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ABSTRACT This paper presents an Unscented Kalman Filter (UKF)-based method to achieve high-
precision motion estimation of cable-driven forceps for a robot-assisted surgical system. We analyze the
operational/working principle of revolute joints of a 3-degree-of-freedom (3-DOF) cable-driven surgical
manipulator. Then a gripper jaw is selected as a representative joint, which is actuated by a single-motor
cable-driven mechanism with a reset spring. The corresponding system dynamics comprehend the mass,
elasticity, damping, and friction of steel cables. By using the displacement and velocity of reset cable and
the rotation angle of motor as observations, the motion estimation model based on UKF is derived. The
estimation accuracy is verified experimentally, with the errors of absolute and root-mean-square (RMS)
of less than 0.5 deg and 0.2 deg respectively. By comparisons with the least square methods (LSMs), the
installation strategy of only one displacement sensor on the reset cable is determined, which is conducive to
further refinements of the mechanism. Furthermore, the external force loading experiments are performed,
with the RMS estimation error of less than 0.5 deg for the external force of no more than 250 g applied on
the tip of the gripper jaw. These experimental results validate the motion estimation accuracy of cable-driven
forceps, without requiring sensors on the end joints or slender tool shaft of surgical instruments.

INDEX TERMS Robot-assisted surgical system, cable-driven surgical forceps, motion estimation,
UKF-based method, external force loading.

I. INTRODUCTION
Robot-assisted minimally invasive surgery which features
less pain, shortened hospital time, improved postoperative
recovery, and reduced risk of infection and surgeon’s fatigue
when compared to the traditional open surgery, has received
considerable attention and developed rapidly in last two
decades [1], [2]. To avoid additional injury to patients
and improve the safety, surgical instruments should have
a small dimension. Furthermore, the control accuracy of
both the position and force acting on the patient’s tissues
or organs should be sufficiently high. Fortunately, the cable-
driven mechanism has its distinct advantages in simplify-
ing the structure and reducing the size of the instrument.

The associate editor coordinating the review of this manuscript and
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Meanwhile, it can separate motors and end effectors, which
is beneficial to reduce the weight the terminal mechanism
in the patient [3], [4]. Moreover, the flexible cables can
effectively achieve a broad motion range and high flexibility
of end joints. The high tension of cables enables it possible to
possess no mechanical transmission clearance [5], [6]. These
advantages make the cable-driven technology widely used in
surgical instruments.

However, for cable-driven surgical instruments, current
commercialized sensors are not applicable for installations
at the end joints because of the strictly limited size. High-
precision control of end effectors is challenging without any
sensory feedback information. Cable-driven surgical instru-
ments have a standard way of open-loop control based on
the kinematics [7]–[9], and the control accuracy of their
end effectors has a significant dependence on the system
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modeling Differently, a neural network in [10] was developed
to acquire the inverse dynamics of a pneumatic servo system
as a feedforward controller to control surgical instruments,
and then to further estimate external forces on the tip of
forceps [11]. Although the position accuracy is limited by
friction caused by wire ropes the consistency of master-slave
control is well demonstrated. An image-based soft robotic
control [12] has a significant error for a long time before
convergence Additionally, in [13], [14], the compensations
about the backlash of the wire ropes driving pitching and
distal rolling joints were performed and then applied to
the motor control Nevertheless, the actual results are still
accompanied by the maximum angular errors of about 2.0
and 4.5 deg respectively Similarly, the observers based on a
symmetric backlash hysteresis model were proposed in [15]
in a system feedback controller. Based on this, the absolute
error of system position control can be reduced to less than
3.3 deg With the measurements of potentiometers as system
feedback, a computer-based position controller was designed
in [16], which enabled repeatability of less than 1.0 deg for
rigid-linkage mechanisms. In addition, some surgical forceps
driven by pneumatic cylinders were also developed [17]–[19],
whose position estimation and control were performed based
on the pressure change of pneumatic cylinders. Although the
feedback controller established in the drive unit [20]–[23]
could realize the closed-loop motion control, the position
transmission loss caused by the long distance between the
drive unit and the end joints is still a severe fact that causes a
significant error.

Different from the above approaches, a linear parameter-
varying model to identify the nonlinear motion of a finger
joint was developed in [24]. Besides, in [25], a joint angle
estimator was also designed for cable-driven surgical forceps.
However, the linear identification model has limitations in
the presentation of the nonlinear characteristics of cable-
driven systems. In order to approximate the system non-
linearity, the Unscented Kalman Filter (UKF) method was
adopted to explore the motion estimation of cable-driven end
joints [26], [27], and further implemented the motion control
and external forces estimation [28], [29]. These studies have
revealed that the joint motion estimation is critical for the
high-precision motion control of surgical instruments when
there are no sensors installed on the end joints or slender tool
shaft. However, the nonlinearity of cables has always been
a difficulty in improving the motion estimation accuracy for
these cable-driven systems.

We present a driving mechanism scheme of cable-driven
surgical forceps, where each end joint is driven only by a
motor and a reset spring. The main contributions can be
summarized as follows:
1) By fusing a nonlinear error compensation model

into the UKF algorithm, the motion estimation
model of cable-driven forceps is derived, where
only the displacement and velocity of reset cable
and the rotation angle of the motor are utilized as
observations.

2) The estimation experiments and the comparisons with
the least square methods (LSMs) validate the improved
accuracy of the UKF method for loaded gripper jaw.

3) The installation strategy of only a displacement sen-
sor on the reset cable is further determined, which
effectively simplifies the mechanism. Additionally, this
estimation method can get rid of the dependence on
sensors on the end joints or slender tool shaft of surgical
instruments, which is desirable in actual surgeries.

The rest of this paper is organized as follows. In Section II,
the principle of a classic 3-DOF cable-driven surgical instru-
ment is analyzed, and a driving mechanism scheme with
a gripper jaw is described. Section III presents the com-
plete dynamics modeling of the cable-driven system and the
motion estimation modeling based on UKF. In Section IV, the
motion estimation experiments are performed, and the com-
parisons with LSMs are carried out. Finally, the conclusions
and future work are followed in Section V.

II. DRIVING MECHANISM SCHEME FOR CABLE-DRIVEN
SURGICAL INSTRUMENTS
A. OPERATIONAL PRINCIPLE
The robot-assisted surgical system is a highly integrated
master-slave robot system, which mainly includes surgeon
master control system, mechanical arm system, master-slave
control console, and imaging system [30]. As shown in Fig. 1,
a mechanical arm is furnished with a 3-DOF cable-driven
manipulator The instrument includes a drive unit, a slender
tool shaft, and end joints. The movement of end joints mainly
focuses on pitching, yawing, and gripping. The slender tool
shaft is mainly responsible for the disturbance-free trans-
mission of flexible cables. The drive unit can be regarded
as a mixed system, integrating servo motors and transmis-
sion mechanisms. The operational principle of the 3-DOF
manipulator is shown in Fig. 2. Each revolute joint is driven

FIGURE 1. An in-house surgical robotic arm. (a) Mechanical arm.
(b) 3-DOF surgical instrument (c) End joint mechanism.
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FIGURE 2. The operational principle of a 3-DOF cable-driven surgical
instrument.

by two cables connected to a servo motor in the drive unit.
In general, the end joints are assembled compactly without
any interference between actuation cables due to the routing
approach. Moreover, the cable tension can prevent mechani-
cal clearance between the joints that often occurs in the rod-
driven mechanism. Consequently, if the kinematic coupling
between end joints is not considered, the motion of each joint
is independent and works on the same operational principle.
In order to simplify mechanism analysis and avoid redundant
descriptions, a gripper jaw is used as a representative end joint
to evaluate the high-precision motion estimation method.

B. CABLE-DRIVEN MECHANISM WITH A GRIPPER JAW
In practice, installing sensors on each end joint or tool shaft
of surgical instruments is challenging due to size constraints.
The most feasible approach is to arrange sensors in the
drive unit with relatively large physical space. Generally,
there are three installation strategies of sensors on flexible
cables, as shown in Fig. 3(a). Strategy-1 presents a motion
control of surgical forceps that relies primarily on the motor
information without any additional sensors installed on the
cables. This strategy is usually accompanied by much motion
loss, especially with the transmission mechanism and long
cables. Therefore, for most existing electric-driven surgical
instruments, this approach has been rarely used Strategy-2
mainly presents that only one sensor is arranged on the drive
side or the reset side between the transmission mechanism
and the revolute joint. In contrast, Strategy-3 is to install
sensors on both sides to collect more motion information.
In order to determine which of the Strategy-2 and Strategy-3
is more practical, further verification should be carried out.
Then, a sample cable-driven mechanism with a gripper jaw
previously proposed in [31] is employed, which is consistent
with the Strategy-3.

As shown in Fig. 3(b), a gripper jaw is driven only by
a motor and a reset spring, which can reduce the space
occupancy in the drive unit compared with the dual-motor
driving mode Moreover, it avoids the assembly difficulties
and insufficient tension caused by connecting two cables on
the same motor. In order to prevent relative sliding, a long
cable is divided into a driving cable and a reset cable by a

small pinch with the gripper jaw attached to it. A non-contact
rotary encoder is linked to the shaft of the gripper jaw which
is employed to measure its actual motion. It is worth noting
that the rotary encoder is only used in the initial calibration of
the cable-driven system and the motion estimation modeling
because it does not exist in the actual surgical instruments.

Furthermore, it is only used as an actual reference in the
verification experiments, which can also be replaced by other
measuring devices. The optical encoders are placed at the
ends of the cables close to the transmission mechanisms to
measure dynamic information of cables. A winding wheel is
machined as the transmission mechanism on the drive side.
Besides the limit switch provides the origin position and
safety protection.

III. DYNAMICS MODELING
A. MODELING OF THE CABLE-DRIVEN SYSTEM
To describe the characteristics of the cable-driven system, the
complete dynamics modeling is carried out in this section
after containing the mass, elasticity, damping, and friction of
the cables. The simplified schematic diagram of the system
with a single grasper is shown in Fig. 4. The flexible steel
cable is approximately simplified into a mass-spring-damper
model. The displacements of the driving and reset cables are
measured by the optical encoders 1 and 2, respectively. Since
the mass of the gripper jaw is small and the rotating shaft is
perpendicular to the ground, its gravity does not affect the
system, which can be ignored herein.

In the initial position, the cables are in tension and the
rotation angle θ of the gripper jaw is set to 0 deg. The
tension of the driving and reset cables is equal to the initial
pretension Fpre, which can be written as:

Fwd0 = Fwr0 = Fpre (1)

When the gripper jaw is driven to rotate forward at any
angle θ 6= 0, the output angle of the motor shaft is expressed:

ϕout = ϕm/zi, (2)

where zi and ϕm denote the reduction ratio and input angle of
the motor, respectively.

The cable in the transmission mechanism is so short that it
can be regarded as rigid transmission. Then the displacement
of optical encoder 1 can be written as follows:

x1 = ϕoutR, (3)

where R denotes the effective radius of the winding wheel.
By simplifying the cable as a mass-spring-damper model,

the tension of the driving cable is written as:

Fwd=mdc (ẍ1 − ÿ1)+Bd (ẋ1−ẏ1)+ Kd (x1−y1)+Fwd0,

(4)

where mdc, Bd , and Kd denote the equivalent mass, damping,
and coefficient of elasticity of the driving cable, respectively.
ẋ1 and ẍ1 are the velocity and acceleration of the optical
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FIGURE 3. Cable-driven mechanism with a gripper jaw. (a) Three installation strategies of sensors on flexible steel cables.
(b) Three-dimensional model presentation of prototype design.

FIGURE 4. Simplified schematic diagram of the cable-driven system.

encoder 1, respectively. y1, ẏ1, and ÿ1 represent the displace-
ment, velocity, and acceleration of the front end of the driving
cable fixed on the gripper jaw, respectively.

Similarly, the tension of the reset cable is written as:

Fwr=mrc (ÿ2−ẍ2)+Br (ẏ2−ẋ2)+Kr (y2−x2)+Fwr0, (5)

where mrc, Br , and Kr denote the equivalent mass, damping,
and coefficient of elasticity of the reset cable, respectively.
x2, ẋ2, and ẍ2 are the displacement, velocity, and acceleration
of the optical encoder 2, respectively. y2, ẏ2, and ÿ2 represent
the displacement, velocity, and acceleration of the front end
of the reset cable fixed on the gripper jaw, respectively.

By combining the reset spring and the optical encoder 2,
the expression is derived as follows:{

Fwr = mg2ẍ2 + Kspx2 + Ffr + Fwr0
Ffr = frvẋ2 + frcsign (ẋ2),

(6)

where mg2, Ksp, and Ffr denote the mass of the optical
encoder 2, the coefficient of elasticity of the reset spring,
and the friction from the slide rail and guide pulleys, respec-
tively. To facilitate the analysis we assume that the friction
generated herein is the combination of Coulomb friction and
viscous friction, which is the same as the friction model
below frv and frc denote the coefficients of viscous friction
and Coulomb friction, respectively.

For the whole motion range, the winding length of cables
around the gripper jaw is so short that its tiny deformation

can be ignored. Therefore, the front-end displacements of the
two cables are considered equal.

y1 = y2 = rθ, (7)

where r is the effective rotation radius.
When the gripper jaw is separated as a module, the

dynamic model can be obtained:
τe = (Fwd − Fwr ) r
τe = Jeθ̈ + τef
τef = fevθ̇ + fecsign

(
θ̇
)
,

(8)

where Je, θ̇ , θ̈ , τe, and τef denote the equivalent moment
of inertia, angular velocity, acceleration, driving torque, and
friction torque of the gripper jaw, respectively. fev and fec
are the coefficients of viscous and Coulomb frictions,
respectively.

B. MOTION ESTIMATION MODELING BASE ON UKF
The filtering theory is a method of estimating the system
states by measuring observable signals and using statistical
methods, according to a specific criterion [32]. The UKF is an
extension of Kalman filtering algorithms, which performs a
nonlinear estimation of a posterior probability density of sys-
tem states [33]. Because of the nonlinearity and elasticity of
long steel cables, the cable-driven surgical instrument should
be considered as a nonlinear system. Herein, a nonlinear
motion estimation model is established by fusing an error
compensation model into the UKF algorithm to improve the
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motion accuracy of forceps further. It features that only the
displacement and velocity of the reset cable measured by
the optical encoder 2 are taken as observations except for
the rotation angle of the motor.

Because the optical encoders and the gripper jaw are
mounted on the same cable throughout the whole system,
their dynamic motion information are interrelated. Therefore,
the variables θ , θ̇ , and θ̈ can be re-expressed by x2, ẋ2, ẍ2, and
sign(ẋ2) from the optical encoder 2 Then, (1), (4), (5) and (7)
are substituted into (8) to get the expression as:

θ =
Kd

(Kr+Kd ) r
x1+

Bd
(Kr+Kd ) r

ẋ1+
mdc

(Kr+Kd ) r
ẍ1

+
Kr

(Kr+Kd ) r
x2+

Br
(Kr+Kd ) r

ẋ2+
mrc

(Kr+Kd ) r
ẍ2

+ θ̃s (x2, ẋ2, ẍ2)

θ̃s (x2, ẋ2, ẍ2) = −
(
Bd+Br
Kr+Kd

+
fev

(Kr+ Kd ) r2

)
θ̇

−

(
mrc+mdc
Kr+Kd

+
Je

(Kr+Kd ) r2

)
θ̈

−
fec

(Kr+Kd ) r2
sign

(
θ̇
)

(9)

Then, we combine (2), (3), and (9) to obtain another
derivation:

θ̈ = −
(mdc + mrc) r2

Je
θ̈ −

(Bd + Br ) r2

Je
θ̇ −

(Kd + Kr ) r2

Je
θ

+
mrcr
Je

ẍ2 +
Brr
Je

ẋ2 +
Krr
Je

x2 +
mdcRr
ziJe

ϕ̈m +
BdRr
ziJe

ϕ̇m

+
KdRr
ziJe

ϕm −
τef

Je
(10)

Similarly, (6) and (7) are substituted into (5) to get the
following relation:

ẍ2 =
mrcr

mg2 + mrc
θ̈ +

Brr
mg2 + mrc

θ̇ −
Br

mg2 + mrc
ẋ2

−

(
Ksp + Kr

)
mg2 + mrc

x2 +
Krr

mg2 + mrc
θ −

Ffr
mg2 + mrc

(11)

In the actual system, the mass, damping, and friction of
cables in (10) and (11) are far less than the moment of
inertia Je and the mass of the optical encoder mg2. Therefore,
these variables have a much smaller proportion in the whole
model than other variables, especially for θ and x2. Mean-
while, these values are not available by measuring devices.
To simplify the model analysis, these variables are not con-
sidered temporarily in the initial estimation modeling. Then,
the simplified model can be obtained as follows:

θ̈ = −
(Kr + Kd ) r2

Je
θ +

Krr
Je

x2 +
KdRr
ziJe

ϕm

ẍ2 =
Krr
mg2

θ −

(
Ksp + Kr

)
mg2

x2

x1 =
R
zi
ϕm

(12)

Then, the formula (12) can be expressed in the form of
state-space equation:{

ẋ = Ax+ Bu
y = Cx,

(13)

where x = [ θ θ̇ x2 ẋ2 ]T denotes the state vector of the
continuous-time system. u = ϕm and y = [ x2 ẋ2 ]T

denote the input matrix and output measurement matrix,
respectively.

In (13), to take the displacement and velocity of the reset
cable as the variables to be observed, the coefficient matrices
are derived as:

A =



0 1 0 0

−
(Kr + Kd ) r2

Je
0

Krr
Je

0

0 0 0 1
Krr
mg2

0 −

(
Ksp + Kr

)
mg2

0

 ,

B =


0

KdRr
ziJe
0
0

 , and C =
[
0 0 1 0
0 0 0 1

]
,

where each parameter can be known from the manual data or
theoretical design.

With using the inverse Lagrange transformation, (13) is
discretized as follows:{

xk = f(xk−1,uk−1, wk−1)
zk = h(xk , vk )

(14)

where f and h denote the nonlinear state equation function
and observation equation function, respectively. wk and vk
denote the process noise with a covariance matrix Qk and the
observation noise with a covariance matrix Rk , respectively.
To define the mean and covariance of xk−1 are x̄k−1 and

Pk−1 respectively, for k ∈ {1, · · · ,∞}, the sigma vector set
consisting of sampling points can be obtained as:

χk−1 =

[
x̄k−1, x̄k−1 −

[√
(n+ λ)Pk−1

]
i
,

x̄k−1 +
[√

(n+ λ)Pk−1
]
i

]
, (15)

where
[√

(n+ λ)Pk−1
]
i
represents the column i of the matrix√

(n+ λ)Pk−1, n = 4, i = {1, · · · , n}, and λ is an initial
setting.

Using (14), the nonlinear transformation of sigma vectors
in (15) is performed. Then, a new sigma vector set can be
obtained as follows:

χk,k−1 = f(χk−1,uk−1, wk−1) (16)

By weighting the transformed sigma vectors from (16), the
matrices of state and covariance for the first-step prediction
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can be given as:
x̂k,k−1=

2n∑
j=0

W (m)
j ·χ

j+1
k,k−1

Pk,k−1=
2n∑
j=0

W (c)
j ·(χ

j+1
k,k−1−x̂k,k−1)(χ

j+1
k,k−1−x̂k,k−1)

T
+Qk ,

(17)

where χ
j+1
k,k−1 is the column j+ 1 of χk,k−1, j ∈ {0, · · · , 2n},

same as below. W (m)
j and W (c)

j denote the weights of mean
and covariance, respectively.

To reduce the interference and improve the nonlinear esti-
mation, the first-step predictions from (17) are subjected to
the unscented transformation again, and then the second-
generation sigma set is obtained:

χ
(z)
k,k−1 =

[
x̂k,k−1, x̂k,k−1 −

[√
(n+ λ)Pk,k−1

]
i ,

x̂k,k−1 +
[√

(n+ λ)Pk,k−1
]
i

]
(18)

Then, the sigma vectors from (18) are substituted into the
observation equation in (14) for nonlinear transformation,
and the predicted observations are obtained:

Zk,k−1 = h(χ (z)
k,k−1, vk ) (19)

Besides, by weighted summations, the mean and covari-
ance of the predicted observations are also obtained as
follows:
ẑk,k−1=

2n∑
j=0

W (m)
j · Z

j+1
k,k−1

P(zk zk )k,k−1=

2n∑
j=0

W (c)
j ·(Z

j+1
k,k−1−ẑk,k−1)(Z

j+1
k,k−1−ẑk,k−1)

T
+Rk

(20)

The covariance between the predicted state and the pre-
dicted observation can be calculated:

P(xk zk )k,k−1 =

2n∑
j=0

W (c)
j · (χ

(z)j+1
k,k−1 − x̂k,k−1)( Z

j+1
k,k−1 − ẑk,k−1)

T

(21)

Based on (20) and (21), the filter gain matrix is obtained:

Kk = P(xk zk )k,k−1P
(zk zk )−1
k,k−1 (22)

Finally, the system state and corresponding covariance in
the UKF are estimated as:{

x̂k = x̂k,k−1 + Kk (zk − ẑk,k−1)+ x̂1
Pk = Pk,k−1 − KkP

(zk zk )
k,k−1K

T
k

(23)

where x̂1 is an initial constant compensation.
It follows (23) that the motion estimation error can be

obtained as:

θ̂E = θ̂U − θM , (24)

where θ̂U denotes the motion estimation from (23), and θM
denotes the actual measurement of the rotary encoder.

Generally, for each new system, the initial calibration with
using sensors is an essential step in the precise control of
the system. In order to compensate for the estimation error
caused by neglecting the mass, damping, and friction of the
cable in (12) and further approximate the system nonlinearity,
it is necessary to model the estimation error for (24). Because
the polynomial fitting is a standard and applicable method
for nonlinear modeling [34], the polynomial fitting modeling
is carried out by using the methods of Quasi-Newton and
universal global optimization. In the cable-driven system, the
actual rotation of the gripper jaw is closely related to the dis-
placement of the driving and reset cables. Therefore, the mea-
sured motor angle and the displacement of optical encoder
2 are taken as the known variables to perform the model
fitting, and then the error compensation model is obtained
as follows:

θ̂E =
(p1 + p3ϕm + p5x2 + p7ϕ2m + p9x

2
2 + p11ϕmx2)

(1+ p2ϕm + p4x2 + p6ϕ2m + p8x
2
2 + p10ϕ

2
mx2)

,

(25)

where {p1, p2, · · · , p11} are the fitting coefficients.
Then, the error compensation model (25) is introduced

into (23) to obtain a complete motion estimation model.
Furthermore, the error model as a correction for the estimated
state in each iteration of UKF can improve the prediction in
the next iteration, and then the new estimated state is obtained
as follows:{

x̂k = x̂k,k−1 + Kk (zk − ẑk,k−1)+ x̂1 + θ̂EG
Pk = Pk,k−1 − KkP

(zk zk )
k,k−1K

T
k ,

(26)

where G =
[
1, 0, 0, 0

]T.
IV. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL SETUP
According to the model in Fig. 3(b), the experimental setup
is built and illustrated in Fig. 5. The DC servo motor
(RE 25,Maxonmotor Inc.) equippedwith amagnetic encoder
(resolution of 1000 counts per revolution), and the driver

FIGURE 5. Experimental setup for the cable-driven prototype.
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(ACJ-055-18, Copley Controls Inc.) are used to control the
cable-driven system via CAN board (CAN-PCI-02, Copley
Controls Inc.). Two optical encoders (Renishaw Inc.), each
consisting of a grating scale (RGS-40) and a reading head
(RH100 × 30.05A, resolution 0.001 mm), are installed on
two linear slide rails (SSEBZ8L-85, Misumi Group Inc.)
for providing dynamic information of cables to the system.
A reset spring (KSSC, Misumi Group Inc.) produces the
restoring force and controls the stiffness of the system. The
flexible steel cable (SE000319, diameter 0.45 mm, weight
0.81 g/m, Carl Stahl TECHNOCABLES Inc.) is used to drive
the gripper jaw. Furthermore, in this experimental system, the
gripper jaw is approximately 0.65 m from the motor. A non-
contact rotary encoder (RM08ID0012B02L2 G00, Renishaw
Inc.) is installed above the gripper jaw to measure its actual
motion, serving as a reference. Besides, other main system
parameters are summarized in Table 1.

TABLE 1. Parameters for the experimental setup.

B. EXPERIMENTS FOR THE UKF METHOD
According to the Fourier transform principle, it is gener-
ally known that the actual operation trajectory of surgical
forceps can be approximated by a linear combination of
trigonometric functions. Therefore, two sinusoidal trajecto-
ries are employed herein for motion estimation experiments
In order to calibrate the system initially and obtain the error
compensation model, the desired trajectory (27) is first used
for motion estimation of the gripper jaw. The experimen-
tal results are shown in Fig. 6(a) and 6(b), and the errors
of maximum, minimum, and root-mean-square (RMS) are
approximately 0.27, −0.20, and 0.06 deg, respectively. After
the error compensation model is determined, the estimation
accuracy of the UKF method is experimentally verified by
performing another desired trajectory (28).

1) First trajectory: θref 1 = −
50π
180

sin(0.3t) (27)

2) Second trajectory:

θref 2 = −
30π
180

sin(0.3t)−
15π
180

sin(0.5t)

−
10π
180

sin(0.2t)−
10π
180

sin(0.2t)−
10π
180

sin(t),

(28)

where t denotes the system runtime.
As shown in Fig. 6(c) and 6(d), the estimated errors

of maximum, minimum, and RMS are approximately 0.39,
−0.44, and 0.12 deg, respectively. The cause resulting in
more significant errors than that of the first trajectory is that
the second trajectory requires the gripper jaw to change the
rotation direction more frequently at a faster speed. How-
ever, the feasibility of the motion estimation model using the

FIGURE 6. Experimental results using the UKF method. (a) and (b) Motion
estimation results for the trajectory (27). (c) and (d) Verification results
using the trajectory (28).

UKF method has been verified. Overall, the motion estima-
tion errors of absolute and RMS are less than 0.5 and 0.2
deg, respectively. The position with significant error mainly
occurs during the process of rapidly changing the rotation
direction for the gripper jaw, which can be avoided in actual
surgery due to stable and precise operations. In addition, the
improvement of fabricating and assembly of mechanical parts
can also contribute to the rapid response of the system.

C. COMPARISONS WITH THE LSMs
Among many motion estimation methods, the LSM is widely
used because of its simplicity and strong practicality and can
achieve satisfactory estimation performance [31]. Therefore,
it is often used as a comparison object to evaluate the pro-
posed method further. Here, comparisons of the proposed
method with LSMs in motion estimation performance for
cable-driven surgical forceps are conducted. The linear iden-
tification for the desired trajectory (27) of the gripper jaw is
first carried out by using the conventional LSM. From (9), the
identification model is expressed in a matrix as:
Ys=θs
Ws=

[
x1 ẋ1 ẍ1 x2 ẋ2 ẍ2 sign (ẋ2)

]
χ s=

[
χs21 χs22 χs23 χs24 χs25 χs26 χs27

]T
,

(29)
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FIGURE 7. Estimation errors for the verification trajectory (28).
(a) By using the LSM. (b) By using the compensated LSM.

TABLE 2. Comparison of three estimation methods.

where θs denotes the actual measurement of the gripper jaw.
Ws is an observation matrix, and χ s is an identification
coefficient matrix.

Since the motion estimation using the LSM is a linear iden-
tification process, the nonlinear characteristics of the cable-
driven system cannot be presented. After (29) is performed,
the identification error is modeled as an approximation to
compensate the system nonlinearity, and then the motion
estimation model of compensated LSM can be obtained:

θ̂s = Wsχ s + θ̂e, (30)

where θ̂e =
(q1+q3ϕm+q5x2+q7ϕ2m+q9x

2
2+q11ϕmx2)

(1+q2ϕm+q4x2+q6ϕ2m+q8x
2
2+q10ϕ

2
mx2)

is an error

compensation model.
The experimental results of the second trajectory (28) are

depicted in Fig. 7. Fig. 7(a) exhibits the estimation results
using the LSM, with the errors of maximum, minimum, and
RMS of 1.45, −1.08, and 0.57 deg, respectively. Moreover,
the maximum, minimum, and RMS of estimation errors using
the compensated LSM are 0.84,−0.79, and 0.26 deg, respec-
tively, as shown in Fig. 7(b). These experimental results show
that the error compensation model can be a valid approxima-
tion approach to compensate for the system’s nonlinearity.
The experimental results of three estimation methods are
also presented in Table 2. It is evident that the estimation
performance using the UKF method is better than that of the
LSMs. Besides, the error amplitude is reduced by approxi-
mately 49% compared with the compensated LSM, and the
RMS error is also improved by about 54%. Overall, these

results show that the UKF method can significantly improve
the accuracy of motion estimation for cable-driven surgical
forceps.

Although the error compensation can help the LSM reduce
the estimation error, it is just their simple arithmetic addition.
After compensation, the results at each moment does not
produce mutually beneficial effects. The error of the com-
pensation model is the error of the compensated LSM. Differ-
ently, the error compensationmodel in theUKF algorithm can
improve the estimated and predicted states, which are used in
the next iteration. Furthermore, the centralized distribution of
sampling points and the filter gains in each iteration can also
be automatically optimized and updated to obtain new reli-
able state estimations. However, the nonlinear transformation
accuracy of sigma vectors is partially weakened, restricting
the estimation accuracy. Therefore, enriching the nonlinear-
ity into the system state equation to improve the modeling
accuracy will be extended in the future.

In addition, compared with the compensated LSM requir-
ing dynamic information of two displacement sensors, only
the displacement of reset cable is used in the UKF estimation
model. Therefore, it can be concluded that the Strategy-2 of
arranging the displacement sensor only on the reset cable
is more practical for the motion estimation of cable-driven
forceps. Furthermore, the Strategy-2 can reduce the load and
friction on the motor side in the driving unit compared with
the Strategy-3, which is desirable for mechanism design.

D. MOTION ESTIMATION WITH EXTERNAL FORCES
ON THE GRIPPER JAW
In order to further verify the estimation accuracy of the UKF
method in the condition that external force is applied on the
tip of the gripper jaw, some force loading experiments are
performed. As shown in Fig. 8, the gripper jaw is driven
at a constant speed of 1.875 deg/s from the initial position
θ = 0 deg to θ = 30 deg in each experiment. When the
movement stops, the weights of 30, 50, 100, 200, and 250 g
are manually loaded on the tip of the gripper jaw by using
a fishing line, perpendicular to the tooth surface. During the
period, the motion estimation of the gripper jaw is conducted
by using the UKF method. Meanwhile, the actual rotation is

FIGURE 8. External force loading with some weights on the tip of the
gripper jaw.
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FIGURE 9. Experimental results for loading different weights. (a) Estimated and measured angles. (b) Estimation errors.

TABLE 3. Summary of estimation errors for loading weights.

also recorded by the rotary encoder. The whole experimental
process can be roughly divided into four phases. Phase I is
a uniform motion without external forces on the gripper jaw.
Phases II and IV are the motion stop phase before loading and
the stable phase after loading, respectively. The experimental
results are shown in Fig. 9, where different colors denote
different cases, solid lines for measured results, and dotted
lines for estimated results. The result curves for different
loading weights are shifted appropriately in Fig. 9(a) for a
clear distinction, which has been indicated in the legend. It is
evident in Fig. 9(a) that the change in the rotation angle of the
gripper jaw before and after loading is minimal. Moreover,
phase III, with severe fluctuations, is a loading process.

As shown in Fig. 9(b), the error for phase III fluctuates
the most seriously, which is mainly caused by the significant
disturbance of manual loading. However, this phase is not the
focus of the experiment. For phase I the errors of absolute
and RMS are less than 0.5 and 0.2 deg, respectively. More-
over, the RMS error for phase II is also less than 0.2 deg.
These experimental results have further validated the motion
estimation performance of the UKF method. From phase IV,
it can be concluded that the external force below 50 g hardly
enforces the gripper jaw to rotate. Although the RMS error
for phase IV is a little larger than that of phases I and II as the
external force increases, it can still be no more than 0.5 deg.

The comparison among different phases is shown in Table 3.
In practice, when the gripper jaw is loaded, the cables are
forced to displace and elastically deform. Since the small
elastic deformation is not accurately measured by the dis-
placement sensor in the drive unit, a significant estimation
error is caused. Therefore, an increase in cable tension will
improve the motion estimation accuracy, even if an external
force is applied to the gripper jaw.

V. CONCLUSION AND FUTURE WORK
In this paper, a motion estimation method based on UKF
is presented to achieve high-precision motion estimation of
cable-driven forceps in a robot-assisted surgical system. For
this purpose, a cable-drivenmechanism scheme is introduced,
which is compact and practical to avoid cable looseness and
mechanical clearance. By simplifying the flexible steel cable
into a mass-spring-damper model, the system dynamics is
modeled. After that, the motion estimation model based on
UKF is obtained and validated by some experiments, with
the results that the absolute and RMS estimation errors are
less than 0.5 and 0.2 deg, respectively. By comparing with
the LSMs, it can be concluded that the arrangement strategy
of a displacement sensor only on the reset cable is practical.
Besides, some estimation experiments in the case that exter-
nal force is applied to the gripper jaw, are also performed.
These experimental results have further verified that the UKF
method can achieve high-precision motion estimation for
cable-driven forceps without requiring sensors on the end
joints or tool shaft of surgical instruments.

Future work includes the improvement of modeling accu-
racy for the cable-driven system and themotion estimation for
dynamic loading. Furthermore, the closed-loop control and
the indirect estimation of external forces for a 3-DOF surgical
instrument based on the UKF method will also be extended.

REFERENCES
[1] D. H. Lee, U. Kim, T. Gulrez, W. J. Yoon, B. Hannaford, and H. R. Choi,

‘‘A laparoscopic grasping tool with force sensing capability,’’ IEEE/ASME
Trans. Mechatronics, vol. 21, no. 1, pp. 130–141, Feb. 2016.

94920 VOLUME 8, 2020



Y. Yan et al.: UKF-Based Motion Estimation of Cable-Driven Forceps for Robot-Assisted Surgical System

[2] L. Yu, Y. Yan, X. Yu, and Y. Xia, ‘‘Design and realization of forceps with
3-D force sensing capability for robot-assisted surgical system,’’ IEEE
Sensors J., vol. 18, no. 21, pp. 8924–8932, Nov. 2018.

[3] Y. Wang, S. Li, D. Wang, F. Ju, B. Chen, and H. Wu, ‘‘Adaptive time-
delay control for cable-driven manipulators with enhanced nonsingular
fast terminal sliding mode,’’ IEEE Trans. Ind. Electron., early access,
Feb. 26, 2020, doi: 10.1109/TIE.2020.2975473.

[4] Z. Wang, B. Zi, D. Wang, J. Qian, W. You, and L. Yu, ‘‘External force
self-sensing based on cable-tension disturbance observer for surgical robot
end-effector,’’ IEEE Sensors J., vol. 19, no. 13, pp. 5274–5284, Jul. 2019.

[5] Z. Li, L. Wu, H. Ren, and H. Yu, ‘‘Kinematic comparison of surgical
tendon-driven manipulators and concentric tube manipulators,’’ Mecha-
nism Mach. Theory, vol. 107, pp. 148–165, Jan. 2017.

[6] X. Xiao, H. Gao, C. Li, L. Qiu, K. S. Kumar, C. J. Cai, B. S. Bhola,
N. K. K. King, and H. Ren, ‘‘Portable body-attached positioning mecha-
nism toward robotic needle intervention,’’ IEEE/ASME Trans. Mechatron-
ics, vol. 25, no. 2, pp. 1105–1116, Apr. 2020.

[7] C. Li, X. Gu, X. Xiao, C. M. Lim, and H. Ren, ‘‘A robotic system with
multichannel flexible parallel manipulators for single port access surgery,’’
IEEE Trans. Ind. Informat., vol. 15, no. 3, pp. 1678–1687, Mar. 2019.

[8] M. B. Hong and Y.-H. Jo, ‘‘Design of a novel 4-DOF wrist-type surgi-
cal instrument with enhanced rigidity and dexterity,’’ IEEE/ASME Trans.
Mechatronics, vol. 19, no. 2, pp. 500–511, Apr. 2014.

[9] K. Li, B. Pan, F. Zhang, W. Gao, Y. Fu, and S. Wang, ‘‘A novel 4-DOF
surgical instrument with modular joints and 6-Axis force sensing capabil-
ity,’’ Int. J. Med. Robot. Comput. Assist. Surgery, vol. 13, no. 1, p. e1751,
Mar. 2017.

[10] K. Tadano and K. Kawashima, ‘‘Development of 4-DOFs forceps with
force sensing using pneumatic servo system,’’ in Proc. IEEE Int. Conf.
Robot. Autom., Orlando, FL, USA, May 2006, pp. 2250–2255.

[11] K. Tadano and K. Kawashima, ‘‘Development of a Master–Slave system
with force-sensing abilities using pneumatic actuators for laparoscopic
surgery,’’ Adv. Robot., vol. 24, no. 12, pp. 1763–1783, Jan. 2010.

[12] H. Wang, W. Chen, X. Yu, T. Deng, X. Wang, and R. Pfeifer, ‘‘Visual servo
control of cable-driven soft robotic manipulator,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Tokyo, Japan, Nov. 2013, pp. 57–62.

[13] K.-Y. Kim, H.-S. Song, S.-H. Park, J.-J. Lee, and Y.-S. Yoon, ‘‘Design
and evaluation of a teleoperated surgical manipulator with an additional
degree of freedom for laparoscopic surgery,’’ Adv. Robot., vol. 24, no. 12,
pp. 1695–1718, Jan. 2010.

[14] K.-Y. Kim, H.-S. Song, J.-W. Suh, and J.-J. Lee, ‘‘A novel surgical manip-
ulator with workspace-conversion ability for telesurgery,’’ IEEE/ASME
Trans. Mechatronics, vol. 18, no. 1, pp. 200–211, Feb. 2013.

[15] T. N. Do, T. Tjahjowidodo, M. W. S. Lau, T. Yamamoto, and S. J. Phee,
‘‘Hysteresis modeling and position control of tendon-sheath mechanism
in flexible endoscopic systems,’’ Mechatronics, vol. 24, no. 1, pp. 12–22,
Feb. 2014.

[16] H. Yamashita, A. Limura, E. Aoki, T. Suzuki, T. Nakazawa, E. Kobayashi,
M. Hashizume, I. Sakuma, and T. Dohi, ‘‘Development of endoscopic
forceps manipulator using multi-slider linkage mechanisms,’’ in Proc. 1st
Asian Symp. Comput.-Aided Surg., Ibaraki, Japan, Apr. 2005.

[17] H. Li, K. Kawashima, K. Tadano, S. Ganguly, and S. Nakano, ‘‘Achiev-
ing haptic perception in Forceps’ manipulator using pneumatic artificial
muscle,’’ IEEE/ASME Trans. Mechatronics, vol. 18, no. 1, pp. 74–85,
Feb. 2013.

[18] T. Kanno, D. Haraguchi, M. Yamamoto, K. Tadano, and K. Kawashima,
‘‘A forceps manipulator with flexible 4-DOF mechanism for laparoscopic
surgery,’’ IEEE/ASME Trans. Mechatronics, vol. 20, no. 3, pp. 1170–1178,
Jun. 2015.

[19] D. Haraguchi, T. Kanno, K. Tadano, and K. Kawashima, ‘‘A pneumatically
driven surgical manipulator with a flexible distal joint capable of force
sensing,’’ IEEE/ASME Trans. Mechatronics, vol. 20, no. 6, pp. 2950–2961,
Dec. 2015.

[20] S. B. Kesner and R. D. Howe, ‘‘Position control of motion compensation
cardiac catheters,’’ IEEE Trans. Robot., vol. 27, no. 6, pp. 1045–1055,
Dec. 2011.

[21] D. Sawada and R. Ozawa, ‘‘Joint control of tendon-driven mecha-
nisms with branching tendons,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
Saint Paul, MN, USA, May 2012, pp. 1501–1507.

[22] R. Xue, B. Ren, Z. Yan, and Z. Du, ‘‘A cable-pulley system modeling
based position compensation control for a laparoscope surgical robot,’’
Mechanism Mach. Theory, vol. 118, pp. 283–299, Dec. 2017.

[23] W. Xu, T. Liu, and Y. Li, ‘‘Kinematics, dynamics, and control of a cable-
driven hyper-redundant manipulator,’’ IEEE/ASME Trans. Mechatronics,
vol. 23, no. 4, pp. 1693–1704, Aug. 2018.

[24] B. Huard, M. Grossard, S. Moreau, and T. Poinot, ‘‘LPV modeling and
experimental identification of a new self-sensing finger joint,’’ in Proc.
18th World Congr. Int. Fed. Autom. Control, Milano, Italy, Aug. 2011,
pp. 999–1004.

[25] W. Wang, L. Yu, J. Yang, and Y. Yan, ‘‘Full closed-loop position control
of the surgical cable-driven micromanipulator based on joint angle estima-
tor,’’ Robot, vol. 40, no. 2, pp. 231–239, 2018.

[26] S. N. Kosari, S. Ramadurai, H. J. Chizeck, and B. Hannaford, ‘‘Control and
tension estimation of a cable driven mechanism under different tensions,’’
in Proc. ASME Int. Design Eng. Tech. Conf. Comput. Inf. Eng. Conf.,
Portland, OR, USA, Aug. 2013, Art. no. V06AT07A077.

[27] E. Naerum, H. H. I. King, and B. Hannaford, ‘‘Robustness of the unscented
Kalmanfilter for state and parameter estimation in an elastic transmission,’’
in Robotics: Science and Systems. Citeseer, 2009.

[28] M. Haghighipanah, Y. Li, M. Miyasaka, and B. Hannaford, ‘‘Improving
position precision of a servo-controlled elastic cable driven surgical robot
using unscented Kalman filter,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Hamburg, Germany, Sep. 2015, pp. 2030–2036.

[29] M. Haghighipanah, M. Miyasaka, Y. Li, and B. Hannaford, ‘‘Unscented
Kalman filter and 3D vision to improve cable driven surgical robot
joint angle estimation,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
Stockholm, Sweden, May 2016, pp. 4135–4142.

[30] D. B. Camarillo, T. M. Krummel, and J. K. Salisbury, ‘‘Robotic technology
in surgery: Past, present, and future,’’ Amer. J. Surgery, vol. 188, no. 4,
pp. 2–15, Oct. 2004.

[31] W. Wang, L. Yu, and J. Yang, ‘‘Linear parameter variant modeling and
parameter identification of a cable-driven micromanipulator for surgical
robot,’’ Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci., vol. 233, no. 5,
pp. 1828–1840, Mar. 2019.

[32] C. K. Chui and G. Chen, ‘‘Kalman filter: An elementary approach,’’
in Kalman Filtering: With Real-Time Applications. Cham, Switzerland:
Springer, 2017, pp. 19–31.

[33] R. Kandepu, B. Foss, and L. Imsland, ‘‘Applying the unscented Kalman
filter for nonlinear state estimation,’’ J. Process Control, vol. 18, nos. 7–8,
pp. 753–768, Aug./Sep. 2008.

[34] L. Ma, P. Bazzoli, P. M. Sammons, R. G. Landers, and D. A. Bristow,
‘‘Modeling and calibration of high-order joint-dependent kinematic
errors for industrial robots,’’ Robot. Comput.-Integr. Manuf., vol. 50,
pp. 153–167, Apr. 2018.

YUSHENG YAN received the B.S. and M.S.
degrees in mechanical engineering from Harbin
Engineering University, Harbin, China, in 2014
and 2016, respectively, where he is currently pur-
suing the Ph.D. degree in mechanical engineering.

His research interests include medical robotics,
mechatronics and robotics, kinematics and dynam-
ics, force sensing, and cable-driven devices.

LINGTAO YU received the B.S., M.S., and Ph.D.
degrees in mechanical and electronics engineering
from the Harbin Institute of Technology, Harbin,
China, in 2000, 2002, and 2007, respectively.

From 2014 to 2015, he was a Visiting Scholar
with the National University of Singapore,
Singapore. He is currently an Associate Profes-
sor with the College of Mechanical and Electri-
cal Engineering, Harbin Engineering University,
Harbin. His research interests include medical

robotics, artificial intelligence and robotics, parallel robots, machine learn-
ing, machine vision, and biomechanics.

VOLUME 8, 2020 94921

http://dx.doi.org/10.1109/TIE.2020.2975473


Y. Yan et al.: UKF-Based Motion Estimation of Cable-Driven Forceps for Robot-Assisted Surgical System

CHANGSHENG LI (Member, IEEE) received the
B.S. and M.S. degrees in mechanical engineer-
ing from Harbin Engineering University, Harbin,
China, in 2008 and 2011, respectively, and the
Ph.D. degree in mechanical engineering from
Beihang University, Beijing, China, in 2016.

Since 2016, he has been a Research Fellow
of the Department of Biomedical Engineering,
National University of Singapore, Singapore. His
research interests include medical robotics and

devices, robotic system design, and mechanism analysis.

XIAOYI GU (Student Member, IEEE) received
the B.S. degree in mechanical engineering and
automation from Shanghai Jiao Tong University,
Shanghai, China, in 2013, and the M.E. degree in
biomedical engineering from the National Univer-
sity of Singapore, Singapore, in 2015, where he is
currently pursuing the Ph.D. degree.

His current research interests include medical
robots, bio-inspired robots, soft robots, and smart
actuators.

HONGLIANG REN (Senior Member, IEEE)
received the Ph.D. degree in electronics engineer-
ing (specialized in biomedical engineering) from
The Chinese University of Hong Kong (CUHK),
in 2008. He is currently leading a research group
on medical mechatronics with the Department
of Biomedical Engineering, National University
of Singapore (NUS). He is an affiliated Princi-
pal Investigator of the Singapore N.1. Institute of
Neurotechnology (SINAPSE/N.1.), the Advanced

Robotics Center, National University of Singapore (NUS), and the NUS
Suzhou Research Institute. Prior to joining the NUS, he was a Research
Fellow of JohnsHopkins University, Children’s Hospital Boston andHarvard
Medical School, and the Children’s National Medical Center, USA. His
main areas of interest include biorobotics and intelligent control, medical
mechatronics, soft continuum robots and sensors, and multisensory learning
in surgical robotics. He was a recipient of the NUS Young Investigator
Award, the Engineering Young Researcher Award, the IAMBE Early Career
Award, in 2018, the Interstellar Early Career Investigator Award, in 2018,
and the ICBHI Young Investigator Award, in 2019. He is currently serving
as an Associate Editor for the IEEE TRANSACTIONS ON AUTOMATION SCIENCE

and ENGINEERING (TASE) and Medical and Biological Engineering and
Computing (MBEC).

94922 VOLUME 8, 2020


