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ABSTRACT Vehicular Fog Computing (VFC) is a promising technique to enable ultra low service latency by
exploiting the computation and storage resources of both Roadside Units (RSUs) and Serving Vehicles (SVs)
such as buses and trams with rich resources. To tackle with the mobility of vehicles, the services are usually
migrated between RSUs and SVs, i.e., follow the vehicle, to maintain the benefits of VFC. However, making
optimal service migration decisions in VFC is challenging due to the mobility of SVs and the interference
between vehicles. In this paper, we investigate multi-vehicle service migration problem in VFC. We propose
an efficient online algorithm, called FEE, to optimize the service migration for each vehicle in each time
slot, where the latency in the current time slot, the expected latency in future time slots, and the interference
among vehicles are minimized. The expected latency in future times slots is obtained by trajectory prediction
based on hidden Markov model, and the interference is measured based on the server load. Finally, a series
of simulations based on real-world mobility traces of Rome taxis are conducted to verify the superior
performance of the proposed FEE algorithm as compared with the state-of-the-art solutions.

INDEX TERMS Service migration, vehicular fog computing, hidden Markov model, interference detection.

I. INTRODUCTION
With the development of autonomous driving, a variety of
novel computation-intensive and delay-sensitive vehicular
services, e.g., surrounding vehicle perception, high defini-
tion (HD) mapping, has emerged and posed great challenges
on the conventional vehicular networks that supported by
cellular networks and cloud computing [1], [2]. By deploying
edge servers at the Roadside Units (RSUs), it is possible
for the RSUs to provide services to the passing by vehicles
and hence greatly alleviates this problem, which is referred
to as Vehicular Edge Computing (VEC) [3]. However, VEC
is still far from perfect due to the limited resources of the
edge servers, and poor mobile coverage in rural areas [4].
Given the tremendous amount of vehicles with additional
communication and computation resources, it is beneficial to
fully utilize these resources, which is the concept of Vehicular
Fog Computing (VFC) [5], [6].

In VFC, besides the RSUs, we can also deploy the ser-
vices on some vehicles, especially those with relative rich
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communication and computation resources such as buses and
trams [7]. We refer this kind of vehicles as Serving Vehicles
(SVs). Without otherwise specified, we use vehicle to refer
to the rest of the other ordinary vehicles in the network [8].
VFC leverages SV mobility to enhance the service capacity
as it increases the communication opportunities of vehicles,
including the service range and resources utilization [9]. This
is because that SVs play the role of communication hubs,
where the near-located vehicles can be connected together
and further connect to more access points [10]. With VFC,
vehicles can request service from either RSUs or SVs with
ultra-low latency.

To tackle with vehicle mobility, a proper service migration
strategy is needed to achieve a balance between the migration
cost and the service latency [13]. However, making optimal
service migration decisions in VFC is challenging due to
the following reasons [14]–[16]. First, the mobility of SVs
affects the optimality of the service migration strategy. When
a vehicle has a similar trajectory with a SV over a period
of time, the real-time Vehicle-to-Vehicle (V2V) communi-
cations greatly decreases the service latency [11]. However,
the service will be frequently migrated when the vehicle
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requests this service from a SV which just passing by and
heading to a different direction, and even lead to the loss of
service data [12]. Thus, the migration cost of vehicles may
be misestimated, resulting in invalid migration [17]. Second,
the performance of migration strategy greatly relies on the
accuracy of the trajectory prediction of both the SVs and
vehicles [18]. However, the existing prediction methods, e.g.
Markov Decision Process (MDP), become intractable with
large number of vehicles [19]. Third, the interference among
different vehicles decreases the quality of experience (QoE).
When the vehicles make migration decisions independently,
they suffer from interference from each other as the resources
of the edge servers are limited [20]. To the best of our knowl-
edge, an efficient service migration strategy in VFC is still
missing.

In this paper, we investigate multi-vehicle service migra-
tion in VFC, and develop an efficient solution to make opti-
mal service migration decision for each vehicle. The main
contributions of this paper are summarized as follows:
• We formalize the service migration process in VFC net-
works as amixed integer nonlinear programmingMINP)
program for minimizing the average service latency,
where the QoE constraints and the mobility of SVs are
taken into account. To our best knowledge, this is the
first work that studies service migration with SVs in
VFC networks.

• We propose an efficient online algorithm, called
interFerence awarEe sErvicemigration (FEE), to decou-
ple the migration process between different vehicles,
services and time slots, where the latency in the cur-
rent time slot, the expected latency in future time
slots, and the interference between vehicles are min-
imized. The expected latency in future times slots
is obtained by trajectory prediction based on hidden
Markov model, and the interference between vehicles is
measured based on the server load. This makes our algo-
rithm scalable to multi-vehicle networks with low time
complexity.

• The effectiveness of the proposed FEE algorithm is
verified by simulations on the basis of real-world taxi
traces in Rome. The average service latency, and service
deadline guarantee rate of FEE are compared with other
four benchmarks. The simulation results demonstrate
the superior performance of FEE with SVs mobility,
especially with large vehicle numbers.

The rest of this paper is organized as follows. Section II
reviews related work. The system model considered in this
paper is present in Section III. Section IV propose FEE
algorithm, along with the complexity analysis. Section V
shows the performance evaluation and discussion. Finally,
the conclusion is drawn in Section VI.

II. RELATED WORK
Recently, different architectures of VFC have been proposed
in the literature. Satyanarayanan [21] regards each vehicle as
a fog node and chooses a coordinator for each area. Xiao

and Zhu [5] select the commercial fleet as the fog node.
Hou et al. [8] suggest slow moving vehicle or parked vehicle
provide its residual resources. In this section, we briefly
survey existing literature in service migration from the per-
spective of VFC networks [22], [23], service latency and
trajectory prediction [24].

The major studies in VFC focus on satisfying the
high-dynamic network topology caused by SVs.
Liu et al. [23] use software-defined networking (SDN) tech-
nology to enhance the QoE of latency-sensitive service in a
VFC-based networks. Zhang et al. [25] adaptively upload the
tasks to the fog computing servers by directly uploading or
relay transmission in VFC-enable vehicular ad hoc networks
to minimize the average latency. Yan et al. [26] propose a
centralized scheme to schedule forwarders to manage the
service requests in SVs during its driving route, and thus
achieve minimum transmission latency. Zhou et al. [27]
use the multi-armed bandit theory to maintain the delay
performances in the decision-making process, where the
appearance time of SVs is taken into account. Yao et al. [6]
propose a scheme to accommodate low latency requirement.
This scheme caches service data at a set of vehicle nodes that
may repeatedly visit the same hot spot. However, all above
researches ignore the cost of service migration, as well as the
different characteristics of services (e.g. latency-sensitive and
computing-intensive) and SVs (e.g., velocity and type).

Many previous service migration strategies help to reduce
the service latency [28]. Nadembeg et al. [14] selecting the
optimal servers in terms of offered throughput and splitting
user requested service into several portions, which the objec-
tive is minimizing the service latency. Ouyang et al. [12]
introduce a scheme to reduce system costs over time
in compliance with the time-varying resource situation.
Zhang et al. [29] propose an online service migration method
based on network efficiency optimization to maintain latency
performance while optimizing energy efficiency. However,
these works neglect the interference among users, which
leads to QoE deterioration.

Meanwhile, to account for the mobility of vehicles, exist-
ing works balance routing latency and migration latency
adaptively by predicting vehicle trajectory in the follow-
ing time [30]. Assuming the user moves in a straight line,
i.e., following a one-dimensional (1-D) mobility pattern,
Ksentini et al. [31] propose a method to predict user trajec-
tory by MDP model, and then decide the course of service
migration. Plachy et al. [32] use low-level channel informa-
tion to predict the user trajectory to choose a best communica-
tion path for migration, where the load of communication and
computing resources of the target base station (BS) is taken
into account. Considering the more realistic case, Wang et al.
[24] make the service migration decision by predicting the
user trajectory with a 2-D Markov Decision Process (MDP).
However, it is extremely challenging to maintain the predic-
tion accuracy of future information, such as user trajectory
owing to the increasing number of users. Such observations
motivate us to propose FEE algorithm, which is expected to
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utilize the HMM and specific interference detection function
to optimize latency performance.

III. SYSTEM MODEL
A. SYSTEM OVERVIEW
In this paper, we consider a VFC networks consisting of
N1 fixed position BSs and N2 SVs, and V vehicles, which
are geographically distributed over Na regular square area as
shown in Fig. 1. Note that SVs usually follow some fixed
routines (e.g., buses, delivery trucks, and garbage trucks)
[26]. In the following, we use BS to denote both fixed position
BSs and SVs, and let Sn denote the storage capacity of BS
n, n ∈ [1,N ], where N = N1 + N2.

FIGURE 1. The overview of the system considered in this paper.

There are M different vehicular services deployed in the
BSs. Let λm, γm,Dm and �m denote the input data size,
the computation intensity (i.e. CPU cycles/bit), the response
deadline and the priority of service m,m ∈ [1,M ], respec-
tively. Let fm,v, θm,v denote the CPU cycle and storage
requirements of a service request from vehicle v, v ∈ [1,V ]
to service m, respectively. The vehicle around the Na areas
connects to the BS with the largest received signal strength
indicator. When the BS receives a service request from a
vehicle, it will response to the request once this service is
deployed locally, otherwise it will forward the request to
another BS that has this service. We divide the total time into
T time slots, where each time slot lasts for τ seconds. In time
slot t, t ∈ [0,T − 1], vehicles generate service requests
according to some stochastic statistics. Table. 1 summarizes
the key parameter notations in our paper.

B. SERVICE PLACEMENT AND MIGRATION
We use a vector Bt = {Bt (v)|v = 1, 2, · · · ,V } to denote the
connected BSs of the vehicles in time slot t , where

Bt (v) ∈ [1,N ], ∀v, t. (1)

We use another vector bt,m = {bt,m(v)|v = 1, 2, · · · ,V } to
denote the serving nodes of the requests of vehicles to service
m in time slot t , where

bt,m(v) ∈ [0,N ], ∀v, t,m. (2)

TABLE 1. Definitions of notations.

Note bt,m(v) = 0 indicates vehicle v does not send request to
servicem in time slot t . Let b′t,m = {b

′
t,m(v)|v = 1, 2, · · · ,V }

denote the migration decision of service m in time slot t ,
where

b′t,m(v) ∈ [0,N ], ∀v, t,m. (3)

Note that b′t,m(v) indicates a service migration happens. Thus,
the serving node in next time update by

bt+1,m(v) = b′t,m(v) (4)

Whenmultiple services are placed at BS n, the total storage
requirements should not exceed its storage capacity, therefore
we have

M∑
m=1

V∑
v=1

θm,vH(b′t,m(v), n) ≤ Sn, ∀t, n. (5)

where

H(x, y) =

{
1, x = y,
0, otherwise.

(6)

C. SERVICE LATENCY
Service latency consists of transmission latency between the
vehicle and the BS, computing latency and migration latency.
The transmit rate between BS i and BS j in time slot t is

Rt (i, j) = W log(1+
P · d(i, j, t)−2 · |h|2

N0
) (7)
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where W , P and N0 are the channel bandwidth, transmit
power and noise power, respectively. h is a complex fading
vector modeled as circularly symmetric complex Gaussian
random variables [33]. d(i, j, t) is the distance between BS
i and BS j in time slot t . Assuming vehicle v generates a
request to servicem at the beginning of time slot t , the request
transmission latency is

lTt,m(v) =
λm

Rt (Bt (v), bt,m(v))
+ C, (8)

where C is a constant value to approximate the transmission
time between vehicle v and BS Bt (v).

The computation latency of vehicle v for service m is

lCt,m(v) =
λmγm

fm,v
. (9)

Service m may be migrated from BS bt,m(v) to BS b′t,m(v) in
time slot t . The service migration latency in time slot t can be
expressed as

lMt,m(v) =
θm,v

Rt (bt,m(v), b′t,m(v))
. (10)

Note in the case that bt,m(v) = b′t,m(v), service m is not
migrated in time slot t , and thus we have lMt,m(v) = 0.
In summary, the service latency of vehicle v to service m

in time slot t can be expressed as

Lt,m(v) = lTt,m(v)+ l
C
t,m(v)+ l

M
t,m(v). (11)

D. PROBLEM FORMULATION
Our goal is to minimize the long-term average latency by
selecting the optimal migration strategy b′t,m(v), which can
be expressed as

P1 : min
b′t,m

lim
T→∞

1
T

T−1∑
t=0

V∑
v=1

M∑
m=1

Lt,m(v) (12)

s.t. Lt,m(v) ≤ Dm,∀t, v,m

(1), (2), (3), (5) (13)

where constraint (13) ensures the request can be com-
pleted before its response deadline. The major challenge that
impedes the derivation of the optimal solution is the lack of
future information, e.g., the trajectories of SVs and vehicles,
and the request distribution. Moreover, even if the future
information is known, P1 is still a MINP problem that is
proven to be NP-hard.

IV. ONLINE SERVICE MIGRATION ALGORITHM
In this section, we present FEE algorithm, which is an online
online servicemigration decision approach, to solveP1. First,
we introduce a trajectory prediction algorithm to predict the
trajectory of both the SVs and the vehicles in the next 1
time slots. Next, given the predicted trajectory, we obtain the
expected service latency in the next1 time slots. To decouple
the migration decisions in different time slots, in each time
slot, weminimize the current service latency and the expected

service latency in the next 1 time slots by selecting the opti-
mal migration decision. Finally, a specific interference pre-
diction function is designed to avoid the interference among
vehicles. Based on this, we can further convert the optimiza-
tion problem in each time slot into a series of per-vehicle per-
service sub-problems which can be solved.

A. PROBLEM TRANSFORMATION
In order to solveP1 online, servicemigration in each time slot
must take into account the service latency in the future under
this service migration. Thus, the migration which migrate
service to the SVs that just passing can be avoided. Let
L1t,m(v) denote the service latency in next 1 time slot under
the service migration of vehicle v for service m in time slot
t , called by long-term latency, which will be introduced in
Section. IV-B. Based on this, the objective function of P1 is
equivalent to minimize the service latency in current time slot
and the long-term service latency, which is expressed as

P2 : min
b′t,m

V∑
v=1

M∑
m=1

[
Lt,m(v)+ αL1t,m(v)

]
s.t. (1), (2), (3), (5), (13) (14)

where α > 0 is the weighting parameter, a high value of α
mean the service migration decision take more into account
long-term latency.

By eliminating the resource constraints in each BS,
the migration decision of each vehicle and each service can
be considered to be independent, i.e., the objective function
of P2 can be divided into V × M sub-problems. However,
the optimal solution of these sub-problems may be invalid
for P2 if the resource constraints of the BSs are not satisfied.
Thus, we define a interference indicator 8t,m(v) to represent
the interference level of the service migration decision for
vehicle v to service m in time slot t , which will be introduced
in Section. IV-C.

Given the interference indicator, P2 can be converted into
V ×M smaller problems P3 with lower complexity.

P3 : min
b′t,m

Lt,m(v)+ αL1t,m(v)+ β�m8t,m(v)

s.t. (1), (2), (3), (13) (15)

where β > 0 is the weighting parameter of the interference
indicator. The detail of our proposed FEE scheme is shown
in Algorithm. 1. For each time slot and each vehicle, we firs
generate the predicted trajectory and serving node sequence
by TP algorithm and SNP algorithm, which are introduced
in Section. IV-B (Lines 3-4). For each service, we calculate
the long-term latency and interference indicator, and thus we
can directly solve P3 to obtain the migration decision (Lines
5-10). Finally, we update the system state in next time slot
according to our migration decisions (Line 11). As we greatly
reduced the size of the state space, the overall complexity is
reduced from O(VNM ) to O(VNM ) in each time slot t .

Note that there is a small probability that the migration
decisions obtained from P3 may be invalid if the resources
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Algorithm 1 FEE Algorithm
Input: : Long-term Trajectory, α, β ω1, ω2,K ,1,B0, b0,m
Output: Migration Decision b′t,m
1: for t = 1 to T do
2: for v = 1 to V do
3: Predict the trajectory of SVs and vehicles according

to TP Algorithm;
4: Predict serving node sequence according to SNP

Algorithm;
5: for m = 1 to M do
6: Obtain L1t,m(v) according to (24);
7: Obtain 8t,m(v) according to (31);
8: Obtain b′t,m by solving P3;
9: end for
10: end for
11: bt+1,m = b′t,m;
12: end for

TABLE 2. Historical trajectories of a vehicle.

constraints are not satisfied. The probability can be reduced
by choosing a proper β value, as shown in Section V.

B. EXPECTED LATENCY PREDICTION BASED ON HIDDEN
MARKOV MODEL
The process of predicting future delay is mainly divided into
two steps. The first step is to predict the trajectory of SVs and
vehicles, and the second step is to predict the serving nodes
sequence to calculate the long-term latency.

1) TRAJECTORY PREDICTION
We collect the historical trajectories of each vehicle to
predict its current trajectory. A set of H historical trajec-
tories of a vehicle is shown in Table 2, where Gh =
{g1h, g

2
h, · · · , g

lh
h }, h ∈ [1,H ] is one trajectory. The ele-

ments ofGh are positions sequentially obtained from the GPS
receiver when the vehicle moves along a certain route. ph
indicates the probability that the vehicle follows Gh, which
can be calculated by

ph = nh/NH , (16)

where nh and NH are the number of occurrences of trajectory
Gh, and the total number of trajectories collected. Once a
latest trajectory is obtained, we add it to the historical tra-
jectory table and update the probabilities accordingly. Two

Algorithm 2 Trajectory Prediction (TP) Algorithm

Input: (g1∗, g
2
∗, · · · , g

t
∗), 1, l0

Output: (gt+1∗ , gt+2∗ , · · · , gt+1∗ )
1: for h = 1 To H do
2: Obtain l ′h according to (17);
3: end for
4: Obtain the candidate trajectory Gh∗ according to (18);
5: Return (gl̄h∗+1h∗ , gl̄h∗+2h∗ , · · · , gl̄h∗+1h∗ )

trajectories, Gi and Gj, are regarded as the same if li = lj and
li∑
l=1
‖gli, g

l
j‖ ≤ ε, where ε is a threshold obtained empirically.

Given the historical trajectory table and the current tra-
jectory (g1∗, g

2
∗, · · · , g

t
∗), we use trajectory prediction (TP)

algorithm to predict the future trajectory, which works as
follows.
• First, we find the matching length of each trajectories in
the historical trajectory table. Let l ′h denote thematching
length of Gh, we have

l′h∑
l=1

‖gt−l+1∗ , gl̄h−l+1h ‖ ≤ ε, (17)

where 1 ≤ l̄h ≤ lh. Note that if (17) can not be satisfied,
we set l ′h = 0.

• Next, we choose the candidate trajectory as

h∗ = argmax
h

ph ·
l ′h · φ(l

′
h − l0)

H∑
h=1

l ′h · φ(l
′
h − l0)

, (18)

where l0 is the minimum matching length, and

φ(x) =

{
1, if x ≥ 0,
0, otherwise.

(19)

• Finally, the sub-trajectory (gl̄h∗+1h∗ , gl̄h∗+2h∗ , · · · , gl̄h∗+1h∗ )
of Gh∗ is regarded as the predicted trajectory
(gt+1∗ , gt+2∗ , · · · , gt+1∗ ) in the next 1 time slots.

The TP algorithm is summarized in Algorithm 2.

2) SERVING NODE PREDICTION
In this part, we estimate the long-term service latency in the
next 1 time slots by predicting the serving nodes, where the
HMM technique is utilized.

For each vehicle, by replacing the GPS position in pre-
dicted trajectory with the corresponding area index, we can
obtain a observation sequence O with length 1. We take the
serving node as the state of the vehicle, then we can use
HMM to obtain the serving node sequence with length 1.
We introduce a 5-tuple < π,N ,Na,At ,Bt > to denote the
HMM that describe the service migration process.
• Initial State π : π isN -dimension vector, which denotes
the probability distribution of the initial state. Each ele-
ment π (n), n ∈ [1,N ] is the probability of the vehicle
request service from BS n.
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• State Set N : The state set N includes all BSs, i.e.
N = {1, 2, · · · ,N }.

• Observation SetNa:The state setNa includes all possi-
ble area na vehicle may locate, i.e.Na = {1, 2, · · · ,Na}.

• State Transition Probability Matrix At : At is a N -by-
N probability matrix, where each element At (i, j), i ∈
[1,N ], j ∈ [1,N ] is the transition probability that ser-
vice is migrated from BS i to BS j in time slot t . Due
to the mobility of SVs, the state transition probability
varies between different time slots. More specifically,
if the distance between BS i and BS j decreases in
time slot t , At (i, j) will increase, and vise versa. Thus,
we update At (i, j) as

At (i, j) =
At−1(i, j)d(i, j, t − 1)

d(i, j, t)
N∑
j=1

At−1(i, j)
d(i,j,t−1)
d(i,j,t)

. (20)

• Observation Probability Matrix Bt : Bt is a Na-by-
N probability matrix, where each item Bn,t (i, j), i ∈
[1,N ], j ∈ [1,N ] is the probability that service is served
by serving node j when the vehicle is located in area i in
time slot t . Similar to (20), Bt (i, j) is update as

Bt (i, j) =
Bt−1(i, j)d̄(i, j, t − 1)

d̄(i, j, t)
N∑
j=1

Bt−1(i, j)
d̄(i,j,t−1)
d̄(i,j,t)

, (21)

where the d̄(i, j, t) denote the distance between area i
and BS j in time slot t .

Let δt ′ (n) denote the maximum probability that the serving
node is n in the time slot t ′, t ′ ∈ [t, t+1] given the observing
sequence, which can be obtained as

δt ′ (n) =
{

max
1≤n′≤N

δt ′−1(n
′)At ′ (n

′, n)
}
Bt ′ (O(t

′), n). (22)

Let ψt′(n) denote the corresponding serving node in previous
time slot, which can be obtained as

ψt ′ (n) = arg max
1≤n′≤N

[δt ′−1(n
′)At ′ (n

′, n)], (23)

where ψt ′ (n) = n′ means the service migrates from BS n′ to
BS n in time slot t ′.

We use a serving node prediction (SNP) algorithm utilizing
the HMM model to predict the top-K serving nodes in the
next1 time slots, where the details are shown in Algorithm 3.
The SNP algorithmworks as follows. First, we initialize δ1(n)
and ψ1(n) (Lines 1-2). Second, we update δ and ψ with the
time slot t ′ increases (Lines 3-8). Next, to find the top-K
probability serving node sequence, we record the kth highest
probability δ1(n) in time slot t + 1 (Lines 10), and obtain
the corresponding serving node sequence by recalling ψ ′

t
(Lines 11-14). As the value of δ1(n) has been recorded,
we replace it with the sub-optimal value according to (22),
where the n′ 6= Qk (1), and further update the value of
ψ1(Qk (1)) (Lines 15).

Thus, we can find the serving node sequence with top-K
probability by SNP algorithm. Take the observation sequence

Algorithm 3 Serving Node Prediction (SNP) Algorithm
Input: π,O,A0,B0,1,K
Output: state sequence QK , δ∗

1: Initialize: δ1(n) = πBt (O(1), n), n ∈ [1,N ];
2: Initialize: ψ1(n) = 0, n ∈ [1,N ];
3: for t ′ = 2 to 1 do
4: for n = 1 to N do
5: Update δt ′ (n) according to (22);
6: Update ψt ′ (n) according to (23);
7: end for
8: end for
9: for k = 1 to K do
10: Obtain δ∗(k) = max

1≤n≤N
δ1(n);

11: Obtain Qk (1) = arg max
1≤n≤N

ψ1(n);

12: for t ′ = 1− 1 to 1 do
13: Obtain Qk (t ′) = ψt ′+1(Qk (t ′ + 1));
14: end for
15: Update δ1(Qk (1)) and ψ1(Qk (1)) according to

(22),(23) with constraint n′ 6= {Qk̄ (1 − 1)|Qk̄ (1) =
Qk (1), 1 ≤ k̄ ≤ k};

16: end for

O and K serving node sequences as the trajectory and the
serving node in next 1 time slot, the expected latency in
future times slots L1t,m(v) is defined as

L1t,m(v) =
K∑
k=1

δ∗(k)
1∑
t ′=1

Lt+t ′,m(v) (24)

C. INTERFERENCE INDICATOR
In this subsection, we propose a interference indicator based
on the load in each BS. At the beginning of each slot, the fol-
lowing is performed:
• With the vehicles move, the load in each BS n is con-
stantly changing. The storage load of each BS n in time
slot t is

ρt (n) =
V∑
v=1

M∑
m=1

θm,vH(b′t,m(v), n)

Sn
. (25)

• BSs confirm the identities of its associated vehicles.
The number of vehicles which migrate service m from
BS n to another BS (compared to the beginning of the
previous time slot) is

π It (n,m) =
V∑
v=1

[
H(b′t,m(v), n)−H(bt,m(v), n)

]+
,

(26)

The number of vehicles which migrate service m to BS
n (compared to the beginning of the previous time slot)
is

πOt (n,m)=
V∑
v=1

[
H(bt,m(v), n)−H(b′t,m(v), n)

]+
, (27)
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TABLE 3. Service parameters.

The number of vehicles which currently request service
m from BS n is

πt (n,m) =
V∑
v=1

H(bt,m(v), n). (28)

• BSs update the probability that servicesmmigrate to BS
n by

Pr
{
I |n,m

}
=ω1 Pr

{
I |n,m

}
+ω2

π It (n,m)
πt (n,m)

, (29)

and update the probability that services m migrate from
BS n to another BS by

Pr
{
O|n,m

}
=ω1 Pr

{
O|n,m

}
+ω2

πOt (n,m)
πt (n,m)

, (30)

where ω1 and ω2 is the weight parameter (ω1+ω2 = 1).
• To avoid the interference among vehicles, the services
are willing to migrate from the BS with high load to the
BS with low load. Therefore, the interference indicator
is defined as

8t,m(v) = Pr
{
I |bt,m(v),m

}
ρt (bt,m(v))

−Pr
{
O|b′t,m(v),m

}
ρt (b′t,m(v)) (31)

V. PERFORMANCE EVALUATION
A. SIMULATION SETUP
In this section, we evaluate the performance of FEE algorithm
with simulations. We simulate an VFC system with 9 fixed
BSs and 4 SVs deployed on a regular cellular network, which
is divided into 625 geographical parts. The communication
radius of BSs is 350m, while 150m for SVs. The vehi-
cle trajectories are collected from the real-world Rome taxi
traces obtained in 2014 [34]. Seven typical vehicular services,
i.e., emergency stop (ES), collision risk (CR), accident report
(AR), parking (PA), traffic control (TC), platoon(PL), and
face detection (FD), are deployed on the serving nodes. The
parameters of the services are listed in Table 3 [20], [35],
[36]. We set W , P, and N0 to 10 MHz, 0.5 W and 10−15,
respectively [11].

We compare FEE with four benchmarks.
• Always-migrate scheme (AM): The service is always
migrated to the BS that is nearest to the vehicle.

• Never-migrate scheme (NM): The service is deployed
in the original BS and never migrate to other BS.

FIGURE 2. The accuracy of TP algorithm with different l0 values.

• Dynamic Markov Decision Process (DMDP) [24]:
This is a single-user service migration algorithm, where
the trajectory is predicted using MDP, and the optimal
service migration decision is made to minimize the over-
all cost.

• Partial dynamic optimization algorithm (PDOA) [36]:
Each vehicle selects a fraction of the services according
to the priority queue, and only migrates these services to
reduce the negative effect of trajectory prediction error.

B. THE ACCURACY OF TP ALGORITHM
Fig. 2 illustrates the accuracy of TP algorithm with different
l0 values. The predicted trajectory is defined as accurate if
it can be regarded as same with the real trajectory. It can be
observed that the accuracy increases with the growth of l0.
This is because a larger l0 value indicates the candidate
trajectory chosen by TP algorithm has a higher similarity
with the current vehicle trajectory. It is also shown that when
l0 is larger than 18, the accuracy becomes stable, which is
around 95%.

C. IMPACT OF DIFFERENT VEHICLE NUMBER
The average latency with different number of vehicles are
shown in Fig. 3(a). As can be seen from Fig. 3(a), when the
number of vehicles increases from 100 to 1000, the average
latency with NM is the highest. This is reasonable as the
services never migrate to follow the vehicles. On the other
hand, the lowest average latency is achieved by AMwhen the
vehicle number below 600, since the services are always suc-
cessfully migrated to the nearest BSs to follow the vehicles.
However, as the number of vehicles exceeds 600, the average
latency with AM increases exponentially. This is because the
servers run out of resources with too many vehicles, and the
interference among the vehicles begins to affect the perfor-
mance. The average service latency with PDOA is quite close
to that with AM, whose rising tendency is lower than AM due
to PDOA only migrate a fraction of services. It is found that
the average latency with FEE is is slightly larger than AM
and DMDP when the number of vehicles is smaller than 600.

84278 VOLUME 8, 2020



S. Ge et al.: Interference Aware Service Migration in VFC

FIGURE 3. The average latency and deadline guarantee rate with
different number of vehicles.

However, as the number of vehicles exceeds 600, the lowest
average latency can be achieved with FEE. This is because
the interference among the vehicles is taken into account in
the optimization problem formulated. This indicates that FEE
is suitable for VFC networks.

The deadline guarantee rate of the four methods is depicted
in Fig. 3(b). As an important performancemetric, the deadline
guarantee rate indicates the percentage of request that get
response before its deadline. It can be observed that the
deadline guarantee rate of NM is the lowest due to the long
transmission path. When the vehicle number is less than
700, the deadline guarantee rate with AM, DMDP,PDOA and
FEE are quite close to each other. However, the deadline
guarantee rate with AM, DMDP and PDOA reduce rapidly
when the user number exceeds 500. The deadline guarantee
rate with FEE is the highest with large user numbers, e.g., it is
approximately 95% with 1000 users. The results in Fig. 3(b)
are consistent with that in Fig. 3(a).

D. IMPACT OF PARAMETERS 1
Fig. 4 presents the average latency of FEE with different 1
values, where the number of vehicles is 800. It is surprising
that the average latency of FEE decreases as 1 increases.

FIGURE 4. The impact of 1 on the average latency, where the number of
vehicles is 800.

FIGURE 5. The impact of parameter α and β on the average latency,
where the number of vehicle is 800.

Note 1 = 0 means FEE only consider the latency in the
current time slot. The average latency of FEE is higher than
DMDP and AM when 1 = 0, however, the average latency
of FEE becomes the lowest among the 5 methods after 1
exceeds 1. This indicates by taking the long-term service
latency in the following time slots into account, better service
migration decisions can be made with FEE. It can also be
observed from the figure that the average latency of FEE
becomes stable if1 exceeds 4. Therefore, a trade-off between
the average service latency and the computation complexity
can be achieved by selecting a proper 1 value.

E. IMPACT OF PARAMETERS α AND β

Fig. 5 shows the average latency of FEE with different α and
β values, where the number of vehicles is 800. As can be seen
from the figure, if we fix β, the average latency decreases
as α increase from 0.1 to 100. This is because by taking
the long-term service latency in the next 1 time slots into
account helps to make a better migration decision. However,
when α exceeds 100 which means we put more emphasis
on the long-term service latency, the average latency slightly
increases. Similarly, if we fix α, the average latency decreases
as β increases from 0.1 to 50. This is because by taking the
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FIGURE 6. The average latency with velocity of SV, where the number of
vehicle is 800.

interference among vehicles into consideration, better service
migration decisions can be obtained. However, the average
latency increases if β exceed 50, where more conservative
servicemigration decisionsmight bemade to avoid the poten-
tial interference. It is found that with α = 100 and β = 50,
the lowest average latency can be achieved.

F. IMPACT OF THE VELOCITY OF SVs
Fig. 6 shows the impact of the velocity of SVs on the average
latency, where the number of vehicle is 800. There is a
tendency that the average latency of the 5 methods increase
as the velocity of SVs increase, as the high mobility of SVs
brings great challenge to the service migration decisions. The
average latency with NM is the highest, however, it is less
sensitive to themobility of SVs as the services nevermigrates.
On the contrary, the average latency with AM and DMDP
are much lower, but they are more sensitive to the mobility
of SVs. The average latency of AM, DMDP and PDOA
increases exponentially when the velocity of SVs exceeds
35 Km/h. The average latency with FEE decreases when the
velocity of SVs is less than 30 km/h, since the low mobility
of SVs reduces the service migration opportunities. Even
the latency with FEE also increase with the velocity of SVs
exceeds 30 km/h, the lowest average latency can be achieved
with FEE.

VI. CONCLUSION
In this paper, we investigate the service migration problem
in VFC networks consists of fixed position BSs, moving SVs
and vehicles. We formulate the service migration process as a
MINP optimization problem to minimize the average latency,
where the mobility of SVs and the interference among the
vehicles are taken into account. An online algorithm, FEE,
is proposed to solve the MINP problem based on HMM
technique and a interference detection function. The sim-
ulations results based on the real world taxi trajectory in
Rome demonstrated that the proposed solution can reduce
the average latency by up to 7.6% and improve the deadline

guarantee rate by up to 8.0%, as compared with the state-of-
the-art solutions.
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