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ABSTRACT Hydrogen is considered to be a hazardous substance. Hydrogen sensors can be used to detect
the concentration of hydrogen and provide an ideal monitoring means for the safe use of hydrogen energy.
Hydrogen sensors need to be highly reliable, so fault identification and diagnosis for gas sensors are of
vital practical significance. However, traditional machine learning methods for fault diagnosis are based on
features extracted by experts, prior knowledge requirements and the sensitivity of system changes. In this
study, a new convolutional neural network (CNN) using the random forest (RF) classifier is proposed for
hydrogen sensor fault diagnosis. First, the 1-D time-domain data of fault signals are converted into 2-D gray
matrix images; this process does not require noise suppression and no signal information is lost. Secondly, the
features of the gray matrix images are automatically extracted by using a CNN, which does not rely on expert
experience. Dropout and zero-padding are used to optimize the structure of the CNN and reduce overfitting.
Random forest, which is robust and has strong generalization ability, is introduced for the classification of
gas sensor signal modes, in order to obtain the final diagnostic results. Finally, we design and implement a
prototype hydrogen sensor array for experimental verification. The accuracy of fault diagnosis in hydrogen
sensors is 100% under noisy environment with the proposed method, which is superior of CNN without RF
and other methods. The results show that the proposed CNN with RF method provides a good solution for
hydrogen sensor fault diagnosis.

INDEX TERMS Fault diagnosis, hydrogen sensor, convolutional neural network, random forest, feature
extraction.

I. INTRODUCTION

Traditional energy sources, such as liquefied petroleum gas,
natural gas and coal, are non-renewable resources; therefore,
it is crucial that new energy sources are found to replace
them. Hydrogen energy is a new energy source for sustainable
development, against the background of the conventional
energy crisis [1], which has been recognized as a zero-
carbon energy source. In the 21 century, progress has been
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made in many aspects in the field of hydrogen energy. Many
advanced countries have formulated plans for the develop-
ment of hydrogen energy [2], [3].

Hydrogen—a highly reactive molecule—is considered to
be a hazardous substance. It is flammable and explosive [4],
so it is particularly important to monitor hydrogen leakage
for safety purposes. A hydrogen sensor, which is designed
to monitor the concentration of hydrogen, is a necessary
device for the safe use of hydrogen energy [5]. Once the
concentration exceeds the normal range, its alarm will sound
immediately. However, due to the influence of environmental
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factors, hydrogen sensors are prone to failure; once one fails
in application, it will lose its hydrogen safety detection func-
tion, which may lead to combustion and explosion. Therefore,
it is vital to detect and identify faults in hydrogen sensors.

Semiconductor gas sensors based on SnO» sensitive mate-
rials have been widely used in practical applications and are a
mature technology [6]. However, in terms of the effectiveness
of their long-term use, the output value of the gas sensor is
not only related to the concentration of the measured gas
but is also affected by environmental factors, such as dust,
humidity, temperature and air pressure, as well as degrada-
tion in the chemical characteristics of the sensor materials
(e.g., heating of the wire or oxidation). All of these factors
lead to the parameter drift of a gas sensor and impair its
effectiveness. Therefore, fault diagnosis of gas sensors has
become an important issue to many researchers [7]-[11].

Generally, fault diagnosis methods for sensors can be
divided into four categories: knowledge-based, model-based,
data-driven and hybrid/active [12]. As the data-driven method
is suitable for the analysis of complex signal systems, it has
been widely used in fault diagnosis, and an increasing number
of engineers and researchers are implementing this method in
their work [13].

Machine learning (ML) methods are an important aspect
of the data-driven approach, which have already been
applied to fault diagnosis; for example, the k-nearest neigh-
bors algorithm (KNN) [11], principal component analy-
sis [14], extreme learning machine (ELM) [15], wavelet
transform [16], support vector machine (SVM) [17], learning
vector quantization (LVQ) [18], [19], back propagation (BP)
neural network [20], gray forecasting [21] and non-negative
matrix factorization [22] models have all been used for fault
diagnosis.

The feature extraction process in these methods is unable
to generate discriminative features of raw data, as well as con-
suming a lot of time and energy. Thus, the degree of automa-
tion is greatly reduced. The final result can also be impacted
by the extraction process [23]. If a system is particularly
complex, choosing an appropriate feature function requires
considerable expertise and a deep mathematical basis. Thus,
expert experience will directly affect the final results.

Recently, deep learning (DL), as an advanced technol-
ogy, has been able to overcome the above shortcomings.
It can automatically learn abstract features of the original
data and classify them effectively, avoiding the shortcoming
of requiring handcrafted features designed by engineers [24].
Therefore, many DL methods have been gradually introduced
into fault diagnosis, such as sparse filtering [25], deep belief
networks [26], [27] and sparse autoencoders [28]. Convolu-
tional neural network (CNN) is one of the most effective types
of DL. Turker Ince et al. used a 1-D CNN to detect motor
faults [29]; Long Wen et al. used a CNN for fault diagno-
sis [30]; and Qinyu Jiang ef al. used a deep CNN for bearing
fault diagnosis in a noisy environment [31]. Min Xia et al.
used a CNN-based approach for fault diagnosis of rotating
machinery [32]. An ensemble CNN model is proposed for
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bearing fault diagnosis by Yang Liu et al [33]. Also, a novel
sensor data-driven fault diagnosis method is proposed based
on CNN [34]. Compared to traditional ML methods, a CNN
has achieved better results, but its application in gas sensor
fault diagnosis is still in a developmental stage.

Classification is an essential part of the process of fault
diagnosis, therefore the choice of classifier is very important.
Ensemble learning, also called multi-classifier system and
committee-based learning, uses multiple weak classifiers to
form a strong classifier, the classification results are obtained
according to the majority voting principle. Such a process
makes it perform better for complex data and obtain better
classification accuracy and generalization performance. The
data of fault diagnosis has the characteristics of large scale,
multi-scale and autocorrelation, thus the classifier based on
ensemble learning could obtain better performance in fault
diagnosis [35], [36].

Random forest (RF) is an ensemble learning method which
classifies using a voting model. Compared to other ML
methods, RF has the characteristics of low complexity, fast
computing speed, high accuracy rate, insensitive to parame-
ters, no need for feature normalization, less over fitting, etc.
[371, [38]. Importantly, RF is more robust with respect to
noise [37]. Therefore, it is more suitable to use RF when
respect to a large number of data with reasonable features,
especially under noisy environment. The literature [38], [39]
has demonstrated that sensors fault diagnosis based on RF is
feasible.

It has been reported that the advantage of CNN’s ability
in feature extraction combined with the good performance
of classification of RF has been adopted for image classi-
fication [40], solar photovoltaic array detection [41], inter-
net intrusion detection [42], scene categorization [43], facial
expression recognition [44], tree species classification [45],
ship identification on satellite image [46]. Recently, a novel
bearing fault diagnosis method based on CNN and RF has
been proposed, and experimental results indicate that the pro-
posed method achieves high accuracy in bearing fault diag-
nosis under complex operational conditions and is superior to
traditional methods and standard deep learning methods [47].
However, the novel method combined CNN and RF is rarely
used for gas sensor fault diagnosis till now.

In this article, a method for hydrogen sensor fault diagnosis
using a CNN with RF (CNN-RF) is proposed to automatically
capture features of the gas sensor signal and improve upon
the performance of conventional methods. The main contri-
butions of the paper are as follows.

1) A method for transforming raw fault data into gray
matrix images is proposed to process the sensor
fault signal directly, which does not require expert
experience.

2) In order to reduce the overfitting phenomenon,
the structure of the CNN is optimized by dropout and
zero-padding.

3) The sensor signal features captured by the CNN are
input into the RF classifier to diagnose the fault mode
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of a hydrogen sensor. The proposed method is verified
by a self-made experimental system. The experimental
results show that the accuracy of the CNN-RF method
is higher than the accuracy of the CNN alone and other
methods.

The remainder of this paper is organized as follows:
The second section introduces the theoretical fundamentals.
In the third section, a novel model based on CNN-RF for
hydrogen sensor fault diagnosis is introduced. The fourth
section verifies the effectiveness of the proposed method
through experiments. The fifth section provides a summary
and discussion.

Il. THEORETICAL FUNDAMENTALS

Convolutional neural network was proposed in the late 1980s
for processing data in the form of multiple arrays [48]. Firstly,
in a CNN, each neuron in a feature map is sparsely connected
to a small group of neurons in the previous layer, which is
different from the connections in an artificial neural network
(ANN). A CNN mainly comprises a convolutional layer,
a pooling layer and a fully connected (FC) layer. As CNN
was inspired by the concept of simple and complex cells in the
visual cortex in the brain, it has been widely used in computer
vision and image classification [48].

Kernel
NxN

Feature map - Input

Feature map - Output

(M-N+1)x (M-N+1)

MxM
FIGURE 1. Convolutional layer.

A. CONVOLUTIONAL LAYER

The purpose of convolutional layers is to extract different
input features. Each feature map is composed of rectangular
neurons. Neurons in the same feature map share weights,
which are called the convolutional kernel. Convolutional ker-
nels are usually initialized in the form of random matrices.
A convolutional layer is shown in Figure 1. The direct benefit
of using shared weights (i.e., convolutional kernels) is to
reduce the connection between layers of the network while
reducing the risk of overfitting [49], [50].

In a convolutional layer, assume that there are K filters and
M is the input. Generally, the output feature maps of the /th
layer are calculated as follows [50]:

=f (X, T Rk ) =1 N
where f and x are the activation function and convolutional
operations, respectively; b]l. denotes the bias corresponding to
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Jjth filter, x;~ denotes the ith input map, X; denotes the j th

output map, and kl.lj denotes the kernel of the j th filter, which
is connected to the i th input map.

B. POOLING LAYER

Pooling layers are a form of downsampling. The function of
the pooling layer is that it can merge similar features in a
local position to make the detection more reliable [26]. In a
pooling layer, assume that there are M input feature maps and
M output feature maps. Generally, the output feature maps of
the / th layer are calculated as follows [49]:

x}:f(ﬂ}down(x;_1>+bjl->, j=1L....M, (2

where f is the activation function, down is the sub-sampling
function, ﬂ; and bjl. are the multiplicative bias and the additive

bias corresponding to the j th filter, respectively, x} is the j th
output map and x; ~!is the Jj th input map.

Neuron )

Input

Output

FIGURE 2. Fully connected layer.

C. FULLY CONNECTED LAYER

In a CNN structure, after several convolutional layers and
pooling layers, one or more FC layers are connected. The FC
layer model is shown in Figure 2. Assuming that the length
of the input is M and the total length of the output vector
is N, then the output vector of the / th layer is calculated as
follows [51]:

=3, Tt xwhb), =1 N ()
where f is the activation function, xf ~1is the Jj th input value,
x} is the j th output value, bjl- represents the bias corresponding
to the j th output value and wfj is the weight of the jth output
value, which is connected to the i th input value.

There are many famous CNN models, such as
GooglLeNet [52], LeNet-5 [53], AlexNet [54], and Network
in Network [55]. In this paper, the classical release of CNN,
LeNet-5, which has been applied to handwritten charac-
ter recognition, is adopted to solve the gray matrix image
classification task of fault diagnosis. It has two alternating
convolutional and pooling layers with a two-layer FC ANN.
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1lIl. PROPOSED MIODEL FOR HYDROGEN

SENSOR FAULT DIAGNOSIS

In this section, a new model is proposed for hydrogen sensor
fault diagnosis. Firstly, a method for image conversion from
raw data to a gray matrix image is proposed for process-
ing of the sensor signal. Secondly, two strategies—dropout
and zero-padding—are used to optimize the CNN structure.
Finally, the novel CNN-RF method is proposed.

A. GRAY MATRIX IMAGE CONVERSION METHOD

Data pre-processing of the sensor signal is the first step in
gas sensor fault diagnosis; the quality of data processing
will directly affect the accuracy of the diagnosis. Traditional
gas sensor fault signal processing methods mostly rely on
expert experience to extract features from raw data and cannot
directly handle raw signals [56]. Extracting features is not
only exhausting work but also plays a key role in the results.
In this study, a method for transforming the raw gas sensor
signal into gray matrix images is proposed. The main aspects
of the method are as follows.

Algorithm 1 Algorithm of Gray Matrix Image Conversion
Input: The measured raw data sequence X; of each sensor
in the sensor array.

Output: The image of gray matrix conversion.

1: Define: temp = raw data sequence.

2: Convert the temp to a value between 0 and 1.

3: get the image temp when image_temp = uint8
(temp x 255).

4:for j = 1: M then

5: get the image value: image (j, 1: N) =
((+G-1) x N): (N x j)).

6: end

7: end for

image_temp

The method of gray matrix image conversion is sketched in
Algorithm 1. In this method, the raw signal of the gas sensor
is first converted into a value between 0 and 1, followed by
conversion into a gray matrix image of dimension M x N
using uint8 encoding technology, where M is the width of the
image and N is the height of the image. The gray matrix image
conversion method is shown in Figure 3.

The advantage of this method is that it provides a repre-
sentation for exploration of the 2-D features of the original
sensor signal. It can retain the original features of the data
as much as possible and does not depend on expert experi-
ence or artificial feature extraction.

In this paper, as each 1-D fault signal sample consisted
of 2000 data elements, the gray matrix image size was set
to 50 x 40 pixels.

B. DROPOUT

In CNN training, the problem of overfitting is often encoun-
tered. Reducing the interaction of feature detectors in a neu-
ral network can prevent overfitting, in order to improve its
performance [57]. Dropout can be used as a strategy for
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FIGURE 3. Gray matrix image conversion method.

training deep neural networks where, in each training batch,
the overfitting phenomenon can be significantly reduced by
ignoring half of the feature detectors; that is, the weights of
half of the hidden layer nodes are set to O during dropout.

In this study, dropout is used to effectively prevent overfit-
ting. We set the retaining probability to p = 0.5 for dropout
and, so, the output of each neuron in every layer was zero
with probability 0.5. The dropout neural net model is shown
in Figure 4. This strategy can reduce interactions between

feature detectors.

FIGURE 4. Dropout neural net model (a) standard neural net and (b) with
dropout neural net.

(@

C. ZERO-PADDING

In processing image information using a CNN, a majority of
the edge pixels in the input image are only operated on by the
convolutional kernel once, whereas pixels in the middle of the
image will be scanned many times. This reduces the reference
degree of boundary information, to a certain extent. On the
other hand, after using zero-padding, the new boundary has an
effect on a certain part of the actual processing. This problem
can be solved, to a degree. At the same time, input images
of different sizes can be complemented such that they are
same size. Suppose the input size is (H, W), the filter size is
(FH, FW), the output size is (OPH, OPW), the padding length
is P, and the stride size is S. Then, the output size formula is
as follows:

H+2P—FH

OPH = ———— +1 )
W +2P — FW
OPW = ———— +1 5)

Therefore, in this study, zero-padding is used to control the
feature dimension.
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D. RF CLASSIFIER

The selection of a classifier plays a key role in the classifi-
cation results. It is difficult for the traditional CNN, which is
based on the softmax classifier, to achieve the best generaliza-
tion capability, due to the local minimum, vanishing gradient,
and overfitting problems in the training process.

The random forest algorithm is an ensemble learning
method based on a decision tree. Suppose there are N training
sets, and each tree randomly selects N training samples from
them as a sub-training set. If there are M features, select
m (m < M) features, and then select the optimal feature
from each split. In this way, each tree can obtain training
results according to different sub-training sets, and sampling
with return can also ensure the ‘““integrity” of the training
results. Each tree of the input sample is judged separately
and the final classification is determined according to the
voting results; that is, the results of several weak classifiers
are combined to form a strong classifier. The proposed model
makes use of the RF as an initial ““mock test” in the algorithm,
and thus has good application in large data sets and for input
samples with high-dimensional features. The RF model is
shown in Figure 5.

Random forest instance

DAY [<//\X>\.

Tree 1 Tree 2 Tree -n

Class A Class-A Class B

| Ma]orlty Voting
Final-Class

FIGURE 5. Random forest (RF) model.

Therefore, in this study, RF is used as a classifier. When
only a few parameters need to be adjusted, its robustness
against noise disturbance is enhanced, the generalization abil-
ity and classification effect of the model are improved and
overfitting of the model is reduced.

E. CNN-RF METHOD FOR FAULT DIAGNOSIS

This paper proposes the CNN-RF method, which contains
four types of layers in its structure: namely, a convolutional
layer, a pooling layer, a fully connected layer and a RF
classifier layer. It also uses two strategies—dropout and zero-
padding—to prevent overfitting and enhance its performance.
The CNN-RF method is used to process gray matrix images
for fault diagnosis of hydrogen sensors. The samples are
labeled by fault type, according to the sensor signal records.
Then, the samples were converted into gray matrix images.
Layers with dropout and zero-padding were added to deal
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with the overfitting problem. The sensor fault type features
are captured by the convolutional, pooling, and fully con-
nected layers. Then, the features are input into the RF classi-
fier to obtain the fault diagnosis results, as it has demonstrated
good performance in fault mode classification of hydrogen
sensors. The overall structure of the proposed model based
on the CNN-RF method introduced in this paper is shown
in Figure 6.

IV. EXPERIMENT AND VALIDATION OF THE

PROPOSED METHOD

A. EXPERIMENTAL SETUP

The data used for verification of the CNN-RF method were
obtained through our experimental system. A system diagram
of hydrogen sensor arrays is shown in Figure 7. The experi-
mental system included a standard hydrogen concentration
cylinder, a standard air cylinder, a gas molecular flowme-
ter, a gas mixer, a two-way regulated power supply, a data
collector, a constant temperature and constant humidity box,
a computer system, a sensor array chamber, a SnO, sensor
array and a sensor model (MQ-8). We used a six-sensor, com-
mercially available MQ-8 gas sensor array, screen-printed in
our experiments, as shown in Figure 8. The MQ-8 gas sensor
cylinder core structure is shown in Figure 9.

When the test system works, the standard gas in the cylin-
der enters the gas molecule flowmeter through the pressure-
reducing valve, which controls the flow rate of the air
molecule flowmeter and the standard hydrogen molecule
flowmeter in order to obtain the target hydrogen concentra-
tion in the gas mixer. After the hydrogen concentration in the
gas mixer is homogenized, it flows into the gas chamber of the
sensor array through the pipeline and is loaded onto the sensor
array. The sensor array detects the concentration of hydrogen
gas after the working and heater voltages are provided by the
two-way regulated power supply, respectively. The detection
signal of the sensor array is picked up by the data collector and
transmitted to the computer system through a 232 data bus
interface. The structure of the sensor signal pickup circuit is
shown in Figure 10. The program was run on a 2.8 GHz Intel
CPU with 8 GB RAM running Windows 10. A photographic
image of the experimental setup of the hydrogen sensor array
is shown in Figure 11.

According to long-term practical experience and related
literature reports [7], [58], [59], six gas sensor fault types
were selected: impact fault, stuck fault, heating wire discon-
nection (HWD) fault, bias fault, exfoliation of sensitive body
(ESB) fault and false welding of sensitive body (FWSB) fault.
Of them, the structure of HWD fault and ESB fault is shown
in Figure 12, which could provide a good understanding of
hydrogen sensor’s fault structure. Through the experiments,
we obtained MQ-8 gas sensor signals of seven modes under
normal environment (i.e., the six fault types and without
fault), as shown in Figure 13.

However, hydrogen sensors perform under noisy environ-
ment is inevitable in real world industrial applications.
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[ . 1 [ 1

Zero-padding  Zero-padding  Zero-padding Zero-padding
Dropout Dropout

FIGURE 6. Proposed model based on convolutional neural network-random forest (CNN-RF) in this paper.

.. glass flow chamber V,=4.5V
] total flow rate: h ’
exhaust, 7 Sensor 400 mL/min piccoammeter © ©
88888
o
D ——o Vout
A
Air-1000 ppm H, TC
TSI 4100 mixing \_J coo Tooo R sensor R reference
flow meters tank
Power supply I I
Air
Vin=5V

FIGURE 10. MQ-8 gas sensor signal picking circuit diagram (A) SnO, film,
FIGURE 7. System diagram of hydrogen sensor arrays. (B) Au electrode, (C) Pt wire and (D) Ni-Cr alloy resistor.

Constant temperature and
constant humidity box

o

Data collector

Standard air cylinder

FIGURE 8. A photograph of the MQ-8 gas sensor array used in our
experiments.

FIGURE 9. MQ-8 gas sensor cylinder core structure.

(a) (b)

FIGURE 12. The structure of HWD fault and ESB fault (a) HWD fault and
Since the noise varies a lot, and we can’t get all the labeled ~ (b) ESB fault.

training samples under different noisy environment. Accord-

ingly, additive white Gaussian noise is added to the original The CNN-RF method requires a lot of data for training
signals to composite signals [24]. MQ-8 gas sensor signals of samples and test samples, and sensor fault signals are difficult
seven modes under noisy environment (i.e., the six fault types to obtain in large quantities; therefore, based on the acquired
and without fault) are shown in Figure 14. (normal and fault) signals, data simulation was carried out
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Normal signal

The signal including impact fault The signal including stuck fault

The signal including HWD fault The signal including bias fault
— | |
L ]
The signal including ESB fault The signal including FWSB fault

] [y

FIGURE 13. Seven signal modes of MQ-8 gas sensor under normal
environment.

Normal signal

| |
l |

The signal including impact fault  The signal including stuck fault
L | | |
| | L ]

The signal including HWD fault

]

The signal including ESB fault

I |
L |

The signal including bias fault
e———

The signal including FWSB fault

L

FIGURE 14. Seven signal modes of MQ-8 gas sensor under noisy
environment.

to increase the amount of data. The simulation samples were
acquired by overlapping a sensor fault signal onto the normal
signal acquired by the sensor array.

B. VALIDATION OF CNN-RF METHOD

In this section, the results of CNN-RF training and inference
are provided, in order to validate the performance of the
proposed model in hydrogen sensor fault diagnosis.

TABLE 1. Sample number of seven modes of sensor signal.

Models Fault description Training Testing
samples samples

1 Normal signal 100 37

2 Impact fault 100 37

3 Stuck fault 100 37

4 HWD fault 100 37

5 Bias fault 100 37

6 ESB fault 100 37

7 FWSB fault 100 37

1) CNN-RF TRAINING

As shown in Table 1, 137 sets of experimental samples were
obtained for each sensor signal mode, of which 100 were
training samples and 37 were test samples. There was no
repetition between the training samples and test samples. The
seven sensor signal modes under noisy environment were first

VOLUME 8, 2020

Stuck fault HWD fault

FWSB fault

Normal signal

p s

Bias fault ESB fault

FIGURE 15. Converted gray matrix images of the gas sensor signals of
seven modes under noisy environment.

converted into gray matrix images, the size of each being
50 x 40 pixels (as shown in Figure 15). Then, the images
were input into the proposed method for training.

The proposed method was trained for 1000 iterations. The
relevant parameters for each layer of CNN-RF are listed
in Table 2. The training accuracy reached 100% and the
training loss closed to O after 300 iterations as is shown
in Figure 16. Furthermore, all values remained stable after
300 iterations. Thus, we obtained a well-trained model with
100% accuracy through training of the CNN-RF.

TABLE 2. Parameters of CNN-RF.

Layer Layer Kerne'l size c‘;:;“;;l Drop- Zerg—
No. type /stride size out padding
1 Convolution 1 3x3/1x1 16 No Yes
2 Max Pooling 1~ 3x3/2x2 16 Yes Yes
3 Convolution2 3 x3/1x1 16 No Yes
4 Max Pooling2 3 x3/2x2 16 Yes Yes
5 FC1 2080 1 No No
6 FC2 128 1 No No
7 RF 7 1 No No

2) CNN-RF INFERENCE

Inference for hydrogen sensor fault diagnosis was realized by
the new method, according to the experimental data. To obtain
better results, the experiment was repeated six times, and the
final diagnosis results of CNN-RF and CNN were compared
under normal and noisy environment (in terms of accuracy).
The mean accuracy results of CNN-RF and CNN are listed
in Table 3. The diagnosis results for the seven hydrogen
sensor signal modes under noisy environment using CNN-RF
are shown in Figure 17, where the matching degree between
the predicted and actual type is 100% in each row.

In order to further verify the advantage of RF as the
classifier involved in the method of CNN-RF we adopted,
we replaced a RF classifier by a KNN (CNN-KNN), a SVM
(CNN-SVM), a BP (CNN-BP) classifiers and compared
the mean accuracy of all the methods above under noisy
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FIGURE 16. Proposed method training accuracy and loss under noisy
environment.

TABLE 3. The mean accuracy of CNN-RF and CNN under normal and noisy
environment repeated 6 times.

Normal environment Noisy environment

Method —C\\'RF___CNN____CNN-RF___CNN

Max 100% 100% 100% 99.61%

Min 100% 99.23% 100% 98.84%

Mean 100% 99.74% 100% 98.91%
Normal 0 o [ o 0 0 0 37 | 100%
ﬂé Impact | 0 0 0 0 0 0 37 | 100%
2 Stuck 0 0 0 0 0 0 37 | 100%
E HWD 0 0 0 0 0 0 37 | 100%
= Bias 0 0 0 0 0 0 37 | 100%
2 ESB 0 0 0 0 0 0 37 | 100%
< FWSB| 0 0 0 o [ o 0 37 | 100%

Normal Impact  Stuck HWD Bias ESB FWSB  Total ~ Accuracy

tests
Predicted type and counts
FIGURE 17. Test results in the diagnosis of the seven hydrogen sensor

signal modes using CNN-RF under noisy environment.

TABLE 4. The mean accuracy of CNN-RF, CNN-KNN, CNN-SVM and
CNN-BP under noisy environment repeated 6 times.

Method CNN-RF CNN-KNN CNN-SVM  CNN-BP

Max 100% 99.61% 99.61% 99.23%
Min 100% 98.84% 98.84% 98.84%
Mean 100% 99.16% 99.29% 98.91%

environment repeated 6 times. The experimental results
show that the CNN-RF model has a stronger robustness and
higher generalization ability for the non-linear problem of
hydrogen sensor fault diagnosis, all the results are listed
in Table 4.

To evaluate the performance of the CNN-RF method,
other traditional methods were selected for a compari-
son of prediction accuracy. The selected methods were
KNN [11], ELM [15], SVM [17], LVQ [18], [19], BP [20],
RF [39], and CNN-REF, the last of which (i.e., the proposed
model) had higher accuracy than the other methods under
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TABLE 5. Diagnosis accuracy based on seven different methods under
noisy environment.

Methods Accuracy (%)
KNN 71.81%
ELM 70.27%
SVM 84.56%
LVQ 66.41%

BP 74.52%
RF 96.91%
CNN-RF 100%

noisy environment. The comparison results, in terms of sen-
sor fault diagnosis accuracy, are shown in Table 5.

V. CONCLUSION

In this study, we presented a novel method, CNN-RF,
for the fault diagnosis of hydrogen sensors. The proposed
method is able to fuse the three major blocks of traditional
fault-detection approaches into a single learning body—
feature extraction, feature selection and classification—
without requiring expert intervention. The main contributions
of this study are the development of a raw sensor signal-
to-gray matrix images conversion method, which changes
the default image size of LeNet-5 from 32 x 32 pixels to
50 x 40 pixels, according to the length of the hydrogen sensor
signal data. Through dropout and zero-padding, the structure
of a CNN with a RF classifier is optimized, which ensures
that the training model structure of the proposed method has
better generalization ability and robustness, compared to the
traditional CNN method, for the fault diagnosis of hydrogen
sensors. The experimental results show that the proposed
method can learn features effectively and achieve convincing
detection results for a hydrogen sensor with seven modes. The
proposed method achieved a prediction accuracy of 100% on
the seven modes studied, outperforming the CNN alone and
other methods. The proposed method can also be applied to
other gas sensor fault diagnosis.

Some limitations of the new method are the following:
optimization of the CNN parameters requires debugging on a
case-by-case basis, and the effectiveness of the method has
only been verified in this experiment. Based on the above
limitations, we plan to consider how optimization techniques
can be used to adjust the CNN parameters in fault detection
for process monitoring and to apply the method to a larger
range of sensor fault diagnosis scenarios in future work.
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