratio is greater than the current user benefit ratio,
the penalty function result will be negative, and the utility of
the tasks will decline, resulting in the reduction of its resource
allocation. On the contrary, if the current system has a small
number of business and abundant resources, the penalty func-
tion result will be equal to 0, so that the task can maximize
its utility. Finally, the result is to prevent the high priority
business from grabbing too much resources and balance the
distribution of resources.

In summary, the tasks process for each WBAN user can be
formulated as follows:

P : max
u,f loc,f ser

Fn =
In∑
i∈In

(
Un,i + Penn,i

)
s.t. C1 : un,i ∈ {0, 1} ,∀i ∈ In

C2 :
In∑
i∈In

(
1− un,i

)
f locn,i ≤ F

W
n

C3 :
In∑
i∈In

un,if sern,i ≤ F
M

C4 : Tn,i =
(
1− un,i

)
T locn,i + un,i · T

ser
n,i ≤ τn,i

(15)

where Fn is the total utility of all the tasks in WBAN n. The
constraint C1 indicates that the offloading strategy value is
a binary variable, and constraint 2, 3 represents the maxi-
mum allocation computation resources ofWBANs andMEC.
C4 shows that each task must be completed in time and the
maximum completion time τn,i.

V. THE PROPOSED TWO-STAGE POTENTIAL GAME
BASED COMPUTATION OFFLOADING STRATEGY (TPOS)
In this section, the proposed two-stage computation offload-
ing strategy based on potential game theory is introduced.
The strategy can reduce the interaction between the strategies
through two different stages and improve the feasibility of the
algorithm.

We simplified the original problem P into a non-
cooperative game process based on potential game model.
Each task is individually rational in the game, that is, each
task tries to maximize its own utility and further increase the
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benefit of the overall system. However, the potential game
0 in this paper has two different and mutually restricting
strategies in the strategy space. They are resource alloca-
tion and offload decisions. When the application of local
resources is too small to meet the needs of the task QoS,
the offload decision of the task will be transferred to theMEC
server to apply for the server resources. As a consequence,
the complexity of the algorithm is too large to implement two
strategies simultaneously.

The two-stage potential game computation based offload-
ing strategy (TPOS) algorithm is illustrated in Fig. 2, which
involves the solutions for the first stage and second stage. The
first stage is limited to the intra-WBAN and determine the
offload decisions. The second stage moves the game space to
MEC server. Tasks of different WBANs start the game to get
the computing resources from high to low utility.

FIGURE 2. The TPOS algorithm.

A. THE FIRST STAGE
In the first stage, we first model the potential game for tasks
of each WBAN, which can determine the offload decisions
and local computing resources allocation of tasks. The entire
game space is limited to the WBAN n where the tasks are
generated. Firstly, the WBAN nodes generate the tasks as
the players of the potential game, who perceive the system
environment and determine the strategy space. The hub will
receive these tasks and rank each of them according to its
reward value Rn,i, and players will start the game from high
to low.

After the end of the first game, we check the current
distribution of resources and determine whether the tasks
meet the QoS by determining the profit function Pn,i of
the players in the game. The function indirectly reflects the
current tasks density of WBAN system. Through a given
threshold value L, we can judge the allocation of resources

for the tasks. When the profit of the player is greater than the
threshold value, we consider the allocation reasonable. On the
contrary, when it is less than the threshold value, we consider
the allocation of resources to be too few. The profit of the
player should be proportional to the utility value of the task,
that is, the higher the profit is, the more resources the task
applies for, the lower the delay and energy consumption and
the better QoS. When there are players whose profits fall
below the threshold, we believe that the result of resource
allocation is uneven and the strategy will be updated.

In the process of strategy updating, the penalty factor size
of each penalty function in task utility will be gradually
increased, which will affect the high-utility task that preempts
too many resources. The update process will still be sorted
according to the utility value, and the unified scheduling of
hub will ensure that players play in order. When the penalty
factor reaches the upper limit and some utilities of players are
still low, we can determine that the current local resources are
not enough to allocate all tasks. Among the tasks that do not
meet the threshold value, the task with the lowest utility will
be offloaded and added to the sending queue. The rest of the
tasks restart the game until the current local task is satisfied
and all are above the threshold. The first stage of the game is
over.

B. THE SECOND STAGE
Unlike the first stage, the game space in the second is located
in the MEC server. The MEC server receives the offloading
tasks from the transmit queue of each WBAN, and the server
resources allocated by each task through the potential game
as in the first stage. We consider each task to be a player and
to be ranked according to their respective reward. Then the
MEC server starts the game.

In addition, considering the differences of different users,
we introduced the user priority Kn at the second stage. It is
related with the applications or services of different WBANs.
Kn is defined in (16).

Kn=d

∑
i∈In

un,i

In
+
max

{
un,i · Kn,i

}
2

e, ∀i ∈ In, ∀n ∈ N

(16)

where un,i is the offloading decision and Kn,i is the priority
of task i in WBAN n. The values of Kn are integer values
between 1 and 4. The proportion of offloaded tasks and the
highest priority in the unloaded tasks can reflect the tasks
density of the WBAN. We use the user priority in the reward
weighting of offloaded tasks. The reward function is updated
as follows

R′n,i = (1+Kn)Rn,i (17)

After the updated task reward function, the tasks will game
server resources in the MEC. The specific game process is
similar to that of the previous stage, but the difference is that
the game in this stage does not need to consider the threshold
of the utility of players. Therefore, it is no longer necessary
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to gradually increase the penalty factor to make computing
resources more fully utilized. But without the iterative pro-
cess, the optimal size of the penalty factor still needs to be
resolved. If the offloaded tasks in the MEC server have little
difference, the MEC needs to balance the resources of each
task, and the penalty factors increases. On the contrary, when
there is a great difference in task rewards, penalty factors need
to be reduced. As a result, we adjust the size of the penalty
factor according to the current task dynamics unloaded to the
MEC.

C. GAME MODEL
Potential game modeling of MEC system is carried out from
three elements of the game, which are players, profit function
and strategy space. Specific instructions are as follows:

1) PLAYERS
In order to fully reflect the autonomy of each node inWBAN,
we map the generated tasks to the players. The players in
each game canmake their own decisions, maximize their own
profit in the process of mutual game, and promote the optimal
benefit of the system.

2) PROFIT FUNCTION
From the economic point of view, this paper coordinates the
resource distribution of each task, so the profit function of
players corresponds to their respective utility functions with
each penalty function as follows:

Pn,i = Un,i + Penn,i, ∀i ∈ In, (18)

where Pn,i is the profit of each player. At the same time,
we assume the profit Pn,i equals the utility of all tasks in the
WBAN, that is Pn,i = Fn,i.

3) POLICY SPACE
The resource allocation and offloading decision to maximize
the utility of each task act as the strategic space of each
player. Therefore, the potential game is the combination of
the current offload state and the local resources or MEC
server resources applied for by the task.

Yn,i =
{
un,i, f locn,i , f

ser
n,i

}
, ∀i ∈ In

un,i ∈ {0, 1} , ∀i ∈ In
0 ≤ f locn,i ≤ F

W
n , ∀i ∈ In

0 ≤ f sern,i ≤ F
M , ∀i ∈ In.

(19)

where FWn and FMn are the total computing resources of
WBAN and MEC respectively. f locn,i and f sern,i are the allo-
cated WBAN and MEC resources of task i in WBAN n.
It should be noticed that, according to the attributes 2 and 3
of potential game, the strategy space needs to be discretized
through linear segmentation to make it a finite strategy space
and ensure that the game is a finite game.

4) MODEL ANALYSIS
In order to maximize the utility of each task in the game
and optimize the benefit of the system in the same time,
we consider the construction potential function Jn (y) as the
sum of the utility of each player in (20). Jn (y) can maximize
the utility of each task and the benefit of the system, which
corresponds to the potential function in the potential game.

Jn (y) =
∑
i∈In

Pn,i =
∑
i∈In

Fn,i. (20)

According to the definition of potential game in Defini-
tion 1, when a certain player chooses different strategies,
the change of the player’s own benefit 1Jn is the same as
the change of the potential function 1Fn in potential game.
Then, we prove the perfect potential game proposed in (21)
and (??).

Jn (y) = Jn
(
yn,i, yn,−i

)
= Fn,i +

∑
j∈In,j 6=i

Fn,j (21)

where y is the set of strategies for all current players. Given
yn,i is the strategy of a random player, then yn,−i is the strategy
set of other players.

∑
j∈In,j6=i

Fn,j is the utility of other players

except i. Assume that y′n,i is the changed strategy of player i
and F ′n,i is the changed utility after changing the strategy.

1Jn = Jn
(
yn,i, yn,−i

)
− Jn

(
y′n,i, y

′
n,−i

)
=

Fn,i+ ∑
j∈In,j6=i

Fn,j

−
F ′n,i+ ∑

j∈In,j 6=i
F ′n,j


= Fn,i − F ′n,i
= 1Fn (22)

We get the 1Jn = 1Fn, the game model established
based on the economicmodel meets the definition of a perfect
potential game and has all the attributes of a potential game.
After the strategy space is discretized, the potential game is
a finite potential game, which has the property of limited
improvement. According to attribute 2, the potential game
must have a Nash equilibrium solution of pure strategy.

VI. PERFORMANCE EVALUATION
In this section, we build a simulation environment using
Python to evaluate the performance of our proposed algo-
rithm. We set up a MEC server and multiple WBANs in the
simulation scenario. Each WBAN consists of a hub and mul-
tiple sensor nodes, and each sensor node will only generate
tasks with single task priority. In addition, each WBAN has
a user priority attribute. We use a queuing model to simu-
late the process of sending tasks from WBAN to the MEC
server.We ignore the transmission delay of data in the channel
and only consider the sending delay and queuing delay of
the task. Some parameters of the simulation environment are
detailed in Table 2.

We conduct the performance evaluation on the average pro-
cessing delay and average processing energy. The simulation
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TABLE 2. System parameters.

FIGURE 3. The delay of different task priority with different data arrival
rates.

results are performed on different arrival rates and the number
of WBANs and tasks with different user priorities and task
priorities. At the same time, we compared the proposed TPOS
with the other two task processing modes. The simulation
results are shown in Fig. 3-Fig. 10.

The relationship of the average processing delay of tasks
with different task priorities and different task arrival rates
is shown in Fig. 3. The data arrival rate here refers to the
sum of the data size of tasks generated in a single WBAN
during a unit time. In this scenario, there are 4 WBANs
within the service range of the MEC server. The WBANs
have the same user priority. The results show the average
delay of tasks TP0-TP7 increase with the data arrival rates.
High TP tasks, such as TP7, TP6, are in low delay than
other low TP tasks. That is because the first allocation prin-
ciple of TPOS is ensuring high-priority tasks can get enough
resources to meet the requirements of users. When the data
arrival rate is small, low priority tasks are executed locally and
can obtain sufficient computing resources to meet user needs.
As data arrival rate continues to increases, the computing

FIGURE 4. The energy consumption of different task priority with
different data arrival rates.

FIGURE 5. The utility of different task priority with different data arrival
rates.

FIGURE 6. The delay of different user priority with different number of
WBANs.

resources of a single WBAN are insufficient to process tasks
locally at high speed. In other words, the number of tasks
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FIGURE 7. The energy consumption of different user priority with
different number of WBANs.

FIGURE 8. The utility of different user priority with different number of
WBANs.

FIGURE 9. The average delay of different processing modes with different
number of tasks.

participating in the resource game locally increases, result-
ing in a gradual decrease and leveling off of the resources

FIGURE 10. The average energy consumption of different processing
modes with different number of tasks.

available for each task. The delay of low TP tasks increase
faster than high TP tasks. We can observe that the task
processing delay curves of 3 and TP 4 all have a significant
downward trend when the data arrival rates increase. This is
because these priority tasks are offloaded to MEC server to
process and occupy the highest order in the queuing model
so that get a lower queuing delay. Therefore, these tasks can
achieve a phased reduction in processing delay when they are
just offloaded compared to execute locally. Overall, TPOS
guarantee both high and low TP tasks with lower latency.

We can obtain the average energy consumption of different
tasks with different data arrival rates from Fig. 4. With the
increasing data arrival rates, the energy consumption of all the
task increases. High TP tasks always have priority to obtain
enough computing resources. They are processed locally in
high probability in the TPOS algorithm. When there are too
much data in the network, the local resources are insufficient
for all tasks. The low TP tasks are offloaded to the MEC
server with rich computing resources for further processing.
This will increase the transmission power consumption of low
TP tasks.

Figure 5 describes the average utility of tasks with the
changing arrival data. The average utility values of tasks
decline slowly with the increasing data arrival rates. This is
due to the continuous increase of the processing cost of the
processing delay and energy consumption. From the defini-
tion of utility function shown in (1), we can know the utility of
the high TP tasks always better than the low TP tasks. Since
the cost of high priority task in WBAN is smaller than low
priority task in WBAN.

The impacts of the number of different WBANs with
different UPs on the performance are shown in Fig. 6 and
Fig. 8. In this scenario, there are four UP kinds of WBANs
and each UP only generates 8 tasks with two TPs. We fix
the data arrival rates to 5Kb/s and the number of WBANs
varies from 4 to 40. From (16) we can know the WBANs
with UP3 and UP4 generates TP4-TP7 tasks while UP1 and
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FIGURE 11. The total utility of different processing modes with different
number of tasks.

UP2 WBANs generate TP0-TP4 tasks. Different UPs would
make different offloading decision according to state of sys-
tem. As mentioned before, the higher the UP is, the more
inclined to process tasks locally and the lower the UP is,
the more inclined to offload tasks to MEC server. Because
of the limited computational resource of WBANs, the tasks
offloaded will obtain more resource than those processed
locally and the process delay is less. That is why UP1 and
UP2 WBANs have low processing delay than UP3 and
UP4 WBANs at first. With the increasing of number of
WBANs, there are more and more tasks to play resource
games, the penalty function factor also increases, which limits
the amount of resources the task obtains, resulting in greater
processing delay and energy consumption. As shown in Fig. 6
and Fig. 7, the average processing delay and energy con-
sumption of UP1 and UP2 increases rapidly. On the contrary,
UP3 and UP4 process most tasks locally which results in
relatively small fluctuations on processing delay and energy
consumption.

In a densely WBANs employed scenario, the TPOS com-
putation offloading algorithm can keep the power consump-
tion of the device at a healthy level to meet the user’s needs
for battery life. The average utility of processing tasks for dif-
ferent UPs is in Fig. 8. All WBANs with different UPs show
the stable system utility which validates the effectiveness of
the proposed TPOS algorithm. The high UPWBAN has great
advantages than low UPWBAN. The utility of UP4 is almost
16% more than UP1.

The relationships of the performance of the TPOS algo-
rithm and the number of tasks are shown in Fig. 9-Fig. 11.
The data arrival rate of per task is 3Kb/s. At the same time,
a MEC server with four WBANs in the same UP are set in
the scenario. Each WBAN generates 8 TP tasks. We make a
comparison between TPOS and two other processing modes,
all local mode and all offload mode. The number of tasks
changes from 8 to 40 in a singleWBAN. Since the TPOS con-
siders both the characteristics of tasks and WBANs, we can

clearly observe that the offload decision made by the TPOS
algorithm has great advantages compared with the other two
processing modes. Here we calculate the average processing
delay of each task, total energy consumption and utility of
a WBAN. The values of these performance are in positive
growth with the increasing number of tasks. The TPOS could
save at least 20% energy when the tasks more than 32 of
one WBAN. Moreover, the utility of the TPOS is the highest
among the three computing resource allocation schemes no
matter how many tasks in a WBAN. Even the whole network
has more than 300 tasks, TPOS can guarantee the tasks be
processed in low delay, low energy consumption and high
utility. These advantages make the TPOS more applicable for
health monitoring.

VII. CONCLUSIONS
In this paper, we have proposed a Two-Stage Potential
Game based Computation Offloading Strategy (TPOS) for
WBANs with considering the task priorities and user prior-
ities. We divided the game space into two stages to solve
the multi-user game problem. At the first stage, tasks with
different priorities in WBANs obtained their offloading deci-
sions according to their utility function and penalty func-
tion. At the second stage, MEC server allocates computing
resources to offloaded tasks through the potential game. Eval-
uation results showed the TPOS algorithm can meet the need
of low delay and low energy consumption even in heavy
tasks and dense employed WBANs scenario. In this paper,
the movements of different WBANs have not been consid-
ered. As the direction of our future work, we will devote
attention to the problems of the selection of MEC server and
the computing resource allocation for mobile WBANs.
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