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ABSTRACT The Human Immunodeficiency Virus (HIV) Viral Infectivity Factor (Vif) is a 192-amino acid
accessory protein essential to viral replication which counteracts host APOBEC3 proteins. APOBEC3 pro-
teins interfere with the replication of HIV, hepatitis C virus, hepatitis B virus and retrotransposons. Vif is a
recent candidate target for therapeutic and preventative interventions in HIV/AIDS yet little is known about
its clinical relevance. We describe the results of applying different machine learning algorithms (Apriori,
Multifactor Dimensionality Reductor, C4.5, Artificial Neural Networks and ID3) to the search of associations
between HIV-1 Vif protein attributes and clinical endpoints. Final iterations showed that the presence of
mutations in BC Boxes, APOBEC motifs and Cullin5 binding motifs were together associated with higher
initial CD4 T cells while mutations of specific APOBEC motifs coupled with the conservation of other
APOBECmotifs were associated with lower historic CD4 T cells. Conservation of specific APOBECmotifs
and BC boxes were linked to lower initial viral loads while different combinations ofmutations in the Nuclear
Localisation Inhibition Signal andBCBoxeswere associatedwith higher historic viral loads. Further scrutiny
of these combinations through traditional statistical methods revealed striking differences in both CD4T cells
and viral loads in patients stratified into those having the previous combinations. While artificial intelligence
algorithms do not phase out traditional statistical methods, our Artificial Intelligence (AI)-based approach
highlights their use at reducing the dimensionality of large and complex datasets and at proposing novel,
unimaginable, associations of biological patterns with functional relevance or clinical roles.

INDEX TERMS Artificial intelligence, bioinformatics, genomics, machine learning, medicine.

I. INTRODUCTION
The Human Immunodeficiency Virus (HIV) Viral Infec-
tivity Factor (Vif) is a 192-amino acid (23 kDa) acces-
sory protein essential to viral replication. Vif proteins
counteract host proteins exhibiting anti-viral activity of
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the APOlipoprotein Bmessenger RNA Editing enzyme,
Catalytic polypeptide-like (APOBEC3) family. APOBEC3
proteins are zinc-dependent deaminases responsible for
nucleic acid editing (mutating cytidine to uridine in
both viral DNA and RNA molecules). The APOBEC3
family has seven members (APOBEC3A, APOBEC3B,
APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G and
APOBEC3H). APOBEC3 proteins interfere with the
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replication and propagation of HIV, hepatitis C virus, hepati-
tis B virus and retrotransposons in humans [1]. APOBEC3G,
discovered in 2002, is the best characterised member of
the family, it forms stable complexes with the viral core
which are ultimately encapsidated into budding virions
[2], [3]. APOBEC3G hypermutates HIV DNA during the
second round of viral replication leading to non-functional
virions. Additional APOBEC3 antiviral activities include
plus-strand transfer interference, reverse transcription block-
age, as well as inhibition of viral DNA replication and
priming, inhibition of viral DNA elongation and inhibition of
proviral integration [3]. Vif binding of APOBEC3G recruits
elonginB (EloB)-elonginC (EloC)-Cullin5 (Cul5) E3 ligase
complex which in turn induces proteasomal degradation
of the complex [3]. In addition, Vif blocks APOBEC3G
catalytic activity, inhibits APOBEC3G incorporation into
budding virions and interferes with APOBEC3G transla-
tion [4]. Moreover, recent evidence has demonstrated that
certain Vif alleles derived from specific HIV-1 strains can
modulate the host cell cycle to induce G2/M cell cycle arrest.
While the exact way in which Vif proteins hijack the cell
cycle has not been elucidated, both Vif-induced cell cycle
arrest and APOBEC4 degradation seem to involve the same
Vif functional regions: cullin-5 (CUL5) E3 ubiquitin ligase,
elongin B and C as well as the core binding factor beta (CBF-
β) [5]–[7]. As such, Vif allows HIV to evade host innate
mechanisms that would otherwise protect cells. In recent
years, the Vif accessory protein has become a candidate
target for both therapeutic and preventative interventions in
HIV/AIDS. Nonetheless, little is known about the clinical
relevance of Vif protein features and diversity.

Current strategies of exploring the effect that viral
polymorphisms have on clinical endpoints rely on either
hypothesis-driven techniques (whereby attributes inferred to
have functional implications are tested) or on exploratory
studies searching for statistical associations which might
be indicative of true interactions (which must then be con-
firmed). When information on the biological role of viral
attributes (phenotypic or genotypic in nature) is scarce or
unclear, exploratory studies allow novel or interesting asso-
ciations to be discovered. However, the use of traditional
statistical strategies in these exploratory studies (i.e., through
contingency tables and χ2 or Fisher’s exact test) involves
testing for the effect of numerous attributes which imply the
need for statistical corrections for multiple testing. This is
particularly important in genome-wide association studies,
where the number of variables to be tested give rise to multi-
ple opportunities for spurious associations to arise [8].

Machine learning is a sub-field of AI for use in clas-
sification or regression problems very specially adapted to
the detection of complex non-lineal interactions in datasets
having multiple independent input variables (e.g. attributes)
as well as dependant outputs (e.g. clinical endpoint classes)
[9], [10]. Some of the most important machine learning algo-
rithms for use in classification problems include Artificial
Neural Network (ANN), Support Vector Machine (SVM),

Bayesian methods, Decision trees, Apriori and Multifactor
Dimensionality Reduction (MDR) algorithms, among oth-
ers [10]–[18]. ANNs are currently regarded as state-of-the-
art algorithms for multi-dimensional dataset explorations
and classification of cases. Unfortunately, both ANN and
SVM are characterised by a ‘‘black-box’’ behaviour in which
the underlying patterns of interactions remain invisible and
largely unexplorable to the operator. However, Apriori, MDR
and Decision trees include mechanisms that help assess how
informative the attributes are. In this study we describe our
results at applying four different artificial intelligence algo-
rithms to the search of genetic associations among HIV-1 Vif
protein attributes and clinical endpoints.

II. MATERIALS AND METHODS
A. STUDY COHORT
Seventy-seven proviral DNA Vif sequences derived from
an archived cohort of HIV-infected antiretroviral therapy
(ARV)-naive Mexican mestizo patients were included in this
study, the protein features of which have been described pre-
viously [19]. Patient samples were referred to our laboratory
by the state’s public HIV/AIDS clinic ‘‘Centro Ambulatorio
de Prevención yAtención en SIDA e ITS’’ from 2009 to 2014,
no RNA samples were available for these patients. CD4 T
cell numbers were assessed using a FACScan flow cytome-
ter (Becton, Dickinson and Company, Franklin Lakes, NJ,
USA) while HIV viral loads were determined with a COBAS
Amplicor HIV-1 Monitor assay (version 1.5 Ultrasensitive,
F. Hoffmann-La Roche Ltd. Basel, Switzerland) by the state
reference laboratory (Departamento Estatal de Prevención
y Control de VIH/SIDA, Servicios de Salud del Estado de
San Luis Potosí). An in-depth description of the clinical
features of this study cohort is provided in a previous previous
publication [20]. Ethics approval for the study was granted
by the corresponding Institutional Review Boards (Facultad
de Medicina UASLP and the state’s public health authority
‘‘Servicios de Salud del Estado de San Luis Potosí’’).

B. VIF SEQUENCE ATTRIBUTES INCLUDED
Figure 1 summarises the different protein substitutions
present in the 77 sequences, n = 77. Analysis of Vif protein
substitutions focused on functionally relevant regions and
domains known for interacting with other proteins relevant
to the biological role of Vif. Substitutions outside of these
regions were not considered so as to facilitate interpretation
of results and avoid inferences which have not been substanti-
ated through functional or site-directed mutagenesis studies.
In Figure 1 Vif protein domains and functionally relevant
regions included in our analysis are shown in bold type. These
include 17 attributes (a = 17): eight APOBEC3-protein
binding domains (APOBEC-1 through -8), the nuclear local-
ization inhibitory signal (NLIS), the two Core Binding Factor
interaction sites (CBFβ-1 and -2), the three Cullin-5 binding
domains (Cul5-1, -2 and -3) and the three Elongin B/C
box sites (BCBox-1, -2 and -3). Other sites including the
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FIGURE 1. Vif protein attributes. Vif protein attributes (a = 17) included in the study are shown in bold type and include APOBEC-1 through -8,
the nuclear localisation inhibitory signal (NLIS), the Core Binding Factor interaction sites (CBFβ-1 and -2), the Cullin-5 binding domains (Cul5-1, -2 and -3)
and the Elongin B/C box sites (BCbox-1, -2 and -3). The number of sequences bearing non-synonymous substitutions at each of these sites is shown
below the HXB2 reference sequence. Substitutions observed outside of these functional domains and regions are not shown for clarity.

tryptophans (W) involved inAPOBEC3Gbinding, theMAPK
phosphorylation sites, the Zn++-binding motifs, protease
processing site, additional phosphorylation sites and the
dimerization sites were not included in our analysis. The 17
Vif protein attributes present in each sequence were arbitrar-
ily encoded as either Conserved (Cons) orMutant (Mut) after
comparing the physico-chemical nature of the substitution
to the HXB2 Vif reference sequence. These Conserved or
Mutant attribute status were encoded as 0 and 1 in our work-
ing database, respectively. Conserved status was assigned
when none of the sites within a region had a non-conservative
substitution (with regards to HXB2) whileMutant status was
assigned when at least one non-conservative substitution was
present in that region.

C. ATTRIBUTES AND DATABASE COMPILATION
Clinical information for each of the patients included in this
study along with their corresponding Vif protein attributes
were compiled into a database. The patient’s CD4 T cell
numbers and viral loads (VL) assessed at the time of initial
medical examination are designated herein as initial CD4 and
VL. Median values of each patient’s CD4 T cell numbers and
viral loads assessed on a trimestral basis during the patient’s
follow-up were calculated (after proving their non-parametric

distribution) and designated herein as historic CD4 and VL.
Patient derived sequences (S1 through S77 in Table 1) were
stratified into<500 or≥ 500 CD4T cells/µL and≥10,000 or
<10,000 cp/mL of viral load groups for each of the four
different categorical clinical endpoint classes (Initial CD4,
historic CD4, initial VL and historic VL) based on established
criteria [21]. CD4 and VL classes were encoded as 1 if CD4 T
cells<500 cells/µL andVL>10,000 cp/mL or otherwise as 0
(see Table 1).

D. ARTIFICIAL INTELLIGENCE ALGORITHMS
Here, we introduce our AI-based approach for the identifi-
cation of the best Vif attribute combinations associated with
each of the four clinical classes (see Figure 2). Individual
clinical endpoint class databases (Initial CD4, historic CD4,
initial VL and historic VL) were screened through three AI
algorithms (Apriori, MDR and C4.5) to enhance our iden-
tification of Vif attributes repeatedly associated to a clin-
ical class. The Apriori, MDR and C4.5 algorithms identi-
fied rules, models or decision trees, respectively [15], [22],
[23]. The Apriori algorithm was implemented on theWaikato
Environment for Knowledge Analysis (WEKA) workbench
v3.6 to generate rules associated with each clinical class [24].
Rules include a body (a string of Vif attributes) associated
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TABLE 1. The conserved or mutated state of the 17 Vif protein attributes present in regions of interest (APOBEC-1 through BCbox-3) of the 77 patient (Pt)
sequences were encoded as 0 or 1, respectively. Clinical endpoint classes given in far-right columns were encoded as 1 when <500 CD4 T cells/µL or
>10,000 cp/mL, or 0 if otherwise.

FIGURE 2. AI-based approach. Selection of Vif protein attributes through artificial intelligence algorithms first required establishing a baseline
classification using ANN and subsequently selecting for most informative attributes using the Apriori algorithm, MDR and C4.5 to determine which of
these improved classification performance of a second-round analysis with ANN. Vif protein attributes selected through this procedure were then used as
input for inducing decision trees with ID3 to further select Vif attributes and their status for final testing through traditional statistical tests.

to a head (clinical endpoint class). Apriori is very com-
putationally expensive and is not apt for work with high
dimensional datasets. The inclusion of only 17 attributes
in Apriori produces around 1.8 million rules. The MDR

algorithm detects and allows the user to visualise non-
additive combinations and interactions of attributes influ-
encing a clinical class. MDR is currently regarded as a
non-parametricmodel-free alternative to traditional statistical

VOLUME 8, 2020 87217



J. S. Altamirano-Flores et al.: Identification of HIV-1 Vif Protein Attributes Associated With CD4 T Cell Numbers and Viral Loads

techniques [25], [26]. MDR is also very computationally
expensive and was therefore limited to the generation of only
six models having from 1 to a maximum of 6 Vif protein
attributes. As model overfitting is common to most AI algo-
rithms, estimation of a model’s suitability for generalisation
through 10-fold Cross-Validation (CV) was used. Accuracy
is a measure of a model’s capacity to correctly identify true-
positive and true-negative cases against the total number of
cases available. However, Balanced Accuracy (BA) is cal-
culated by adding the fractions of correctly identified cases
per class divided by the number of classes, and therefore
is less affected by data imbalance. The best MDR models
were therefore selected on the basis of CV and BA. The
C4.5 algorithm used for decision tree induction was also
implemented on WEKA, where it is designated J48. This
algorithm produces decision trees in which different Vif
attributes are hierarchically arranged and related to their clini-
cal endpoint class. Trees are generated bymodifying the algo-
rithms pruning parameter (also known as Confidence Level
(CF) in 0.01 increments from 0.01 to 0.51, thereby producing
51 possible trees. The hierarchical relevance of each attribute
is automatically established based on the information gain
ratio during tree induction. Non-redundant and informative
trees (i.e. those not having a single branch) were considered
for further analysis. ANN (Multi-Layer Perceptron) was also
implemented on WEKA and baseline classification accuracy
was determined by including all 17 Vif protein attributes and
clinical classes during the training process [27]. Once top-
ranking rules, models and trees had been generated by the
individual AI algorithms (Apriori, MDR and C4.5), ANN
classification performance was assessed using the attributes
from these as input. Vif protein attributes that were con-
sistently present in the best Apriori-ANN, MDR-ANN and
C4.5-ANN results were then selected as input for further
processing using the ID3 algorithm. ID3, also implemented
on WEKA, generates un-pruned decision trees displaying
the hierarchy of attributes and their status (conserved or
mutated) as well as their relationship with each clinical class
[23], [28]. Finally, Vif protein attribute-status thus identified
by AI algorithms were tested through traditional statistical
tests (see Figure 2). Full nucleotide and amino acid sequences
for each patient were not used directly in our analysis given
the computational expense implied and to avert making infer-
ences of polymorphisms which have to date not been shown
to be relevant to the biological role of Vif.

E. TRADITIONAL STATISTICAL ANALYSIS
Frequencies of Vif protein mutations were calculated by
direct counting of attributes (mutant/conserved sites) and
expressed as the percentage of the sequences bearing
each. Statistical significance of attribute frequency differ-
ences between clinical endpoint groups relied on two-sided
Fisher’s exact test and binary logistic regression tests for
independence using IBM SPSS Statistics (version 21, IBM
Corporation, USA). Covariates used in logistic regression
analysis included all attributes found statistically significant.

Significance was established at p < 0.05. Correction for
multiple tests employed the Benjamini–Hochberg step-up
procedure [29]. Comparison of non-stratified (real) CD4+
T cell numbers and viral loads present in groups having or
lacking attributes, attribute status or attribute combinations
relied on either t-test withWelsh’s correction or Kolmogorov-
Smirnov t-test with 2-tailed p values using GraphPad Prism
6 depending on the normality of their distribution (GraphPad
Software, Inc. USA).

III. RESULTS
The N-terminal APOBEC3 binding site (14DRMR17 in
Figure 1) was highly conserved and therefore excluded
from subsequent analysis. Premature stop codons prevented
two patient sequences from providing information for some
Vif attributes. Apriori identified a total of 511,552 rules
associated with clinical classes: 135,598 for initial CD4 T
cell numbers (129,903 associated with <500 CD4 T
cells/µL), 138,062 for historic CD4s (133,151 associated
with <500 CD4 T cells/µL), 112,926 for initial VLs
(85,255 associated with >10,000 cp/mL) and 124,966 for
historic VLs (124,966 associated with >10,000 cp/mL), see
example of output shown in Table 4 in Appendix for detailed
results.

MDR produced 6 different models having combinations
from one to a maximum of six Vif attributes. The three top
models associating Vif attributes to initial CD4 T lymphocyte
numbers had 6, 2 and 1 attributes, exhibited BAs of 56.45,
56.45 and 59.58 and CV consistencies of 5/10, 6/10 and
8/10, respectively. MDR models for historic CD4 T lym-
phocyte numbers had 3, 2 and 1 attributes, exhibited BAs
of 55.17, 55.84 and 56.66 and CV consistencies of 5/10,
6/10 and 6/10, respectively. For initial VL’s these had 5,
3 and 4 attributes, BAs of 57.65, 60.46 and 61.73 and CV
consistencies of 5/10, 8/10 and 6/10, respectively. For his-
toric VL’s, only two models were considered as the third
best did not exceed a 50% BA minimum. The models had
only 2 and 1 attributes, BAs of 57.58 and 62.88 and CV
consistencies of 7/10 and 10/10, respectively. See Table 5 in
Appendix for detailed results.

Of the 51 possible trees generated by C4.5 only four unique
trees were identified which associated Vif attributes with
initial CD4 class, two trees for historical CD4’s, four for
initial VL’s and two for historic VL’s. The remaining trees
were either non-informative or redundant, see Table 6 in
Appendix for detailed results.

ANN baseline accuracy using the 17 Vif protein attributes
for the classification of patients into each of the four clinical
classes (initial and historic CD4T lymphocytes and initial and
historic VLs) was of 76.62, 71.43, 64.94 and 55.84, respec-
tively. ANN classification performance exceeded the baseline
classification threshold produced by ANN alone in eight
Apriori rules, threeMDRmodels and ten C4.5 trees in the ini-
tial CD4 T lymphocyte analysis; in 19 rules, three models and
13 trees for the historic CD4 T lymphocytes analysis; in one
rule, three models and ten trees for the initial VL analysis as
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TABLE 2. Contribution of specific Vif protein attributes to the results produced by each of the four AI algorithms used.

well as in 12 rules, twomodels and 11 trees for the historic VL
analysis, respectively. The specific contribution of each Vif
protein attribute to the results of each of these results is shown
in Table 2. Average ANN classification performance using
the attributes suggested by the Apriori, MDR and C4.5 algo-
rithms on the initial CD4 T cell analysis was 77.3, 75.8 and
78, respectively. Those for the historic CD4 T cell group
were 77.4, 79.2 and 79.3; those of the initial viral load group
of 60.8, 60.6 and 65.42 and those of the historic viral load
group were of 56.9, 63.6 and 62.5, respectively. Vif attribute
occurrence in each of the individual algorithms results as well
as their contribution to the ANN classification performance
was weighed arbitrarily to compensate for the fact that most
rules produced for Apriori were ignored (as only the top
10 for each class were used). As such, the attribute’s occur-
rence was increased 2-fold for those of Apriori, 6-fold for

MDR and 8-fold for C4.5 (far-right columns in Table 2). Ulti-
mately, the three attributes with the highest-ranking weighted
contribution were selected for inclusion as input attributes for
ID3. Only the two highest-ranking attributes in the historic
CD4 T lymphocyte group were selected as the third-highest
weighted contribution (that of APOBEC-7) was below half of
that of the highest (APOBEC-2).

ID3 produced single trees for each of the clinical end-
points using these AI-suggested Vif protein attributes. The
tree produced for the initial CD4 T lymphocyte group had
three levels, six nodes and seven branches (see Figure 3a).
That for the historic CD4 T lymphocyte group had two levels,
three nodes and four branches (see Figure 3b), whereas the
trees produced for both the initial and historic viral load group
had three levels, five nodes and six branches (see Figure 3c
and Figure 3d, respectively). Each of the branches (attribute
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FIGURE 3. ID3 decision trees. Decision trees produced from the final iteration of AI analysis showing the different attributes serving as
nodes (ovals) their status (Cons = Conserved, Mut = Mutated) and their relationship with clinical endpoint classes for: (a) the initial CD4 T
cell analysis, (b) historic CD4 T cell analysis, (c) initial viral load analysis and (d) historic viral load analysis.

TABLE 3. The most relevant Vif protein attribute combinations associated with clinical endpoints out of the 23 identified by artificial intelligence
algorithms. Vif protein regions can either be conserved (Cons) or mutated (Mut) and associated with protection (prot) or risk to either <500 cells/µL
CD4 T cells or ≥10,000 cp/mL of viral load.

status combinations) indicated by these trees were then used
to manually re-encode our original database to stratify each
of the patient’s sequences into groups having or not-having
these combinations for further traditional statistical analysis.
Table 3 summarises those attribute status combinations which

proved to be statistically significant for each of the clinical
endpoints. Two combinations were found to be significant
for the initial CD4 T lymphocyte group, both suggesting a
protective effect from having less than 500 CD4 cells/µL.
Two combinations were significant for the historic CD4 T
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lymphocyte group, one acting as a possible risk factor for hav-
ing less than 500 CD4 T cells/µL and the other one showing
a protective effect. Two combinations resulted significant for
initial VLs, the first one protecting from viral loads in excess
of 10,000 cp/mL and the second one acting as a risk factor
for these high viral titres. The single combination having
statistical significance in the historic VL group was found to
act as a risk factor for high viral loads.

When the real (un-stratified) CD4 T lymphocyte num-
bers and viral loads for each of the patients were anal-
ysed after grouping them into those having these attribute
combinations and those lacking them, striking differences
were observed for both initial and historic CD4 T lym-
phocyte numbers and initial VL but not for historic VL
(see Figure 4). Mean initial CD4 T lymphocyte numbers
among patients having BCbox-3Mut, APOBEC-4Mut, Cul5-
3Mut (n = 4) was of 649.8 ± 35.46 Standard Error of
the Mean (SEM) and ± 70.91 Standard Deviation (SD)
cells/µL while those lacking this attribute combination
(n = 56) had 256.6 ± 17.73 SEM ± 135.0 SD cells/µL,
p = 0.0003 (see Figure 4a).Mean historic CD4T lymphocyte
numbers among patients having APOBEC-2Cons, APOBEC-
3Cons (n = 13) was of 617.5 ± 27.28 SEM and ± 94.52
SD cells/µL while those lacking this attribute combination
(n = 29) had 335.5 ± 23.6 SEM ± 127.1 SD cells/µL,
p < 0.0001 (see Figure 4b). Likewise, mean initial viral
loads among patients having APOBEC-2Cons, BCbox-1Cons,
BCbox-2Cons (n = 11) were of 1368 ± 616.8 SEM and
± 1950 SD cp/mL while those lacking this attribute com-
bination (n = 40) had 193,666 ± 43,341 SEM ± 274,115
SD cp/mL, p < 0.0001 (see Figure 4c, note that is in
logarithmic scale for visualization). No Vif protein attribute
alone proved to be associated with significant differences
in CD4 T cell numbers, nor with VL on either initial or
historic groups. For comparison’s sake, the effect that each
of the 17 Vif attributes had on the four clinical endpoints was
tested through traditional statistical methods. The frequency
of BCbox-2 mutations was higher among patients having
≥500 initial CD4 T cells/µL (81.3%) than in patients having
<500 cells/µL (49.2%), p = 0.025, suggesting a protective
effect. This difference became even more contrasting when
all BCbox mutations were considered (BCbox-1 through -
3) as a single attribute (93.8% versus 59.3%, respectively,
p = 0.014). This last effect remained significant after
logistic regression (odds ratio OR = 0.097, 95% CI 0.012 -
0.786, p = 0.029). With regards to historic CD4 T cells,
only APOBEC-2 mutations were found to be detrimental.
The frequency of APOBEC-2 mutations was higher among
patients with <500 cells/µL (42.6%) in comparison to those
having ≥500 cells/µL (12.5%), OR = 5.21 (95% CI 1.08 –
25.0, p = 0.039). Interestingly, APOBEC-2 mutations were
also associated with higher initial viral loads as it was more
frequent among patients having ≥10,000 cp/mL (44.9%)
versus patients having<10,000 cp/mL (21.4%), OR= 2.988
(95% CI 1.031 – 8.657), p = 0.049. Mutations of the NLIS
were the only attributes associated with greater historic viral

FIGURE 4. Distribution of initial and historic CD4 T lymphocyte numbers
and initial viral loads in HIV-1 infected patients having or lacking the
different AI suggested Vif protein attribute combinations. Bars depict
mean ± standard error of the mean. (a) Initial CD4 T cells. (b) Historic
CD4 T cells. (c) Initial viral load – in logarithmic scale.

loads. Mutated NLIS were present in 48.5% of patients hav-
ing ≥10,000 cp/mL historic VL and in only 23.3% of those
having<10,000 cp/mL, OR= 3.106 (95%CI 1.162 – 8.302),
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p = 0.029. All of the previously mentioned statistically
significant findings lost power after correcting for multiple
tests, which lowered the alpha level from 0.05 to 0.003 and
0.002, respectively.

IV. DISCUSSION
Initial evaluations of HIV sequences, such as the screening
for antiretroviral drug resistance mutations in a treatment
naive patient, are best performed using plasma-derived viral
RNA at a time where the patient exhibits high viral loads
and before initiating antiretroviral therapy. As of 2013, all
Mexican HIV-infected patients are immediately prescribed
antiretroviral drugs on diagnosis in accordance with World
Health Organisation recommendations and irrespective of
their CD4 T cell counts or clinical features (active tubercu-
losis, hepatitis B infection and/or pregnancy) [30]. Whereas
plasma-derived viral RNA sequences provide information on
the most replication-competent viral species present at the
time of sampling, the use of proviral DNA provides infor-
mation on archived viral sequences which have been present
since the time of HIV integration. As such, the presence of
premature stop codons in our Vif sequences highlights the
fact that some features may represent archived and geneti-
cally defective, replication-incompetent genomes. Neverthe-
less, proviral DNA has been shown to be an alternative source
of viral nucleic acids for molecular studies such as genotyp-
ing, genotypic tropism testing, and phylogenetic studies in
patients having low to undetectable viral loads [31]–[35].

Our analysis focused on assessing the clinical relevance
of Vif substitutions at two distinct clinical phases of HIV
infection, 1) at the time of initial medical evaluation, a point
in which patients had not yet been subjected to antiretroviral
therapy, and 2) during follow-up and after being exposed
to the effect of antiretroviral drugs. Our identification of
Vif substitutions associated with clinical variables at time
of initial evaluation suggests that Vif polymorphism might
prove to have an effect on the progression of unchecked
HIV infections. On the other hand, the identification of asso-
ciations further-down in the medical follow-up of patients
suggests that these effects might still be present in spite
of current antiretroviral therapy. We developed an AI-based
attribute combination discovery approach which when com-
bined with traditional statistical methods is capable of iden-
tifying associations between sequence traits and clinical
endpoints in HIV/AIDS. Our results highlight the capac-
ity of AI algorithms to guide traditional statistical methods
for the study of the biological role and clinical relevance
of factors for which hypothesis-driven techniques would be
otherwise unsuccessful or laborious. Our AI-based approach
is a complex analysis pipeline which allows us to iden-
tify Vif attributes repeatedly identified by different AI algo-
rithms as important, so as to further enhance the selection
of those attributes that would later be explored through
traditional statistics. Examination of the results generated
by individual AI algorithms (see Tables 4–6 in Appendix)
provides evidence that no single algorithm was capable of

identifying all attributes found to be significant on the
final iteration. In addition, this application demonstrates the
way AI algorithms can condense data with little human inter-
vention. To our knowledge, this represents the first report
associating complex multi-dimensional combinations of Vif
protein attributes with two of the most important clinical
follow-up parameters in HIV/AIDS: CD4 T lymphocyte
numbers and viral loads. Strict adherence to the principles
of testing and correction for this simple dataset comprising
77 combinations of 17 attributes and 4 different outputs
would have limited the statistical power of most findings.
The results produced by AI algorithms alone were congruent
with those produced through traditional methods. BCbox
mutations were associated with high initial CD4 T cells in
univariate analysis but were also part of the final AI attribute
combination associated with these. These results are in agree-
ment with those published previously describing the epistatic
effects of some pairs of amino acids encompassing the BCbox
regions of Vif proteins with low CD4 T cell counts [36]. The
importance of BCbox attributes in Vif’s function highlighted
in our results is in agreement with previous findings regard-
ing its functional role. Vif hijacks the E3 ligase using the
BCbox region that interacts with ElonginC and a zinc finger
motif that interacts with Cullin5. Vif recognition and binding
of APOBEC3 through Cul5 involves forming a complex with
EloB and EloC, which in turn recruits CBFβ. The interaction
between Vif and EloC is mediated by the 144SLQ(Y/F)LA149

motif (BCbox-1) present in the viral Elongin B/C-box
[37], [38]. This domain is perhaps the most critical Vif region
determiningAPOBEC3 protein suppression. Previous reports
have shown that the short side chain of Ala149 plays a cru-
cial role in EloC-binding. As both the Vif-induced G2/M
arrest and APOBEC3G degradation effects involve interac-
tions with virtually the same host ubiquitin ligase machinery
including Cul5, EloB and EloC as well as CBFβ, the exact
biological role through which Vif exerts the observed effects
in our study cohort can not be ascertained. Nevertheless, Vif’s
capacity to induce G2/M arrest has been observed in HIV
viruses derived from clinical samples and this capacity has
been shown to be associated with increased viral replication
in vitro T cells cultures [6], [39].

Similarly, APOBEC-2 mutations were associated with the
risk of low historic CD4 T cells and high initial viral loads
in univariate analysis but also formed part of the AI com-
binations associated with the risk of low historic CD4 T
cells and high historic viral loads. Interestingly, the con-
servation of APOBEC-2 was shown to be associated with
lower initial viral loads by AI algorithms. That APOBEC3
binding sites are among the most repeatedly encountered Vif
protein regions associated with both CD4 T cell numbers
and VL is not surprising. Different motifs are used selectively
by Vif to bind different APOBEC3 family members [37].
For Vif to exert its action it must bind APOBEC3 to subse-
quently act as the substrate binding subunit of a cullin RING
ligase-5 (CRL5) E3 ligase complex [37]. Previous authors
have demonstrated that the single most important factor
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TABLE 4. (Continued.) Top 10 rules produced by the Apriori algorithm associating Vif protein attributes and their status (conserved or mutated) with
clinical classes.

TABLE 5. Best models produced by MDR associating Vif protein attributes with clinical classes.

governing Vif functionality, and therefore clinical relevance,
corresponds to the APOBEC3 binding regions. The impor-
tance of APOBEC-2 motif 22KSLVK26 was first established
in a cohort of Brazilian Brazilian treatment-naïve patients,
where the K22H mutation was shown to be associated with
lower CD4 T cells and higher viral loads [40]. With regards
to the relevance of the APOBEC-4 motif, previous studies
have also highlighted the importance of positions 39 and
48 for Vif to counteract the influence of APOBEC3H pro-
teins [41], [42]. It is also worth noting that both APOBEC-2
and -3 motifs, both of which were determined to be clin-
ically relevant in our study, are located in the N-terminal
region of Vif protein and in sites that have been previously
shown to be under positive selection whereas the C-terminal
APOBEC-8 motif did not seem to be associated with clin-
ical classes [36]. Contrastingly, NLIS status was the only
attribute exhibiting contradicting associations between tra-
ditional and AI methods. Artificial intelligence is the capa-
bility for machines to imitate intelligent human behaviour
once trained through mathematical and statistical techniques

to enable prediction of previously unseen patterns without
having been explicitly programmed to do so. The ability of AI
to analyse datasets and detect patterns in an n-dimensional
feature space provides them with the capability of suggest-
ing attribute combinations which would seem intractable to
humans. This capacity has been illustrated in our results
and further substantiated through traditional statistical tech-
niques. While AI does not completely phase out traditional
statistical methods, the AI-based approach proposed herein
highlights their use at reducing the dimensionality of large
and complex datasets and at proposing novel, unimaginable,
associations of biological patterns with functional relevance
or clinical roles. Determining the overall generalisation of AI
applications to real-world patient management is critical
to the development of a truly successful implementation
strategy.

V. CONCLUSIONS
This paper proposes an AI-based approach, which was
shown to be capable of identifying associations between HIV
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TABLE 6. Top-rated decision trees produced by the C4.5 algorithm
associating Vif protein attributes and their status (conserved or mutated)
with clinical classes.

sequence traits and clinical endpoints in AIDS. These results
highlight the capacity of AI algorithms at guiding traditional
statistical methods in the search for novel interactions of virus
and host genes and proteins in the absence of hypothesis-
driven techniques. To the best of our knowledge, this rep-
resents the first report describing such novel and complex
multi-dimensional associations of Vif protein attributes with
CD4 T lymphocyte numbers and viral loads in HIV/AIDS.
While this study focused on the genetically distinct Mexican
mestizo human population, we envisage that future applica-
tions of this AI-based approach are very likely to prove bene-
ficial and informative for other HIV-infected human groups.
These results open the possibility of incorporating the study
of novel genetic marker combinations into routine clinical
management algorithms currently in use, further comple-
menting the molecular arsenal of tools available for people
living with HIV and AIDS.

Although most of our findings have been previously inde-
pendently reported, the way in which their combinations
interact and modulate clinical endpoints has not been pre-
viously explored. While aware of the limitations imposed
by the use of proviral DNA and by the size of our dataset,
our sequential approach employing both artificial intelligence
algorithms along with traditional statistical methods was
capable of identifying Vif sequence attributes associated with
clinical endpoints. As is well known, the low number of
patients enrolled for this pilot study underpowers the clinical
significance of the discovered associations. This does not,
however, undermine the need to further investigate these find-
ings in larger and even different study cohorts. Our discovery

supports the notion that similar approaches have great utility
at guiding conventional association-discovery approaches in
biomedical sciences.

APPENDIX
ADDITIONAL TABLES AND FIGURES
Tables 4–6 correspond to supplementarymaterial which com-
plements Tables 2–3 and Figures 3–4, see Section III. Table 4
summarises the results obtained through the use of theApriori
algorithm, Table 5 summarises those obtained by MDR and
Table 6 those corresponding to the C4.5 algorithm.

ACKNOWLEDGMENT
The authors wish to thank the Universidad Autónoma de
San Luis Potosí for all support as well as the patients, nursing,
and medical personnel at Centro Ambulatorio para la Pre-
vención y Atención del SIDA e Infecciones de Transmisión
Sexual (CAPASITS), San Luis Potosí, Mexico, for making
this study possible.

REFERENCES
[1] A. Moris, S. Murray, and S. Cardinaud, ‘‘AID and APOBECs span the

gap between innate and adaptive immunity,’’ Frontiers Microbiol., vol. 5,
p. 534, Oct. 2014, doi: 10.3389/fmicb.2014.00534.

[2] A. M. Sheehy, N. C. Gaddis, J. D. Choi, and M. H. Malim, ‘‘Isolation
of a human gene that inhibits HIV-1 infection and is suppressed by the
viral vif protein,’’ Nature, vol. 418, no. 6898, pp. 646–650, Jul. 2002, doi:
10.1038/nature00939.

[3] V. B. Soros and W. C. Greene, ‘‘APOBEC3g and HIV-1: Strike and
counterstrike,’’ Current HIV/AIDS Rep., vol. 4, no. 1, pp. 3–9, Feb. 2007,
doi: 10.1007s11904-007-0001-1.

[4] M. Santa-Marta, P. M. de Brito, A. Godinho-Santos, and J. Goncalves,
‘‘Host factors and HIV-1 replication: Clinical evidence and potential ther-
apeutic approaches,’’ Frontiers Immunol., vol. 4, p. 343, Oct. 2013, doi:
10.3389fimmu.2013.00343.

[5] J. L. DeHart, A. Bosque, R. S. Harris, and V. Planelles, ‘‘Human immun-
odeficiency virus type 1 Vif induces cell cycle delay via recruitment of
the same E3 ubiquitin ligase complex that targets APOBEC3 proteins for
degradation,’’ J. Virol., vol. 82, no. 18, pp. 9265–9272, Jul. 2008, doi:
10.1128/jvi.00377-08.

[6] T. Izumi, K. Io, M. Matsui, K. Shirakawa, M. Shinohara, Y. Nagai,
M. Kawahara, M. Kobayashi, H. Kondoh, N. Misawa, Y. Koyanagi,
T. Uchiyama, and A. Takaori-Kondo, ‘‘HIV-1 viral infectivity factor inter-
acts with TP53 to induce G2 cell cycle arrest and positively regulate viral
replication,’’Proc. Nat. Acad. Sci. USA, vol. 107, no. 48, pp. 20798–20803,
Nov. 2010, doi: 10.1073/pnas.1008076107.

[7] E. L. Evans, J. T. Becker, S. L. Fricke, K. Patel, and N. M. Sherer,
‘‘HIV-1 Vif’s capacity to manipulate the cell cycle is species specific,’’
J. Virol., vol. 92, no. 7, Mar. 2018, Art. no. e02102. [Online]. Available:
https://jvi.asm.org/content/92/7/e02102-17

[8] W. S. Noble, ‘‘How does multiple testing correction work?’’
Nature Biotechnol., vol. 27, no. 12, pp. 1135–1137, Dec. 2009, doi:
10.1038/nbt1209-1135.

[9] A. L. Beam, A. Motsinger-Reif, and J. Doyle, ‘‘Bayesian neural networks
for detecting epistasis in genetic association studies,’’BMCBioinf., vol. 15,
no. 1, p. 368, Nov. 2014, doi: 10.1186/s12859-014-0368-0.

[10] R. Jiang, W. Tang, X. Wu, and W. Fu, ‘‘A random forest approach to the
detection of epistatic interactions in case-control studies,’’ BMC Bioinf.,
vol. 10, no. S1, p. S65, Jan. 2009, doi: 10.1186/1471-2105-10-s1-s65.

[11] K. J. Cios and N. Liu, ‘‘Amachine learning method for generation of a neu-
ral network architecture: A continuous ID3 algorithm,’’ IEEE Trans. Neu-
ral Netw., vol. 3, no. 2, pp. 280–291, Mar. 1992, doi: 10.1109/72.125869.

[12] J. C. Cuevas Tello, D. Hernández-Ramírez, and C. A. García-Sepúlveda,
‘‘Support vector machine algorithms in the search of KIR gene associa-
tions with disease,’’ Comput. Biol. Med., vol. 43, no. 12, pp. 2053–2062,
Dec. 2013, doi: 10.1016/j.compbiomed.2013.09.027.

VOLUME 8, 2020 87225

http://dx.doi.org/10.3389/fmicb.2014.00534
http://dx.doi.org/10.1038/nature00939
http://dx.doi.org/10.1007s11904-007-0001-1
http://dx.doi.org/10.3389fimmu.2013.00343
http://dx.doi.org/10.1128/jvi.00377-08
http://dx.doi.org/10.1073/pnas.1008076107
http://dx.doi.org/10.1038/nbt1209-1135
http://dx.doi.org/10.1186/s12859-014-0368-0
http://dx.doi.org/10.1186/1471-2105-10-s1-s65


J. S. Altamirano-Flores et al.: Identification of HIV-1 Vif Protein Attributes Associated With CD4 T Cell Numbers and Viral Loads

[13] J. Forsström, P. Nuutila, and K. Irjala, ‘‘Using the ID3 algorithm to
find discrepant diagnoses from laboratory databases of thyroid patients,’’
Med. Decis. Making, vol. 11, no. 3, pp. 171–175, Aug. 1991, doi:
10.1177/0272989x9101100305.

[14] B. Han, X. wen Chen, Z. Talebizadeh, and H. Xu, ‘‘Genetic studies of
complex human diseases: Characterizing SNP-disease associations using
Bayesian networks,’’ BMC Syst. Biol., vol. 6, no. 3, p. S14, 2012, doi:
10.1186/1752-0509-6-s3-s14.

[15] M.D. Ritchie, L.W.Hahn, N. Roodi, L. R. Bailey,W. D. Dupont, F. F. Parl,
and J. H. Moore, ‘‘Multifactor-dimensionality reduction reveals high-order
interactions among estrogen-metabolism genes in sporadic breast can-
cer,’’ Amer. J. Hum. Genet., vol. 69, no. 1, pp. 138–147, Jul. 2001, doi:
10.1086/321276.

[16] M. Somek and M. Hercigonja-Szekeres, ‘‘Decision support systems in
health care–velocity of Apriori algorithm,’’ Stud Health Technol Inf.,
vol. 244, pp. 53–57, Oct. 2017.

[17] D. L. Tong, D. J. Boocock, G. K. R. Dhondalay, C. Lemetre, andG. R. Ball,
‘‘Artificial neural network inference (ANNI): A study on gene-gene inter-
action for biomarkers in childhood sarcomas,’’ PLoS ONE, vol. 9, no. 7,
Jul. 2014, Art. no. e102483, doi: 10.1371/journal.pone.0102483.

[18] D. L. Tong and A. C. Schierz, ‘‘Hybrid genetic algorithm-neural net-
work: Feature extraction for unpreprocessed microarray data,’’ Artif. Intell.
Med., vol. 53, no. 1, pp. 47–56, Sep. 2011, doi: 10.1016/j.artmed.2011.
06.008.

[19] S. E. Guerra-Palomares, P. G. Hernandez-Sanchez, M. A. Esparza-Perez,
J. R. Arguello, D. E. Noyola, and C. A. Garcia-Sepulveda, ‘‘Molecu-
lar characterization of mexican HIV-1 vif sequences,’’ AIDS Res. Hum.
Retroviruses, vol. 32, no. 3, pp. 290–295, Mar. 2016. [Online]. Available:
http://online.liebertpub.com/doi/10.1089/aid.2015.0290

[20] D. Hernández-Ramírez, M. A. Esparza-Pérez, J. L. Ramirez-Garcialuna,
J. R. Arguello, P. B. Mandeville, D. E. Noyola, and C. A. García-
Sepúlveda, ‘‘Association of KIR3dl1/s1 and HLA-bw4 with CD4 T cell
counts in HIV-infected mexican mestizos,’’ Immunogenetics, vol. 67, no. 8,
pp. 413–424, Jun. 2015, doi: 10.1007/s00251-015-0848-z.

[21] Y. Jiang, O. Chen, C. Cui, B. Zhao, X. Han, Z. Zhang, J. Liu, J. Xu, Q. Hu,
C. Liao, andH. Shang, ‘‘KIR3ds1/l1 andHLA-bw4-80i are associated with
HIV disease progression among HIV typical progressors and long-term
nonprogressors,’’ BMC Infectious Diseases, vol. 13, no. 1, Sep. 2013, doi:
10.1186/1471-2334-13-405.

[22] R. Agrawal, T. Imieliński, and A. Swami, ‘‘Mining association rules
between sets of items in large databases,’’ ACM SIGMOD Rec., vol. 22,
no. 2, pp. 207–216, Jun. 1993, doi: 10.1145/170036.170072.

[23] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA,
USA: Morgan Kaufmann, 1993.

[24] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, ‘‘The WEKA data mining software: An update,’’ SIGKDD
Explor, vol. 11, no. 1, pp. 10–18, 2009.

[25] L. W. Hahn, M. D. Ritchie, and J. H. Moore, ‘‘Multifactor dimension-
ality reduction software for detecting gene–gene and gene–environment
interactions,’’ Bioinformatics, vol. 19, no. 3, pp. 376–382, Feb. 2003, doi:
10.1093/bioinformatics/btf869.

[26] A. Jakulin and I. Bratko, ‘‘Analyzing attribute dependencies,’’ in Knowl-
edge Discovery in Databases—PKDD. Berlin, Germany: Springer, 2003,
pp. 229–240, doi: 10.1007/978-3-540-39804-2_22.

[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning
representations by back-propagating errors,’’ Nature, vol. 323, no. 6088,
pp. 533–536, Oct. 1986. [Online]. Available: http://www.nature.
com/doifinder/10.1038/323533a0

[28] J. R. Quinlan, ‘‘Learning efficient classification procedures and their
application to chess end games,’’ Mach. Learn. Artif. Intell. Approach,
pp. 463–482, 1984.

[29] Y. Benjamini, D. Drai, G. Elmer, N. Kafkafi, and I. Golani, ‘‘Controlling
the false discovery rate in behavior genetics research,’’ Behavioural Brain
Res., vol. 125, nos. 1–2, pp. 279–284, Nov. 2001. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0166432801002972

[30] Consolidated Guidelines Use Antiretroviral Drugs for Treating Preventing
HIV Infection, WHO, Geneva, Switzerland, 2013.

[31] L. P. R. Vandekerckhove, A. M. J. Wensing, R. Kaiser, F. Brun-Vézinet,
B. Clotet, A. De Luca, S. Dressler, ‘‘European guidelines on the
clinical management of HIV-1 tropism testing,’’ Lancet Infectious
Diseases, vol. 11, no. 5, pp. 394–407, May 2011, doi: 10.1016/S1473-
3099(10)70319-4.

[32] C. Soulié, S. Fourati, S. Lambert-Niclot, I. Malet, M. Wirden, R. Tubiana,
M.-A. Valantin, C. Katlama, V. Calvez, andA.-G. Marcelin, ‘‘Factors asso-
ciated with proviral DNA HIV-1 tropism in antiretroviral therapy-treated
patients with fully suppressed plasma HIV viral load: Implications for the
clinical use of CCR5 antagonists,’’ J. Antimicrobial Chemotherapy, vol. 65,
no. 4, pp. 749–751, Feb. 2010, doi: 10.1093/jac/dkq029.

[33] P. Frange, J. Galimand, C. Goujard, C. Deveau, J. Ghosn, C. Rouzioux,
L. Meyer, M.-L. Chaix, ‘‘High frequency of x4/DM-tropic viruses in
PBMC samples from patients with primary HIV-1 subtype-b infection in
1996–2007: The French ANRS CO06 PRIMO cohort study,’’ J. Antimi-
crobial Chemotherapy, vol. 64, no. 1, pp. 135–141, May 2009, doi:
10.1093/jac/dkp151.

[34] C. Verhofstede, D. Brudney, J. Reynaerts, D. Vaira, K. Fransen, A. De Bel,
C. Seguin-Devaux, S. De Wit, L. Vandekerckhove, and A.-M. Geretti,
‘‘Concordance between HIV-1 genotypic coreceptor tropism predictions
based on plasma RNA and proviral DNA,’’ HIV Med., vol. 12, no. 9,
pp. 544–552, Apr. 2011, doi: 10.1111/j.1468-1293.2011.00922.x.

[35] K. Huruy, A. Mulu, U. G. Liebert, andM.Melanie, ‘‘HIV-1c proviral DNA
for detection of drug resistance mutations,’’ PLOS ONE, vol. 13, no. 10,
Oct. 2018, Art. no. e0205119, doi: 10.1371/journal.pone.0205119.

[36] M. C. Bizinoto, S. Yabe, É. Leal, H. Kishino, L. de O. Martins,
M. L. de Lima, E. R. Morais, R. S. Diaz, and L. M. Janini, ‘‘Codon pairs
of the HIV-1 vif gene correlate with CD4+ T cell count,’’ BMC Infectious
Diseases, vol. 13, no. 1, p. 173, Apr. 2013, doi: 10.1186/1471-2334-13-
173.

[37] Y. Feng, T. T. Baig, R. P. Love, and L. Chelico, ‘‘Suppression of
APOBEC3-mediated restriction of HIV-1 by Vif,’’ Frontiers Microbiol.,
vol. 5, p. 450, Aug. 2014, doi: 10.3389/fmicb.2014.00450.

[38] Y. Yu, Z. Xiao, E. S. Ehrlich1, X. Yu, and X.-F. Yu, ‘‘Selective assembly of
HIV-1 vif-cul5-ElonginB-ElonginC e3 ubiquitin ligase complex through a
novel SOCS box and upstream cysteines,’’Genes Develop., vol. 18, no. 23,
pp. 2867–2872, 2004, doi: 10.1101/gad.1250204.

[39] K. Zhao, J. Du, Y. Rui, W. Zheng, J. Kang, J. Hou, K. Wang, W. Zhang,
V. A. Simon, and X.-F. Yu, ‘‘Evolutionarily conserved pressure for the
existence of distinct G2/M cell cycle arrest and A3H inactivation functions
in HIV-1 Vif,’’ Cell Cycle, vol. 14, no. 6, pp. 838–847, Jan. 2015, doi:
10.1080/15384101.2014.1000212.

[40] F. Villanova, M. Barreiros, L. M. Janini, R. S. Diaz, and E. Leal, ‘‘Genetic
diversity of HIV-1 gene vif among treatment-naive Brazilians,’’ AIDS
Res. Hum. Retroviruses, vol. 33, no. 9, pp. 952–959, Sep. 2017, doi:
10.1089/aid.2016.0230.

[41] M. Ooms,M. Letko, and V. Simon, ‘‘The structural interface between HIV-
1 Vif and human APOBEC3H,’’ J. Virol., vol. 91, no. 5, Feb. 2017.

[42] M. Binka, M. Ooms, M. Steward, and V. Simon, ‘‘The activity spectrum
of vif from multiple HIV-1 subtypes against APOBEC3g, APOBEC3f,
and APOBEC3h,’’ J. Virol., vol. 86, no. 1, pp. 49–59, Oct. 2011, doi:
10.1128/jvi.06082-11.

JOSE S. ALTAMIRANO-FLORES received the
M.Sc. degree in computer science (artificial intel-
ligence) from the Instituto Tecnológico de León
(ITL), in 2016. He is currently pursuing the Ph.D.
degree in computer science with the Universidad
Autónoma de San Luis Potosí (UASLP), Mexico.
His main research interests include data mining,
machine learning, pattern recognition, artificial
intelligence, evolutionary computation, and bioin-
formatics.

SANDRA E. GUERRA-PALOMARES was born in
San Luis Potosí, Mexico, in 1986. She received the
bachelor’s degree in chemistry from the Chemical
Sciences School, Universidad Autónoma de San
Luis Potosí (UASLP), San Luis Potosí, in 2008,
and the master’s and Ph.D. degrees in basic
biomedical sciences from the Faculty of Medicine,
UASLP, in 2010 and 2016, respectively. She is cur-
rently appointed as an Associate Researcher at the
Viral and HumanGenomics Laboratory, Faculty of

Medicine, UASLP. She has authored six articles on HIV genomics and blood
borne pathogens. She continues to be involved in work with HIV and the
hepatitis B virus.

87226 VOLUME 8, 2020

http://dx.doi.org/10.1177/0272989x9101100305
http://dx.doi.org/10.1186/1752-0509-6-s3-s14
http://dx.doi.org/10.1086/321276
http://dx.doi.org/10.1371/journal.pone.0102483
http://dx.doi.org/10.1016/j.artmed.2011.06.008
http://dx.doi.org/10.1016/j.artmed.2011.06.008
http://dx.doi.org/10.1007/s00251-015-0848-z
http://dx.doi.org/10.1186/1471-2334-13-405
http://dx.doi.org/10.1145/170036.170072
http://dx.doi.org/10.1093/bioinformatics/btf869
http://dx.doi.org/10.1007/978-3-540-39804-2_22
http://dx.doi.org/10.1016/S1473-3099(10)70319-4
http://dx.doi.org/10.1016/S1473-3099(10)70319-4
http://dx.doi.org/10.1093/jac/dkq029
http://dx.doi.org/10.1093/jac/dkp151
http://dx.doi.org/10.1111/j.1468-1293.2011.00922.x
http://dx.doi.org/10.1371/journal.pone.0205119
http://dx.doi.org/10.1186/1471-2334-13-173
http://dx.doi.org/10.1186/1471-2334-13-173
http://dx.doi.org/10.3389/fmicb.2014.00450
http://dx.doi.org/10.1101/gad.1250204
http://dx.doi.org/10.1080/15384101.2014.1000212
http://dx.doi.org/10.1089/aid.2016.0230
http://dx.doi.org/10.1128/jvi.06082-11


J. S. Altamirano-Flores et al.: Identification of HIV-1 Vif Protein Attributes Associated With CD4 T Cell Numbers and Viral Loads

PEDRO G. HERNANDEZ-SANCHEZ was born
in Mexico City, in 1984. He received the bach-
elor’s degree in biochemistry engineering from
the Instituto Tecnológico de La Paz, Mexico,
in 2007, and the master’s degree and the Ph.D.
degree in basic biomedical sciences from the Fac-
ulty of Medicine, Universidad Autónoma de San
Luis Potosí (UASLP), San Luis Potosí, Mexico,
in 2011. He is currently working at the Centro de
Investigación en Ciencias de la Salud y Biomedic-

ina (CICSaB), UASLP. He has participated in the study of antiretroviral resis-
tance mutations in HIV-1 and HIV subtype diversity and polymorphisms.
He has author manuscripts related to Mexican HIV-1 protease sequence
diversity and with the prevalence of drug resistance mutations among Mexi-
can HIV Isolates.

JOSE L. RAMIREZ-GARCIALUNA was born in
Mexico City, Mexico, in 1985. He received the
Medical degree and theM.Sc. degree from theUni-
versidad Autónoma de San Luis Potosí (UASLP),
Mexico, in 2011 and 2014, respectively, and the
Ph.D. degree in experimental surgery fromMcGill
University, Montreal, QC, Canada, in 2019. Since
2020, he has been affiliated to the McGill Uni-
versity Health Centre and Swift Medical Inc.,
as Postdoctoral Fellow. He has authored over

20 articles on the immunological response to biomaterial implantation,
the immunological response to wound healing, and the characterisation of
novel approaches to promote wound healing in pre-clinical animal models.
He is also involved in clinical research through the development of diagnostic
and prognostic algorithms using machine learning and artificial intelligence.

J. RAFAEL ARGÜELLO-ASTORGA was born in
Gomez Palacio, Mexico, in 1963. He received the
Medical degree from the Faculty ofMedicine, Uni-
versidad Autónoma de Coahuila (UAdeC), Tor-
reón, Mexico, in 1987, and the Ph.D. degree in
molecular biology from the University College
London and the Royal Free Hospital School of
Medicine, London, U.K., in 1999. He is currently
the Head of the Biomedical Research Center,
Department ofMolecular Immunobiology, Faculty

of Medicine, UAdeC, and the General Director of the Institute of Science
and Genomic Medicine, Mexico. Over the last years, he has been working
on the development of new molecular methods and bioinformatics platforms
for the analysis of genetic diversity and its impact in monogenic and complex
diseases in Latin American populations. He has published more than 50 sci-
entific articles in prestigious journals. He received the Overseas Research
Students Award, the Dynal Literature Prize in Oslo, Norway, and the Shirley
Nolan Prize in London, England.

DANIEL E. NOYOLA was born in San Luis Potosí,
Mexico, in 1968. He received the M.D. and Ph.D.
degrees from the Universidad Autónoma de San
Luis Potosí (UASLP). He carried out a Residency
in pediatrics at the University of Connecticut and
the Postdoctoral Fellowship in pediatric infectious
diseases at the Baylor College of Medicine. Since
2000, he has been working at the Microbiology
Department, Medical Faculty, UASLP, where he is
currently a Professor and a Researcher. He is the

author/coauthor of more than 75 publications in the international literature.
His research interests focus on viral infections with special emphasis on the
respiratory syncytial virus, influenza, and cytomegalovirus.

JUAN C. CUEVAS-TELLO (Member, IEEE)
received the M.Sc. degree in computer sci-
ence (artificial intelligence) from the Universi-
dad Nacional Autónoma de Mexico (UNAM),
in 2001, and the Ph.D. degree in computer sci-
ence and artificial intelligence from the University
of Birmingham, U.K., in 2007. He is currently a
full-time Research Professor with the Engineer-
ing Faculty, Universidad Autónoma de San Luis
Potosí (UASLP), Mexico. His main research areas

include data mining, machine learning, pattern recognition, artificial neural
networks, evolutionary computation, computer vision, deep learning, high-
performance computing, and bioinformatics. He is a member of the Mexican
Society on Artificial Intelligence and a Professional Member of the Associ-
ation for Computing Machinery (ACM). He is a Paper Reviewer of Neural
Networks and Pattern Recognition journals (Elsevier).

CHRISTIAN A. GARCÍA-SEPÚLVEDA was born
in Santiago, Chile, in 1973. He received the
Medical degree from the Faculty of Medicine,
Universidad Autónoma de Coahuila (UAdeC),
Torreón, Mexico, in 1999, and the Ph.D. degree in
haematology and immunogenetics from the Uni-
versity College London and the Royal Free Hospi-
tal School of Medicine, in 2005. He worked as a
Scientific Advisor at the Hospital Angeles Lomas
Haemopoietic Stem Cell Transplant Unit. He is

currently appointed as a Principal Investigator at the Faculty of Medicine,
Viral and Human Genomics Laboratory, Universidad Autónoma de San
Luis Potosí (UASLP), San Luis Potosí, Mexico. He has authored more
than 40 articles on natural killer-cell immunogenetics, HIV genomics, and
artificial intelligence applications on biological data. He continues to be
involved in work with HIV, hepatitis B virus, and emerging viral infectious
diseases.

VOLUME 8, 2020 87227


