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ABSTRACT Owing to the inter-vehicle non-line-of-sight (NLOS) measurement and malicious attack in
global navigation satellite system (GNSS) challenged environment, the vehicle position precision is seriously
damaged. In order to improve the vehicle position accuracy, we propose a new Bayesian cooperative
localization scheme which tackles this problem by combining the vehicle position measurements and inter-
vehicle distance measurements. In the proposed scheme, an abnormal vehicle detection algorithm (AVDA)
is presented to eliminate the impacts of NLOS and malicious attack. Simulation results demonstrate that the
proposed scheme can achieve excellent localization performance in the presence of NLOS and malicious
attacks. Based on these results, the abnormal and normal detection rates of AVDA are approximate and the
root mean square error (RMSE) is reduced to the sub-meter level. The performances of the proposed scheme
are also verified in real environmental conditions by using the simulation of urban mobility (SUMO).

INDEX TERMS Bayesian cooperative localization, inter-vehicle distance, malicious attack, NLOS, VANET.

I. INTRODUCTION
Intelligent transportation systems (ITS), which aims at pro-
viding innovative services and making safer, more conve-
nient use of traffic network, typically depends on the accu-
rate and reliable vehicle location information [1]. Currently,
the Global Navigation Satellite System (GNSS) plays an im-
portant role in acquiring the vehicle location information [2].
Through some enhancement technologies [3], [4], the GNSS
has the capability to achieve the meter level accuracy, even
the centimeter level. However, due to the faded or blocked
GNSS signals, the validity of these GNSS systems is limited
by the complex local environmental conditions [5]. In order
to solve this problem, the cooperative localization approach is
introduced. The cooperation in vehicular networking is able
to alleviate the shortcomings of GNSS by incorporating the
additional information which is independent of GNSS [6].
With the assistant of the emerging technologies in the fifth
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generation (5G) mobile cellular systems [7], [8] and the vehi-
cle ad-hoc network (VANET) [9], [10], vehicles are allowed
to establish a connection with each other, which supports
to implement cooperative localization technology within
vehicular networking. Cooperative localization in VANET
exchanges the measurements of vehicle nodes through com-
munication between them to improve the position accuracy.
Inter-distance measurement of nodes plays an important role
in cooperative localization [11]–[15]. The inter-distancemea-
surement includes the time of arrival (TOA) [16], time differ-
ence of arrival (TDOA), angle of arrival (AOA) [17], [18],
and round trip time (RTT). RTT only required the time tag
(i.e., the times of signal transmission, signal reception, and
signal processing at both sides of the receivers), which is able
to be easily implemented in VANET without any additional
hardware overhead.

However, the non-line-of-sight (NLOS) delay may lead
to the large inter-distance measurement error in an environ-
ment with more obstacles [19], [20]. In addition, the vehicles
may suffer the malicious attacks [22]–[28] in VANET, such
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FIGURE 1. Scheme frame.

as V2V ranging manipulation [22], location spoofing [23],
[26] and malicious message generation [24], which provides
incorrect time tags tomake rangingwith neighboring vehicles
erroneous and spreads distorted messages to the neighboring
vehicles. The threat model are shown in detail:
NLOS link: The signal path between the vehicles is NLOS
path, which results in an additional time delay for time tags.
So the inter-distance measurement will be greater than real
inter-distance.
Ranging manipulation: The vehicle A suffering from ranging
manipulation provides delayed time-tags. The neighboring
vehicle B of the A receives the incorrect time-tags, causing
malicious error to inter-distance measurement.
Location spoofing: The vehicle A suffering from location
spoofing will generate incorrect GNSS coordinates, resulting
in its own positioning accuracy error. In addition, the location
result of neighboring vehicle B will be affected if the B
receives the mistaken coordinate of A.
Message distortion: The vehicle A suffering from Message
distortion will transmits distorted message to its neighboring
vehicle B. The B uses the distorted GNSS coordinate mes-
sages and distorted time-tagmessages, whichwill damage the
performance of cooperative localization.

To sum up, the performance of cooperative vehicle local-
ization is seriously affected by NLOS link, inter-distance
attacks and GNSS coordinates attacks. Therefore, the NLOS
link and the malicious attack detection are required to ensure
the credibility of localization before using the measured data
to update the ego vehicle position. This paper constructs a
new cooperative vehicle localization scheme in malicious
vehicular network, and the framework is shown in Fig. 1.
vehicle nodes in VANET obtain GNSS positioning infor-
mation through the GNSS receiver, inter-distance informa-
tion with neighboring vehicles through the range sensor, and
exchange these measurements with each other through V2V.
The main contributions of this paper are as follows:

1) The AVDA is proposed to detect malicious and NLOS
vehicle in vehicular network. We analysis the statistic
difference of LOS range measurement and abnormal
range measurement. We also define the normalized
detection variable with Mahalanobis Distance (MD),
which is utilized to distinguish the normal vehicles
from the abnormal vehicles.

2) The Bayesian cooperative localization method is pro-
posed to find posterior probability of ego vehicle posi-
tion. The method combines the GNSS measurement
filtered by Kalman filter (KF) and range measurement
selected by AVDA.We compare the performance of the
methodwith two estimators, i.e., the posterior probabil-
ity (MAP) estimator and minimum mean square error
(MMSE) estimator.

This paper is organized as follows. Section II shows the
related work. Section III defines the vehicular networks
model and the range measurements model. In Section IV,
we describe the proposed AVDA and Bayesian coopera-
tive localization method in detail. In section V, we describe
the simulation environment and verify the performance of
the proposed scheme by using MATLAB and SUMO, and
Section VI concludes the paper.
Sysmbol Notations: A, a, a, and A represent a matrix,

a vector, a scalar, and a set, respectively; AT denotes trans-
pose of the matrix A; ‖a‖0 and ‖a‖2 denote the length and
the two-norm of vector a; E{a} represents the expectation
of a. diag {a1, . . . , an} means a diagonal matrix whose main
diagonal elements are [a1, . . . , an]. Tr(·) is the trace sum of
matrix. Other specific symbols are explained as follows:

variables Descriptions
x∗e true state of ego vehicle
x−e predicted state of ego vehicle
xfe filtered state of ego vehicle
x+e estimated state of ego vehicle
x−n predicted state of n-th neighboring

vehicle
xfn filtered state of n-th neighboring vehi-

cle
x+n estimated state of n-th neighboring

vehicle
pe true position of ego vehicle
p−e predicted position of ego vehicle
pfe filtered position of ego vehicle
p+e estimated position of ego vehicle
pn true position of ego vehicle
p−n predicted position of n-th neighboring

vehicle
pfn filtered position of n-th neighboring

vehicle
p+n estimated position of n-th neighboring

vehicle
dn true range between ego vehicle and n-th

neighboring vehicle
rn measured range between the ego vehi-

cle and n-th neighboring vehicle

II. RELATED WORK
Recently, cooperative localization in VANET has attracted
an increasing amount of attention. Ou in [13] proposed a
roadside units (RSU)-based cooperative localization scheme
in VANET. In the scheme, the vehicle retrieved the number
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and positions of adjacent RSUs, then fixed the position of
itself by measuring two-way TOAs. The author assumed that
there was a pair of RSUs deployed on both sides of the
road, communicating with the passing vehicles continuously.
Thus, it required densely deployed RSUs on the road, the pro-
hibitively high cost of RSU installation and the limitation in
short time might kill the cooperative localization of VANET
business case.

Cooperative localization approaches which benefited from
mobile-to-mobile interactions (i.e., in terms of both mea-
surements and exchanged location information) had been
increasingly adopted [14], [15]. In [14], the authors used
inter-vehicle distance measurements to improve the accuracy
of vehicle location in GNSS-equipped VANETs. In their
proposed localization framework, the inter-distance to neigh-
boring vehicle was used to generate the location weight. The
improved location was estimated by calculating a weighted
sum over the locations. But the vehicles are restricted to
single lane and do not communicate with vehicles in other
lanes. Rohani et al. in [15] introduced data fusion to obtain
high precision vehicle location. In their work, the inter-
vehicle distance and GNSS location of neighboring vehicle
were regarded as data source of data fusion technology. The
method relieved the GNSS location error effectively.Whether
as a weight factor or as a data source of data fusion, the accu-
racy of inter-vehicle distance was the basis of the accuracy of
position estimation. However, these studies all assumed that
vehicle measured the inter-vehicle distance in ideal vehicular
network without NLOS link and malicious attacks.

The NLOS and malicious attack detections were neces-
sary for cooperative localizations. NLOS detection have been
investigated in some applications [20], [21]. A method to
detect NLOS node based on the characteristics of autocorre-
lation matrix of distance measurement was proposed in [20].
Their proposed method could effectively detect NLOS node
even without LOS node. But the detection performance was
limited to the size of the distance value, it worked only
at large distance. Li et al. [21] proposed a NLOS node
location method based on firefly algorithm. According to
the maximum likelihood method, the objective function was
established by using the propagation probability of NLOS
signal and LOS signal, and the NLOS node position was
estimated by solving the objective function with firefly algo-
rithm. To some extent, the method reduced the impact of
NLOS error. However, it required the prior knowledge of
NLOS error statistics, which was difficult to obtain in reality.

On a separate track, malicious attacks in the vehicular
network have been studied [26]–[28]. In [26], a RSU with
a uniform linear array (ULA) antenna measures the RSS
and AOA of vehicle signals to estimate the actual distance
and direction to the vehicle, which are then compared to
the distance calculated using the vehicle’s location coordi-
nates. The method could eliminate the influence of location
spoofing in vehicular network. However, the extra cost of the
ULA antenna on the RSU made the business case difficult.
In [27], the empirically determined thresholds were used to

FIGURE 2. The vehicular network with NLOS path and malicious vehicle.

test whether the malicious vehicle was within the communi-
cation boundary, on the road, and obeying the speed limit.
But they required the real-time estimation of communication
boundary and the additional information (e.g., road map and
speed limit). A malicious vehicle detection scheme utilizing
the 1-hop table, where each vehicle cooperated with a reli-
able common reference vehicle to evaluate their neighboring
vehicles was presented in [28]. The scheme required verified
reliable vehicle in vehicular network, which was not satisfied
in some real scenes. In addition, the authors given insufficient
theoretical analysis.

III. SYSTEM MODEL
A. VEHICULAR NETWORKS MODEL
Considering a network of N vehicles equipped with GNSS
receiver and range sensor in two dimension space as exem-
plified in Fig. 2. Each vehicle (ego vehicle) connects to
other vehicles (neighboring vehicles) among communicated
range. There are NLOS measurements between vehicles due
to the occlusion of obstacles to the wireless signal. And the
malicious vehicle in the vehicular network spreads distorted
information to its neighboring vehicles. VN denotes the set
of vehicles in the vehicular network. Ve is the set of Ne
neighboring vehicle. Defining the abscissa as x-coordinate,
the ordinate as y-coordinate in the two-dimensional space.
p(k)i = [x(k)i y(k)i ] and v(k)i = [vx(k)i vy(k)i ] represent the
position and velocity in x-coordinate and y-coordinate of the
ego vehicle and n-th neighboring vehicle for i = e and i = n
at time instant k respectively.

The state of the vehicle consists of its position and veloc-
ity. We define true state, predicted state, filtered state, and
estimated state of vehicle.
a) The true state of the ego vehicle and neighboring vehicle

can be found, respectively, as

x∗(k)e =

[
p∗(k)e , v(k)e

]
, (1a)
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x∗(k)n =

[
p∗(k)n , v(k)n

]
, (1b)

where p∗(k)e and p∗(k)n are the true position of the ego vehicle
and neighboring vehicle.
b) The predicted state of the ego vehicle and neighboring

vehicle can be written, respectively, as

x−(k)e =

[
p−(k)e , v(k)e

]
, (1c)

x−(k)n =

[
p−(k)n , v(k)n

]
, (1d)

where p−(k)e and p−(k)n are the predicated position of the
ego vehicle and neighboring vehicle, which are obtained by
GNSS receiver.
c) The filtered state of the ego vehicle and neighboring
vehicle can be expressed, respectively, as

xf (k)e =

[
pf (k)e , v(k)e

]
, (1e)

xf (k)n =

[
pf (k)n , v(k)n

]
, (1f)

where pf (k)e and pf (k)n are the filtered position of the ego vehi-
cle and neighboring vehicle, which are obtained by Kalman
filter described in subsection IV-A.
d) The estimated state of the ego vehicle and neighboring

vehicle can be formulated, respectively, as

x+(k)e =

[
p+(k)e , v(k)e

]
, (1g)

x+(k)n =

[
p+(k)n , v(k)n

]
, (1h)

where p+(k)e and p+(k)n are the estimated position of the ego
vehicle and neighboring vehicle, which are updated by the
Bayesian cooperative localization method described in sub-
section IV-C.

B. RANGE MEASUREMENTS MODEL
The true range between the ego vehicle and the n-th neigh-
boring vehicle is defined as

d (k)n =

∥∥∥p(k)n − p(k)e
∥∥∥
2
. (2)

The measured range from the ego vehicle to the neighboring
vehicle is found as

r (k)n = d (k)n + m
(k)
n + nlos

(k)
n + ω

(k)
n , (3)

where m(k)
n , nlos(k)n and ω(k)

n are the delay error of a malicious
vehicle, NLOS delay error and range noise error, respectively.
Further, different types of measured ranges are defined in the
following:
a) Measured range with measurement error only can be

written as

r (k)ω = d (k)n + ω
(k)
n , (4a)

b) Measured range with NLOS delay can be formulated as

r (k)nlos = d (k)n + nlos
(k)
n + ω

(k)
n , (4b)

c) Measured range with malicious attack can be written as

r (k)m = d (k)n + m
(k)
n + ω

(k)
n . (4c)

The range measurement vector of Ne vehicles at k-th time
instant as

rk = d(k) + nk +mk
+ wk , (5)

where the n-th row of rk , d(k), nk ,mk , and wk are r (k)n , d∗(k)n ,
nlos(k)n , m(k)

n , and ω(k)
n , respectively.

IV. BAYESIAN COOPERATIVE LOCALIZATION WITH
ABNORMAL VEHICLE DETECTION
The proposed scheme aims to update vehicle position
using normal vehicle measurement information selected by
AVDA. We assume that each vehicle is able to obtain
the position measurement and covariance matrix by GNSS
receiver. We also suppose that each vehicle is able to obtain
inter-vehicle distance measurements by range sensor.

A. GNSS WITH KF
There are errors in GNSS positioning results affected
by measurement noise. Before cooperative positioning,
KF algorithm is needed to preprocess GNSS localiza-
tion results. We define the state of Kalman model as
s = [px , vx , ax , py, vy, ay], the elements of which repre-
sent the vehicle position, velocity, and acceleration in x-
coordinate and y-coordinate, respectively.
• System state equation:

s(k|k) = Fs(k−1|k−1) + b(k−1), (6)

where F is the state transition matrix obtained by acceleration
model,i.e.

F =
[
A 0
0 A

]
, A =

 1 T T 2

2
0 1 T
0 0 1

 , (7)

where T is the sample time; b is the process noise vector
which describes the uncertainty of the state model. The noise
is assumed to be additive zero-mean white Gaussian noise.

R(k−1) = E{b(k−1)bT(k−1)}
= diag{σ 2

x , σ
2
vx , σ

2
ax , σ

2
y , σ

2
vy, σ

2
ay}, (8)

where the elements on the diagonal in turn represent the error
variance of each element variable in s(k).
• Measurement equation:

z(k|k) = Hs(k|k−1) + c, (9)

whereH is the measurement matrix and c is the measurement
noise vector which describes the uncertainty of the mea-
surement value. Here the measurement only consists of the
position of vehicle from GNSS receiver. So we can obtain
that

H =
[
1 0 0 0 0 0
0 1 0 0 0 0

]
, (10)
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Q = E{vvT } =
[
σ̂ 2
GNSS 0
0 σ̂ 2

GNSS

]
, (11)

where σ̂ 2
GNSS is the noise error variance of GNSS receiver.

After being preprocessed, the position information from
GNSS is taken as the filtered data by KF in the following
article, i.e, pfi =

[
px , py

]
, i ∈ {e, n}.

B. ABNORMAL VEHICLE DETECTION ALGORITHM
In this part, the purpose is to find the normal range measure-
ments from all raw range measurements of ego vehicle. For
explanation simplicity, the time index notation k is dropped.
According to [22], range measurement can be expressed

by probability statistical model. The probability distribution
of LOS measurement can be written as

Pr( rn|pn,pe)

=
1√
2πσ̂ 2

n

exp
[
−

1
2σ̂ 2

n

(
r (k)ω −

∥∥p−n −p−e ∥∥2)2] , (12)

where σ̂ 2
n = σ 2

n + σ 2
e + σ 2

rn , σ
2
n = Tr

(
6

p−
n

)
, σ 2

e =

Tr
(
6

p−
e

)
are the sum of variances of normal measurement

error, location uncertainty of the neighboring vehicle and the
ego vehicle, respectively.6p−

e and6p−
n are the [2×2] position

error covariance matrices of ego vehicle and its neighboring
vehicle, respectively. Note that the GNSS receivers installed
on ego vehicle and neighboring vehicle have the same per-
formance and the vehicles are in similar environmental con-
ditions. So 6p−

e and6p−
n are considered to be the same, both

equal to variance matrix of the GNSS receiver. wn is mea-
surement noise followed zero-mean Gaussian with variance
σ 2
rn .
The distribution of NLOS range measurement can be

expressed as

Pr( rn| nlosn,pn,pe)

=
1√
2πσ̂ 2

n

exp
[
−

1
2σ̂ 2

n

(
r (k)nlos −

∥∥p−n − p−e
∥∥
2

)2]
. (13)

Similarly, the distribution of malicious range measurement
can be found as

Pr ( rn|mn,pn,pe)

=
1√
2πσ̂ 2

n

exp
[
−

1
2σ̂ 2

n

(
r (k)m −

∥∥p−n − p−e
∥∥
2

)2]
. (14)

From the distribution expression of NLOS range mea-
surement and malicious range measurement, we obtain that
the range measurements distribution disturbed by malicious
attack are the same as those induced by NLOS delay, i.e., the
Gaussian distribution with mean

∥∥p−n − p−e
∥∥
2 and variance

σ 2
n . Our purpose is to get normal measurement. In addition,

if the GNSS coordinates of ego or neighboring vehicle are
attacked, the distribution should be expressed as

Pr( rn|mn,pn,pe)

=
1√
2πσ̂ 2

n

exp
[
−

1
2σ̂ 2

n

(
r (k)ω −

∥∥p−n +pm−p−e ∥∥2)2] , (15)

where GNSS coordinates error pm is translated into malicious
range error by 2-norm operation, so (14) reflects malicious
attacks on GNSS coordinate and inter-distance. Therefore,
the paper proposes the unified detection scheme to detect
malicious attack and NLOS.

Due to the NLOS andmalicious range are greater than LOS
range, we obtain preliminarily LOS measurement from raw
measurements using a simple threshold as{

n ∈ V1, if
∣∣rn − ∥∥p−n − p−e

∥∥
2

∣∣ > σ̂n
/
2

n ∈ V2, if
∣∣rn − ∥∥p−n − p−e

∥∥
2

∣∣ ≤ σ̂n/2. (16)

According to the decision result of (16), the range measure-
ment vector r is reconstructed as

r =
[
r1
r2

]
∼ N

([
µ1
µ2

]
,

[
V11 V12
V21 V22

])
, (17)

where r1 and r2 are range measurement vector correspond-
ing to V1 and V2, µ1 and µ2 are mean vector of r1 and
r2, V11, V12, V21, and V22 are covariance matrices of
size

[
‖r1‖0 × ‖r1‖0

]
,
[
‖r1‖0 × ‖r2‖0

]
,
[
‖r2‖0 × ‖r1‖0

]
and[

‖r2‖0 × ‖r2‖0
]
, respectively.

The decision algorithm (16) has a conservative rule that
accepts only the measurements having less than half of sigma
(i.e., σ̂n) error from the expected value for LOS. So V1 may
contain some LOS elements. In order to obtain as many
normal measurements as possible, we need to further detect
the range measurements.
When r1 is LOS range measurement, conditional variable

r1|r2 has a central χ2 distribution with ‖r1‖0 degrees of
freedom (DOF). To test whether the measurements in r1 are
corrupted by NLOS delay, the Mahalanobis Distance (MD)
is introduced. We define normalized detection variable as the
square of MD [29], i.e.,

Zr1 =
(
r1 − µ1|2

)T V−11|2

(
r1 − µ1|2

)
, (18)

where

µ1|2 = µ1 + V12V−122 (r2 − µ2) , (18a)

V1|2 = V11 − V12V−122 V21. (18b)

Note that the value of Zr1 is the sum of the MD squares
of all measurements in r1. To test each measurement in r1
individually, there are ‖r1‖0 times 1 DOF χ2-tests to be
performed. Define the credibility of a single vehicle as

qi1 = 1−
∫ Zi

0
fχ2

1
(t)dt, (19)

where Zi is the MD square corresponding to i-th element
of r1. Due to the elements of the r2 are considered as LOS
measurements, we set the credibility of those qi2 = 1. Nowwe
have the credibility of all measurements. Then we reallocate
the elements of r in two group using their credibility, i.e.,{

n ∈ V̂1, if qij < γ

n ∈ V̂2, if qij ≥ γ
(20)
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Algorithm 1 Abnormal Vehicle Detection Algorithm

Require: GNSS location of ego vehicle p−(k)e , GNSS loca-
tion of neighboring vehicle p−(k)n , inter-distance mea-
surements r (k)n

Ensure: Normal vehicle set V̂2, normal inter-distance mea-
surements r (k)m

1: for k = 1 to K time index do
2: ∀e ∈ VN :
3: Initialize self location by GNSS receiver, p−(k)e
4: Receive neighboring vehicle GNSS location, p−(k)n
5: Receive inter-distance measurements, r (k)n
6: for e = 1 to N in parallel do
7: if

∣∣∣rkn − ∥∥∥p−(k)n − p−(k)e

∥∥∥
2

∣∣∣ > σ̂n
/
2 then

8: V1← n, r1← r (k)n
9: else
10: V2← n , r2← r (k)n
11: end if
12: for i = 1 to length (r1) do
13: Compute the normalized detection variable Zri

(18)
14: Compute credibility qi1 (19)
15: end for
16: Set the credibility of the elements of r2 are 1, i.e.

qi2 = 1
17: Get normal vehicle by all credibility V̂2 (20)
18: Get normal range measurements r (k)m ,m ∈ Ŝ2
19: end for
20: end for

where j ∈ {1, 2} and γ is threshold. The proposed AVDA is
summarized in Algorithm 1, and includes the following three
steps:
Step 1: We divide all neighboring vehicles into two group

through a conservative threshold, a group of vehicles that are
temporarily considered abnormal V1 and a group of normal
vehicles V2. The corresponding range measurement vectors
are r1 and r2, respectively.
Step 2: We obtain the normalized detection variable Zr1

by the MD between r1 and r2. Using Zr1 to calculate the
credibility of neighboring vehicles in V1.
Step 3: We obtain the group of normal vehicles V̂2 and

normal range measurement vector r̂2 by the credibility of
neighboring vehicles.

C. UPDATE EGO VEHICLE POSITION WITH BAYESIAN
COOPERATIVE LOCALIZATION METHOD
In subsection IV-B, we use the statistical method to detect
abnormal vehicle caused by NLOS delay and malicious
attack. Now the V̂2 will be fully utilized to improve the posi-
tioning accuracy of ego vehicle with the help of a Bayesian
cooperative positioning method [15].

In the vehicle network, ego vehicle receives the observa-
tions from its neighboring vehicles. The observations can be

expressed as

pne = pn + rn

[
cos θn
sin θn

]
, (21)

where θn is the bearing of the inter-vehicle distance mea-
surement. But this paper assumes that the range sensor only
provides inter-vehicle distance measurement, not the bearing.

First, we consider that there is a single normal vehicle near
the ego vehicle. According to Bayesian theory, we establish
as

fpe|p1e

(
pe|p1e

)
=
fp1e |pe

(
p1e
∣∣pe) · fpe(pe)
fp1e
(
p1e
) . (22)

The left of (22) is post-probability density of ego vehicle
position observed at given a neighboring vehicle observation,
fp1e |pe

(
p1e
∣∣pe) is likelihood function. fpe (pe) and fp1e

(
p1e
)
are

PDFs of the ego vehicle’s position and neighboring vehicle
observation. The latter one can be obtained by indepen-
dence between range measurement and position measure-
ment. Using the model (21), we found

Fp1e

(
p1e
)
=

∫
+∞

−∞

∫ p1−p1e

−∞

fp1d1(p1,d1)dp1dd1. (23)

Differentiating with respect to d1 in (23), the PDF can be
derived as

fp1e

(
p1e
)
=

∫
+∞

−∞

fp1d1
(
p1,p1 − p1e

)
dp1. (24)

Since vehicle position and range come from different sensor,
the joint probability distribution of p1 and d1 can be expressed
by the product of the corresponding probability distributions.
So (24) can be written as

fp1e

(
p1e
)
=

∫
+∞

−∞

fp1 (p1)·fd1
(
p1 − p1e

)
dp1. (25)

Similarly, we obtain likelihood function as

fp1e |pe

(
p1e |pe

)
=

∫
+∞

−∞

fp1 (p1|pe)·fd1
(
p1 − p1e |pe

)
dp1.

(26)

Ego vehicle and its neighboring vehicles are supposed to be
sufficient far apart to ensure independence of their position
measurement. Thus, (25) and (26) can be developed to

fp1e

(
p1e
)
=

∫
+∞

−∞

fpe (pe)·fp1e |pe
(
p1e |pe

)
dpe

=

∫
+∞

−∞

∫
+∞

−∞

fpe (pe) · fp1 (p1)

· fd1 (p1 − pe) dp1dpe, (27)

fp1e |pe

(
p1e
∣∣∣pe) = ∫ +∞

−∞

fp1 (p1) · fd1 (p1−pe) dp1. (28)

Substituting (27) and (28) into (22), (22) can expressed
in (29), as shown at the bottom of next page.

Now we extend it to the multi-neighboring vehicles sce-
nario. We approximate the prior PDF of vehicle position and

VOLUME 8, 2020 85691



J. Zhao et al.: Bayesian Cooperative Localization With NLOS and Malicious Vehicle Detection

FIGURE 3. The initial position of vehicle.

range by the filtered vehicle position and range measurement
respectively, i.e.,

pi ∼ N
(
pfi , σ

2
i

)
= fpfi

(pi) , i ∈ (e,m) , (30)

dm ∼ N
(
rm, σ 2

r

)
= fdm (rm) , (31)

where pfi is position data filtered by the Kalman filter
described in subsection IV-A, rm is measured inter-vehicle
distance data, and σ 2

r is variance of range sensor.
Similar to (29), we get the post PDF of ego vehicle position

in the case of N2 neighboring vehicles. Therefore, in multi-
neighboring vehicles case, (29) can be derived as (32), as
shown at the bottom of this page.

Finally the estimated position of ego vehicle is obtained by
MAP or MMSE as

p+map = argmax
pe

f
pe|p1e ,...,p

N2
e

(
pe|p1e,. . . ,p

N2
e

)
, (33)

p+mmse =
∫
+∞

−∞

pefpe|p1e ,...,p
N2
e

(
pe|p1e,. . . ,p

N2
e

)
dpe. (34)

D. PROCESS OF WHOLE PROPOSED SCHEME
In the section, we describe the process of whole proposed
cooperative vehicle localization scheme. Specifically, each
ego vehicle obtains its GNSS location and collects the GNSS
locations of neighbors and the inter-distance measurement
at k-th moment. These GNSS locations are pre-processed

FIGURE 4. The detection rates of AVDA under different α.

by KF. To provide the normal inter-distance measurement
for cooperative localization, the AVDA is applied, which is
detailed in Algorithm 1. In the algorithm, firstly ego vehicle
obtains partial normal inter-distance measurements r2 from
all raw measurements by a conservative threshold. The rest
of raw measurements are treated as abnormal r1 temporar-
ily, which needs to be further detected . Then the detection
variables Zri of inter-distance measurements of r1 are calcu-
lated to further get the credibility qi1 of the corresponding
neighboring vehicles. Finally, the detection based on the
credibility is implemented to obtain all normal inter-distance
measurements r (k)m and normal neighboring vehicles V̂2.
Based on V̂2 and r (k)m obtained by AVDA, the Bayesian

cooperative localization method is applied to estimate the
ego vehicle location. In the method, the pre-processed GNSS
locations pfi (i ∈ {e, V̂2}) and normal inter-distance mea-
surements r (k)m are regarded as mean value to approximate
the vehicle location prior-PDFs and the inter-distance prior-
PDFs. Based these location prior-PDFs, ego vehicle generates
Np ego location particles and Np neighbor location particles.
According to the idea of Monte Carlo method, these loca-
tion particles are substituted into the (32), and the poste-
rior probabilities of Np ego location particles are calculated
with Np ∗ Np cycles. Based on these posterior probabilities,
the final location of ego vehicle is estimated using MAP
and MMSE.

fpe|p1e

(
pe|p1e

)
=

∫
+∞

−∞

fp1 (p1) · fd1 (p1 − pe) dp1 · fpe (pe)∫
+∞

−∞

∫
+∞

−∞

fpe (pe) · fp1 (p1) · fd1 (p1 − pe) dp1dpe

(29)

f
pe|p1e ,p2e ,...,p

N2
e

(
pe|p1e,p

2
e, . . . ,p

N2
e

)
=

N2∏
m

∫
+∞

−∞

fpfm (pm) · fdm (pm − pe) dpm · fpfe (pe)

N2∏
m

∫
+∞

−∞

∫
+∞

−∞

fpfe (pe) ·fpfm (pm) · fdm (pm − pe)dpmdpe

(32)
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FIGURE 5. The normal detection rates, abnormal detection rates,missing
detection rate, and false alarm rate of the 15 vehicles in the four
scenarios.

V. PERFORMANCE EVALUATION
A. SIMULATION SCENARIO AND ENVIRONMENT
In vehicular network, 15 vehicles spread in the 3 lanes, with
5 vehicles in each lane. It is assumed that the vehicle nodes
in network can realize instant communication to exchange
GNSS measurements and inter-distance measurements. The
ground true position of each vehicle at initial time can be
expressed as

p(1)b = p(1)
1 +

 15, 0
15, 0
15, 0

+2b, b ∈ (2, 3, 4, 5) , (35)

where

p(1)
1 =

−10, 10
−20, 0
−10, −10

 , (36)

2b is randommatrixwhose elements follow uniform distribu-
tion U(−2, 2) for varying formation of the vehicular network
in simulation. Fig. 3 draws the initial locations of all vehicles
and the initial vehicular network topology. At each time slot,
the ego vehicle and the neighboring vehicles are considered
as relatively static.

In the simulation scenario, all vehicles move along the road
at same direction. Ego vehicle moves at initial stable velocity
v(1)=[25, 0], then change its velocity at uniform acceleration
successively until v(k)= [−25, 0]. Define the ratio α as the
ratio of the number of abnormal vehicles to the number of
neighboring vehicles. We select some vehicles as attacked
vehicles and NLOS vehicles in vehicular network by the ratio
α. The simulation parameters are shown in Table 1.

B. PERFORMANCE ANALYSIS
In this subsection, we investigate the performance of the pro-
posed scheme in MATLAB software. The proposed AVDA
and Bayesian cooperative localization method are executed

FIGURE 6. The detection performance of AVDA against NLOS (a) and
malicious attacks (b).

TABLE 1. Simulation Parameters.

180 times continuously in a experiment. We repeat the exper-
iment 10 times, taking the average value as the result.

We first focus on the performance of AVDA. The mali-
cious inter-distance error and the NLOS bias are gen-
erated from uniform distribution mkn ∼ U(5, 20) and
nloskn ∼ U(0.5d (k)n , 0.75d (k)n ), respectively. Fig. 4 describes
the detection rates of AVDA under different α. With the
increase of α, the missing detection rate decreases and the
false alarm rate increases. When α is 0.5, AVDA shows
the optimal detection performance. Considering four scenar-
ios: the number of connections to the ego vehicle are 3, 5,
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FIGURE 7. The detection rate when abnormal inter-distance
measurement error close to GNSS measurement error.

FIGURE 8. The detection rates of AVDA when both the ranging
measurement and the GNSS measurements are under the malicious
attacks.

10 and 14, respectively. We perform 180 times the algorithm
and compute the averages in the four scenarios, respectively.
Fig. 5 shows the normal detection rate, missing detection
rate, abnormal detection rate, and false alarm rate of AVDA
with different number of connections. As shown in Fig. 5-(a),
the normal detection rates and abnormal detection rates of the
15 vehicles in the four scenarios are more than 90% when the
credibility threshold γ=0.8. Meanwhile, Fig. 5-(b) shows the
missing detection rates are less than 7% and false alarm rates
are less than 12%.

Then, we consider all connectivity network, i.e., the num-
ber of connections allowed for each vehicle equals to 14. We
study the detection performance of AVDA against malicious
attacks and NLOS respectively. As shown in the Fig. 6,
AVDA also achieves excellent performance for the detection
of these two kinds of abnormal measurement. The malicious
detection rate and NLOS detection rate are both above 90%.
The missing detection rates and false alarm rates remain low
probability. Fig. 7 shows the detection performace of AVDA

FIGURE 9. The partial path of a special ego vehicle with ground truth
location, filtered predicted location, and estimated location with MAP and
MMSE.

under the condition that the abnormal inter-distance measure-
ment error is close to GNSS error. Abnormal inter-distance
measurement error is set to 5m, close to

√
2σGNSS . Compared

with the condition that abnormal inter-distance error larger
than GNSS measured error, the performances of AVDA are
still good. The normal detection rate and abnormal detection
rate are kept above 90%, while the missing detection rate and
false alarm rate are lower 10%. Note that AVDA must satisfy
the condition that there is LOS vehicle near the ego vehicle.
If all the inter-vehicle distances between the ego vehicle
and the neighboring vehicles are measured from NLOS and
malicious attack, the AVDA may not work.

The malicious GNSS x and y coordinate error are gener-
ated from uniform distribution U(10, 20). Fig. 8 shows the
detection rates of AVDAwhen both the ranging measurement
and the GNSS measurements are under the malicious attacks.
The results show that the normal detection rate and abnor-
mal detection rate are approximate 90%. But the missing
detection rate indicates that the more abnormal vehicles are
decided to normal vehicles. To sum up, the proposed AVDA
has excellent detection performance for NLOS link, inter-
distance attacks and GNSS coordinate attacks, especially for
the former two.

Finally, we compare the four different localization meth-
ods: GNSS, GNSS with Kalman filter, Bayesian cooperative
localization with MMSE, and Bayesian cooperative local-
ization with MAP. GNSS means stand-alone GNSS posi-
tioning method. GNSS with Kalman filter is to use Kalman
filter to filter the GNSS positioning results to improve the
GNSS positioning accuracy. The last two methods are the
proposed localization with two different estimators, i.e. MAP
and MMSE. Fig. 9 shows partial path of a special ego vehicle
with ground truth position, filtered position and estimated
position. Fig. 9 illustrates the trajectories estimated by the
proposed scheme and ground truth are basically the same,
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FIGURE 10. The localization error of bayesian cooperative localization
with MAP and MMSE, and GNSS with Kalman Filter, and GNSS.

FIGURE 11. The RMSE of bayesian cooperative localization with MAP and
MMSE, and GNSS with Kalman Filter, and GNSS.

which indicates the proposed scheme achieves good effect in
location tracing.

Fig. 10 and Fig. 11 compare the localization precision
of different positioning methods. As shown in the two fig-
ures, the proposed scheme improves the positioning accu-
racy effectively within the malicious and NLOS vehicular
network. Fig. 11 shows that the RMSE of the proposed local-
ization scheme is optimized to approximate 2 meters with
MMSE and sub-meter with MAP.

C. REAL SCENARIO WITH SUMO-SIMULATED TRAFFIC
To verify the scheme performance in a more realistic envi-
ronment, we use the traffic simulator SUMO, which uses
real city maps to generate synthetic traces of vehicles. For
this experiment, we consider a special vehicle (ego vehicle)
constrained to the highlighted streets in Fig. 11, in three
areas of Beijing (China). Ego vehicle receives the information
from the neighboring vehicles when driving on the streets.
In particular, we generate 300, 600, 500 vehicles to pass
through these areas in 1000 seconds, respectively. We assume
that each vehicle is equipped with a GNSS receiver to

TABLE 2. The GNSS uncertainty of three types of conditions.

obtain itself GNSS position. Since GNSS positioning per-
formance is sensitive to surround environment, we model
three types of conditions which affect the GNSS positioning
accuracy differently, as shown in Table 2. In vehicular net-
work, the generation of NLOS vehicle and malicious vehicle
refers to subsection IV-A. In vehicular network, we randomly
select two neighbor vehicles as the malicious vehicles and
half of the connected vehicles as the NLOS vehicles at
each time slot. The malicious error and the NLOS bias are
generated from uniform distribution mkn ∼ U(10, 20) and
nloskn ∼ U(0.5d (k)n , 0.75d (k)n ), respectively. We repeat the
experiment 10 times, taking the average as the final result.

In Fig. 12, the top three sub-figures show real time satellite
images of the three conditions listed in Table 2, and the
highlighted part are roads through which the vehicles pass;
the bottom three sub-figures describe the cumulative distribu-
tion functions (CDFs) of the vehicle location error under the
three conditions listed in Table 2, for Bayesian cooperative
localization with MMSE (blue line) and Bayesian coopera-
tive localization with MAP (red line) and stand-alone GNSS
(orange line). Figs. 12-(a), (b) and (c) show that in the envi-
ronments that scatter different size buildings, the proposed
scheme improves the localization result of GNSS effectively,
and the localization performances using MAP is similar with
those using MMSE.

Fig. 13 shows that the detection performance of AVDA
when the number of connection is time-varying. The AVDA
remains superior detection performance. The abnormal detec-
tion rate and normal detection rate are maintained 90%
approximately, and the missing detection rate and false alarm
rate are lower than 10%.

D. COMPUTATIONAL COMPLEXITY
Ego vehicle needs to communicate toNe neighboring vehicle,
which induces a computational cost of O(Ne). AVDA per-
formsNLOS andmalicious detection onNe neighboring vehi-
cles, resulting in a computational complexity of O(Ne). The
proposed Bayesian cooperative localization method needs to
integrate the measurement of Ne neighboring vehicles, and
this method is realized by Monte Carlo simulation with parti-
cle numberNp, so its computational complexity isO(Np∗Ne).
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FIGURE 12. The turely traces (top) and CDFs (buttom) of the vehicle location error for the C-I (a), C-II (b), C-III (c) in Table 2, for the bayesian
cooperative localization with MMSE and the bayesian cooperative localization with MAP and stand-alone GNSS.

FIGURE 13. The detection rate of AVDA when the number of connections
is time-varying.

Therefore, the computational complexity of each ego vehicle
is O((Np + 2) ∗ Ne), the overall complexity is O((Np + 2) ∗
Ne) ∗ N ) in network of N vehicles.

VI. CONCLUSION
This paper has proposed an AVDA method to detect the
NLOS vehicles and the malicious vehicles by using the
range measurements and predicted position in VANET. The
method firstly gets the probability normal neighboring vehi-
cles through a conservative threshold; then obtaining the
credibility of all neighboring vehicles by performing several
times 1 DOF χ2 test. The proposed Bayesian cooperative
localization method with AVDA has been implemented into
the cooperative localization scheme with MAP and MMSE
estimator, which effectively improves the position accuracy
by combining selected range and position measurements.

The simulated results demonstrate the proposed scheme
could improve the vehicle localization accuracy in NLOS
and malicious vehicle environment compared to stand-alone
GNSS solution. Moreover, the localization scheme was val-
idated in real urban scenarios using the SUMO traffic
simulator.
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