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ABSTRACT The environmental/economic dispatch (EED) problem, as one of the most important optimiza-
tion problems in power systems operations, is a highly constrained, nonlinear, multiobjective optimization
problem. Multiobjective evolutionary algorithms have become effective tools for solving the EED problem.
To obtain higher quality Pareto solutions for EED as well as further improve the uniformity and diversity of
the Pareto set, this paper proposes a novel multiobjective evolutionary algorithm, namely multiobjective grey
prediction evolution algorithm (MOGPEA). The MOGPEA first develops a novel grey prediction evolution
algorithm (GPEA) based on the even grey model (EGM(1,1)). Unlike other evolutionary algorithms,
the GPEA considers the population series of evolutionary algorithms as a time series and uses the EGM(1,1)
model to construct an exponential function as a reproduction operator for obtaining offspring. In addition,
the MOGPEA adopts two learning strategies to improve the uniformity and diversity of the Pareto optimal
solutions of the EED. One is a leader-updating strategy based on the maximum distance of each solution in
an external archive, and the other is a leader-guiding strategy based on one solution of each external archive.
To validate the effectiveness of the MOGPEA, a standard IEEE 30-bus 6-generator test system (with/without
considering losses) is studied with fuel cost and emission as two conflicting objectives to be simultaneously
optimized. The experimental results are compared with those obtained using a number of algorithms reported
in the literature. The results reveal that the MOGPEA generates superior Pareto optimal solutions of the
multiobjective EED problem. Matlab_Codes of this article can be found in https://github.com/Zhongbo-
Hu/Prediction-Evolutionary-Algorithm-HOMEPAGE.

INDEX TERMS Environmental/economic dispatch, evolutionary algorithm, EGM(1,1) model, grey predic-
tion.

I. INTRODUCTION
The economic dispatch (ED) problem is a single objective
optimization problem in power system operations [1], [2].
The purpose of the traditional ED is to meet the load demand
in the most economical way. However, with increasing public
awareness of environmental pollution, the clean air act has
forced utilities to reduce the emission of SO2 and NOx [3].
In these circumstances, environmental/economic dispatch
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(EED) [4], [5] becomes pertinent and can not only bring great
economic benefit but also reduce the pollutant emission.

The EED problem can be modeled as a multiobjective
optimization problem with highly constrained and nonlinear.
The fuel cost and the emission, as two conflicting objectives
of the EED problem, are minimized in the conditions of
satisfying the equality and inequality constraints. There have
been many studies pertaining to the EED problem since it
was proposed. Initially, the EED problem is generally con-
verted into a single objective problem by considering the
emission as a constraint or as a weighted function. The linear
programming technique [6] is one of the representative of
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early approaches. The weighted sum method [7] is another
usually used method, it transforms the objectives into a single
objective problem by using a linear combination of different
objectives. Although these conventional methods are easy to
operate, there is a common problem that they all require mul-
tiple runs to achieve a trade-off between the two objectives.

In recent years, more andmoremultiobjective evolutionary
algorithms (MOEAs) have been successfully used to solve
the EED problem [8]. This kind of algorithms can find mul-
tiple trade-off solutions in a single run. They have thereby
gradually become the main technique for solving the EED
problem. According to the difference of the basic algorithms
for constructing MOEAs, these multiobjective technologies
can be divided into the following five categories.

The first type of MOEAs for the EED problem is based on
Genetic Algorithms (GAs), e.g., theVector EvaluatedGenetic
Algorithm (VEGA) [9], the Nondominated Sorting Genetic
Algorithm (NSGA) [10], the NSGA-II [11], the Modi-
fied NSGA-II (MNSGA-II) [12], [13], the Niched Pareto
Genetic Algorithm (NPGA) [14], the Improved Genetic
Algorithm (IGA) [15] and Learner NonDominated Sorting
Genetic Algorithm (NSGA-RL) [16].

The second type of MOEAs for the EED problem is based
on Particle Swarm Optimization (PSO), e.g., the Multiob-
jective Particle Swarm Optimization (MOPSO) [17], [18],
the Fuzzified Multiobjective Particle Swarm Optimization
(FMOPSO) [19], the Fuzzy Clustering-based Particle Swarm
Optimization (FCPSO) [20], the Multiobjective Chaotic Par-
ticle Swarm Optimization (MOCPSO) [21], the Parameter-
free Bare-bones Multiobjective Particle Swarm Optimization
Algorithm (BB-MOPSO) [22] and the Cultural Quantum-
behaved Particle Swarm Optimization Algorithm (CMO-
QPSO) [23].

The third type of MOEAs for the EED problem is
based on Differential Evolution (DE), e.g., the Multiob-
jective Differential Evolution (MODE) [24], the Modified
MODE (MMODE) [25], the Enhanced Multiobjective Dif-
ferential Evolution Algorithm (EMODE) [26] and the Sum-
mation Based Multiobjective Differential Evolution Algo-
rithm (SMODE) [27].

The fourth type of MOEAs for the EED problem is based
on hybrid approaches, e.g., the New Multiobjective Stochas-
tic Search Technique (MOSST) [28], the Hybrid MOEA
based on the techniques of PSO and DE (POS-DE) [29], the
Modified NSGA-II, which integrated a Convergence Accel-
erator Operator (CAO) into the original NSGA-II (NSGA
II-CAO) [30], the combination of DE and biogeography-
based optimization (BBO) algorithm (DE-BBO) [31] and the
Hybrid MultiObjective Differential Evolution/Tabu Search
(MODE/TS) [32].

The other types of MOEAs for the EED problem are
based on other evolutionary algorithms, e.g., the Multi-
objective Evolutionary Algorithm based on Decomposi-
tion (MOEA/D) [33], the Strength Pareto Evolutionary
Algorithm (SPEA) [34], the Multiobjective Evolution-
ary Programming (MOEP) [35], the Fast Multiobjective

Evolutionary Programming (FMOEP) [36], the Modified
Bacterial Foraging Algorithm (MBFA) [37], the Multiobjec-
tive Bacteria Foraging Algorithm (MOBF) [38], the Multi-
objective Artificial Bee Colony Algorithm (MOABC) [39],
the New Multiobjective Global Best Artificial Bee Colony
algorithm (MOGABC) [40], the Multiobjective Directed
Bee Colony Optimization Algorithm (MODBC) [41], the
Modified Shuffle Frog Leaping Algorithm (MSFLA) [42],
the Multiobjective Harmony Search Algorithm (MOHS)
[43], the Multiobjective Adaptive Clonal Selection Algo-
rithm (MOACSA) [44], the Enhanced Multiobjective Cul-
tural Algorithm (EMOCA) [45], the Multiobjective Chaotic
Ant Swarm Optimization (MOCASO) [46], the Multiobjec-
tive Backtracking SearchAlgorithm (MOBSA) [47], theMul-
tiobjective Scatter Search Approach (MOISS) [48], the
Quasi-Oppositional Teaching Learning Based Optimization
(QOTLBO) [49], the Multiobjective Collective Decision
Optimization Algorithm (MOCDOA) [50], the Permutation-
based Multiobjective Environmental Adaptation Method
(pMOEAM) [51] and so on.

In order to obtain higher quality Paretp EED solutions
as well as further improve the uniformity and diversity of
the Pareto optimal set, this paper attempts to develop a
novel multiobjective grey prediction evolutionary algorithm
(MOGPEA) inspired by grey prediction theory.

Grey prediction theory, as an important embranchment of
the grey system proposed by Deng in 1982 [52], is applicable
to the problem of ‘‘incomplete information and small sample
size’’. The grey prediction model (GM(1,1)) [53]–[56] is
the core model of grey prediction theory. The accumulated
generating operation (1-AGO) of the GM(1,1) can transform
nonnegative discrete data sets into sequences with an approx-
imate exponential law under specific conditions. This reduces
the randomness of the original data. Then, the GM(1,1) uses
the converted sequence to construct a prediction expres-
sion. If the time response sequence of the GM(1,1) is
conducted by the solution of its whitenization differential
equation, then the GM(1,1) is referred to as an even grey
model (EGM(1,1)).

The comparison experiments on the standard IEEE 30-bus
6-generators systems show the effectiveness and superiority
of the proposed MOGPEA, which can obtain higher quality,
uniform and diverse EED solutions than many state-of-the-
art algorithms. The major contributions of this work are as
follows:
• Introduce a novel and competitive MOGPEA for the
EED field. It first uses the EGM(1,1) to develop a
grey prediction evolution algorithm (GPEA), and then
designs two learning strategies to improve the unifor-
mity and diversity of the Pareto optimal solutions of the
EED.

• Introduce a novel evolution notion in the GPEA.
Unlike other metaheuristics, the GPEA treats population
sequences as a time series and then uses the EGM(1,1)
model to forecast offspring (without any mutation and
crossover operators).

VOLUME 8, 2020 84163



Z. Hu et al.: MOGPEA for EED Problem

The rest of the paper is organized as follows. Section 2
describes related preliminaries including the mathematical
model for the EED problem and some background mate-
rial for the EGM(1,1). Section 3 provides the descrip-
tion of the GPEA based on the EGM(1,1). In addition,
Section 4 introduces the MOGPEA extended for the multi-
objective problem. A comprehensive experimental study for
the MOGPEA is carried out in Section 5. The related exper-
imental results are provided and discussed in Section 6.
Finally, Section 7 draws some conclusions and future expec-
tations.

II. PRELIMINARY
A. FORMULATION OF THE EED PROBLEM
A classical EED problem is to simultaneously minimize
competing fuel cost and emission objective functions while
fulfilling certain system constraints. The components of the
problem , including its objective functions and constraints ,
are as follows.

1) OBJECTIVE FUNCTIONS
Objective 1: Minimization of Fuel Cost: The total fuel cost
F(P) can be represented as follows:

F(P) =
N∑
i=1

(ai + biPi + ciP2i ) (1)

where F(p) is the total fuel cost, i.e., the sum of the power
generation costs of each generator in a thermal power plant ,
Pi is the active output of the ith generator , N is the number
of generators , and ai, bi, and ci are the coal consumption
characteristic coefficients of the ith generator.
Objective 2: Minimization of Emission: Let the total emis-

sion be E(P) as follows:

E(P) =
N∑
i=1

(10−2(αi + βiPi + γiP2i )+ ηiexp(δiPi) (2)

where αi,βi, γi, ηi, and δi are coefficients of the ith generator
emission characteristics. All the parameters are presented in
Tab. 1.

2) CONSTRAINTS
Constraint 1: Power Balance Constraint: The total power
generation must cover the total load and the system network
loss in the transmission lines as follows.

N∑
i=1

Pi − PD − PL = 0 (3)

where
N∑
i=1

Pi is the total power generation, PD is the system

load, PL is the system network loss , which can be calculated
as follows:

PL =
N∑
i=1

N∑
j=1

PiBijPj +
N∑
i=1

B0iPi + B00 (4)

where Bij, B0i and B00 are the transmission network power
loss coefficients. The correlation parameters are shown in
subsection 4.3.

Constraint 2: Generation Capacity Constraint: The gen-
erating capacity of the unit itself is also constrained by the
upper and lower limits of the output, which can be written
as follows:

Pmini ≤ Pi ≤ P
max
i (5)

where Pmini and Pmaxi are the minimum and maximum gener-
ation limit of ith generator, respectively.

3) PROBLEM FORMULATION
The EED problem is formulated as a constrained, multiobjec-
tive optimization problem and is given by the following:

Minimaize [F(P),E(P)] (6)

Subjected to :
N∑
i=1

Pi − PD − PL = 0

Pmini ≤ Pi ≤ P
max
i (7)

B. EGM(1,1) MODEL
The even grey model (EGM(1,1)) is first proposed by pro-
fessor Deng Julong, and it is the most influential and widely
used grey prediction model at present [52]. The main steps
of the EGM(1,1) are as follows. First, a data transformation
process from a nonnegative discrete disordered data sequence
into a approximate ordered sequence is implemented by
the first-order accumulated generating operation (1-AGO).
Second, an exponential function based on the transformed
data sequence is constructed to predict the next value of the
ordered sequence. Last, the prediction values of the original
data are obtained by the inverse operation of the 1-AGO
operator (1-IAGO).

Assume that an original data sequence X (0)
=

(x(0)(1), x(0)(2), · · · , x(0)(n)), where X (0)(k) ≥ 0,k =

1, 2, · · · , n.
Definition 1 (1-AGO) [52]: X (1) is the sequence of the 1-

AGO of X (0) :

X (1)
= (x(1)(1), x(1)(2), · · · , x(1)(n)),

where

x(1)(k) =
k∑
i=1

x(0)(i), k = 1, 2, · · · , n. (8)

Definition 2 (EGM(1,1) Model) [52]: the sequence Z (1) is
the mean sequence of the X (1):

Z (1)
= (z(1)(2), z(1)(3), · · · , z(1)(n)),

where z(1)(k) satisfies

z(1)(k) =
1
2
(x(1)(k)+ x(1)(k − 1)), k = 1, 2, · · · , n. (9)
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the following equation is called even grey model EGM(1,1),

x(0)(k)+ az(1)(k) = b, k = 2, 3, · · · , n. (10)

here, parameter a is called as a grey developmental coeffi-
cient, and b is called as a gray control parameter. Then the
time response function of Eq.10 is solved:

x̂(1)(k + 1) = (x(0)(1)−
b
a
)e−ak +

b
a
, k = 1, 2, · · · , n.

(11)

Definition 3 (1-IAGO) [52]: The prediction value for the
raw data sequence X (0) can be estimated by the first-order
inverse accumulated generating operation the (1-IAGO).

x̂(0)(k + 1) = x̂(1)(k + 1)− x̂(1)(k) = (1− ea)

× (x(0)(1)−
b
a
)e−ak k = 1, 2, · · · , n. (12)

Here, specifically, x̂(0)(1) = x̂(1)(1) = x(0)(1).

III. GREY PREDICTION EVOLUTION ALGORITHM (GPEA)
BASED ON EGM(1, 1)
This section introduces a grey prediction evolution algorithm
based on the EGM(1,1)(GPEA) [57], [58]. The algorithm
includes an initialization operator, a reproduction operator
and a selection operator. The GPEA is unique in that its
reproduction operator which replaces the common mutation
and crossover operator with the EGM(1,1) prediction. The
process of the GPEA can be described as follows.

A. INITIALIZATION OPERATOR
In the initialization phase of the GPEA, 3N D-dimensional
individuals are initialized in the search space and each indi-
vidual is expressed through ygi = (ygi,1, y

g
i,2, ..., y

g
i,D), i =

1, 2, · · · ,N and g = 1, 2, ..., gmax , where g and gmax are
the current generation and the maximum number of gener-
ations respectively. The jth dimension of the ith individual is
randomly produced according to the following:

y(0)i,j = lbj + rand(0, 1) · (ubj − lbj), j = 1, 2, · · ·,D. (13)

Here, rand(0, 1) is a random number with a uniform dis-
tribution between 0 and 1, lbj and ubj are the lower bound
and upper bound of the jth dimension, respectively. Then,
we distribute 3N individuals into three populations on aver-
age according to the fitness value of the individuals (from
small to large). In detail, the topN individuals are divided into
the first generation Y 0(g = 0). Simultaneously, the middle N
individuals are divided into the Y 1(g = 1), and the bottom
N individuals are divided into the Y 2(g = 2). These three
populations constitute an initial population series as a time
series to predict the next generation population.

B. REPRODUCTION OPERATOR
In this section, a novel reproduction operator based on the
EGM(1,1) model, called the egm11 reproduction operator,
is proposed. The egm11 reproduction operator fits a expo-
nential function by using successive three generations of

a population sequence to forecast offspring. In addition,
considering the calculating characteristics of the EGM(1,1)
model, the egm11 reproduction operator is supplemented
by a random perturbation and a linear fitting. The egm11
reproduction operator is shown as follows. Y g−2, Y g−1, and
Y g, (g ≥ 2) denote three consecutive population series and
three individuals yr1, yr2, and yr3 are randomly chosen from
Y g−2, Y g−1, and Y g, respectively. Set Maxy = max{|yr1,j −
yr2,j|, |yr1,j − yr3,j|, |yr2,j − yr3,j|}, and Miny = min{|yr1,j −
yr2,j|, |yr1,j − yr3,j|, |yr2,j − yr3,j|}. Then the jth dimension of
the ith individual of the trial population Ug is produced:

ugi,j =


(1− ea)(yr1,j − d ba )e

−3a, if Maxy ≥ th,
4yr3,j + yr2,j − 2yr1,j

3
, elseif Miny < th

yr3,j + w ·Maxy, otherwise.
(14)

here

a =
2(yr2,j − yr3,j)
yr2,j + yr3,j

b =
2((yr2,j)2 + yr1,j · yr2,j − yr1,j · yr3,j)

yr2,j + yr3,j

w = rand(−1, 1)(0.01−
3.99(I −M )

M
)

(15)

w is able to control the disturbance range, th ∈ [0.001, 0.1]
is a preset value and used to control forecast, M is the
maximum number of iterations and I is the current iteration
number. Alg. 1 presents the pseudo code of the egm11 repro-
duction operator.

Algorithm 1 egm11 Reproduction Operator

Input: Y g−2, Y g−1, Y g, (g ≥ 2)
Output: Ug: a trial population of Y g

for i = 1 to N do
Select parents;
Parents are composed of three individuals from
random select in Y g−2, Y g−1, and Y g, respectively.
The three individuals are assigned to series
yr = {yr1, yr2, yr3}.
for j = 1 to D do

if Maxy ≥ th then
ugi,j = (1− ea)(yr1,j − b

a )e
−3a ; //EGM(1,1)

prediction
else if Miny < th then
ugi,j =

4yr3,j+yr2,j−2yr1,j
3 ; // linear prediction

else
ugi,j = yr3,j + w ·Maxy; //random disturbance

end
end
return Ug;
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Algorithm 2 The Pseudo Code of MOGPEA
Input: N : size of the population, D: dimension of the population, Na: maximum capacity of the archive, Tmax : maximum

number of iterations, ux: upper limit of problem, lx: lower limit of problem
Output: Op
Initialization
Initialize X2, X1, X0 according to the formula(13);
originX={X0,X1,X2};
F(X0,X1,X2)← ObjFun(X0,X1,X2);
Ar ← Non_dominated(X0,X1,X2) ;
if |Ar| > Na then

Circular_crowded_sorting(Ar);
end
t = 4 ;
while t ≤ Tmax do

Reproduction
Ar ← sort(Ar) ;
xr = {xr1, xr2, xr3} is randomly selected from Xg−2, Xg−1 and Xg (g ≥ 2), respectively;
for i = 1 to N do

XLi← Leader_updating(Ar) ;
for j = 1 to D do

d12 =
∣∣xr1,j − xr2,j∣∣, d13 = ∣∣xr1,j − xr3,j∣∣, d23 = ∣∣xr2,j − xr3,j∣∣, and Mdr = max{d12, d23, d13} ;

if Mdr ≥ d then
T (i, j) = (1− ea) · (xr1,j − b

a ) · e
−3a ;

else
T (i, j)← Leader_guiding(XL(i, j)) ;

end
end

end
Selection
F(T ) = ObjFun(T );
X ← Dominance_relation_selection(originX{1, 3},T ) ;
Ar ← Non_dominated(X

⋃
Ar);

if |Ar| > Na then
Circular_crowded_sorting(Ar);

end
originX (1, 4) = {X};
originX = origin(2 : 4);
t = t + 1;

end
Op← Ar and stop the algorithm ;
return Op;

C. SELECTION OPERATOR
In order to select the better individual into the next genera-
tion, the GPEA carries out selection operation between the
trial individual ugi and target individuals ygi . The individuals
with a better fitness is selected to survive. This operation is
described by the following expression.

yg+1i =

{
ugi , if f (ugi ) < f (ygi )
ygi , otherwise

(16)

IV. MULTIOBJECTIVE GREY PREDICTION EVOLUTION
ALGORITHM (MOGPEA)
Based on the GPEA, this section develops a multiobjective
grey prediction evolution algorithm (MOGPEA) for solving
the EED problem. First, in order to improve the unifor-
mity and diversity of the Pareto optimal solutions of the
EED problem, a leader-updating strategy [50] and a leader-
guiding strategy with learning characteristics are introduced
to the MOGPEA. Second, the MOGPEA embeds an external
archive strategy and a selection strategy based on dominance
relation. This algorithm works as follows:
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Step 1 Initialization
Step 1.1: Randomly initialize three generation pop-
ulation to form the initial populations chain.
Step 1.2: Evaluate the fitness of each generation
population.
Step 1.3: Store all the nondominated solutions to
external archive set.
Step 1.4: Maintain external archive by removing
redundant solutions.

Step 2 Reproduction
Step 2.1:Find the global best of each individual by
leader updating strategy.
Step 2.2: Generate new individual by using the
EGM(1,1) prediction or leader guiding strategy.
Step 2.3: Evaluate the fitness of new population.

Step 3 Selection
Step 3.1: Select next generation using dominance
relation.
Step 3.2: Store new nondominated solutions to
external archive set.
Step 3.3: Maintain external archive by removing
redundant solutions.
Step 3.4: The new population and the previous two
generations form a new population chain.

Step 4 Stoping criteria: If the stop criteria is met, then stop.
Otherwise, go back to Step 2.

Here are the four strategies described above, and Alg . 2
represents the pseudo code of the MOGPEA.

1) LEADER-UPDATING STRATEGY
To improve the uniformity and diversity of the nondominated
solutions in the Pareto front, the MOGPEA first uses the
maximum distance to measure the sparsity of the nondom-
inated solutions, and then designs a leader-updating strategy
based on the maximum distance. As shown in Fig. 1, the
maximum distance of the ith point (nondominated solution)
is calculated:

di = max(ldi, udi) i = 1, 2, · · · ,Ne. (17)

ldi =
N∑
k=1

|
fk (Xi)− fk (Xi+1)

f max
k − f min

k

| (18)

udi =
N∑
k=1

|
fk (Xi)− fk (Xi−1)

f max
k − f min

k

| (19)

here udi and ldi are the distances from the ith point to the
previous point and the next point.Ne is themaximum capacity
of the archive; N is the number of objective functions; f max

j
and f min

j are the maximum and minimum values of the kth
objective function, respectively.

After calculating the maximum distance of all non-
dominant solutions, MOGPEA adopts the roulette wheel
selection mechanism to select the leader of the archive.

FIGURE 1. Calculation of maximum distance and sparse direction.

In other words, the i solution can be the leader as long as
its maximum distance is the greatest. Alg. 3. describes the
leader-updating strategy.

2) LEADER-GUIDING STRATEGY
This section firstly introduces the sparse direction in the
leader-guiding strategy. The sparse direction of the i solution
is defined as follows:

li =

{
1, ldi > udi
−1, ldi ≤ udi

(20)

such as in Fig. 1, since ldA is greater than udA, so lA = 1.
While lB = −1 for the Bth solution. Next, the leader-guiding
strategy based on the sparse direction is used to update the
individual. The update formula is as follows

Ti = XLi + rand · (Arindexi+li − XLi) (21)

The above formula indicates thatXL moves towards the sparse
direction to generate a new individual. This can increase the
uniformity of the Pareto front.

Algorithm 3 Leader-Updating
Input: Ar(t)
Output: XL
Nt = |Ar(t)| ;
for i = 1 to Nt do

calculate di ;
end
for i = 1 to N do

indexi = Roulette_wheel_selection(di);
XLi(t) = Arindexi (t);

end
return XL ;

VOLUME 8, 2020 84167



Z. Hu et al.: MOGPEA for EED Problem

3) SELECTION STRATEGY BASED ON DOMINANCE
RELATION
As we all know, greedy selection is a common strategy for
single objective optimization problems. However, in multiob-
jective problem, the selection strategy based on dominance
relation is used to select the promising solutions into the
next generation. This kind of selection strategy can improve
the global search capability further. In the strategy, the trial
individual Ti can enter the next generation when Ti dominates
the target individual Pi (Ti ≺ Pi). When two individuals
do not dominate each other, there is a half chance that each
individual will go on to the next generation. The selection
strategy based on dominance relation can be described as
follows.

Pi =

 Ti, Ti ≺ Pi
Pi, Pi ≺ Ti
Ti or Pi, Ti ⊀ Pi ∧ Pi ⊀ Ti

(22)

4) EXTERNAL ARCHIVE MAINTENANCE STRATEGY
At present, there are many external archive maintenance
strategies. The most famous one is the fast non-dominated
sort in NSGA-II. However, this method may delete sev-
eral connected solutions with smaller crowding distances
through calculating the crowding distance. This can lead
to the remaining solutions too sparse. To avoid the above
problems, in this paper, a cyclic crowded sorting algorithm
[59] is used to pick out individuals. The pseudo code of the
cyclic crowded sorting is shown in Alg. 4.

Algorithm 4 Cycled Crowding Sorting
Input: Ar(t),Na
Output: Ar(t + 1)
Nt = |Ar(t)|;
while Nt > Na do

for i = 1 to Nt do
Ari(t).distance = 0;

end
for m = 1 to M do

Ar(t) = sort(Ar(t),m);
Ar1(t).distance = Inf ;
ArNt (t).distance = Inf ;
for i=2 to Nt-1 do

Ari(t).distance = Ari(t).distance+
Ari+1(t).distance−Ari−1(t).distance
ArNt (t).distance−Ar1(t).distance

;
end

end
k = min_Ar(t).distance;
Ark (t) = [ ];
Nt = Nt − 1;

end
return Ar(t + 1)← Ar(t);

5) COMPLEXITY ANALYSIS OF THE MOGPEA
This section analyzes the complexity ofMOGPEA. The intro-
duction of two learning strategy and cyclic crowded sorting
method of the MOGPEA will consume storage space and
increase the time complexity. The complexity of the leader
updating strategy isO(N ). The complexity of the leader guid-
ing strategy isO(N ). The computational complexity of cyclic
crowded sorting isO(Na), where Na is the current capacity of
the archive andNa > N . Therefore, the final time complexity
of the MOGPEA in one generation is O(Na). In addition,
the space complexity of cyclic crowded sorting mechanism
is O(Na). Overall, the consumption of the time and space is
very small.

V. THE MOGPEA IMPLEMENTATION
In this section, the MOGPEA first introduces a constraint-
handling strategy to deal with the equality and inequality
constraints of the EED problem. Second, a fuzzy set mecha-
nism is used to extract the best compromise solution from the
final external archive. Last, the design of experiments and the
setting of parameters are described.

A. CONSTRAINT HANDLING
In addition to high-dimensional and multiple objectives, high
constraints are another difficult problem to deal with for
the EED problem. For the inequality constraint of the EED
problem, it is very easy to deal with the over-limited values by
simply setting it to the corresponding boundary value. On the
contrary, for the equality constraints, it becomes very compli-
cated since the strong coupling between variables. In order to
better solve the equality constraints and avoid consuming too
much time, this paper employs a special constraint handling
method to deal with the power balance constraint of the
EED problem. A constraint violation threshold σ is set in
advance and σ = 1e − 12. The constraint process is as
follows:

Step 1: For each infeasible solution x, set k is a
random integer from 1 to D.
Step 2: Calculate the violation V (x):

V (x) = PL + PD − sum(xi) (23)

If V (x) > σ , then go to Step 3; otherwise, go to
Step 4.
Step 3: Adjust x to make it satisfy the constraint:

xi,k = xi,k ∗ (PL + PD)/sum(xi),

( i = 1, 2, · · · ,N ) (24)

If the new xi,k violates the inequality constraint, and
then it will be addressed by the inequality constraint
method. Let k = mod(k,D)+ 1, and go to Step 2.
Step 4: End the constraint handling process.
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FIGURE 2. The fuzzy-based membership function.

B. FUZZY-BASED THEORY FOR THE COMPROMISE
SOLUTION
In practical applications, the decision maker only usually
needs one solution in the final external archive. This solution
is called the best compromise solution, and to some extent
it satisfies all objectives. This paper extracts the best com-
promise solution by using a fuzzy-based mechanism [34]
and Fig. 2 illustrates a fuzzy-based membership function.
The membership function µik of the kth objective of the ith
solution is calculated in the following way:

µik =


1, if fi,k ≤ f min

k
f max
k − fi,k
f max
k − f min

k

, if f min
k ≤ fi,k ≤ f max

k

0, if fi,k ≥ f max
k

(25)

f max
k and f min

k are themaximum andminimum values of the
kth objective function among all nondominated solutions of
archive, respectively. The normalized membership function
µi is calculated:

µi =

∑M
k=1 µi,k∑Nt

j=1
∑M

k=1 µjk
(26)

Here,M denotes the number of objective functions (M = 2
in this paper), and Nt is the number of nondominated solu-
tions. The best compromise solution is the solution for which
µk is the largest.

C. EXPERIMENTAL DESIGN AND PARAMETER SELECTION
The MOGPEA is tested on the standard IEEE 30-bus
6-generator system (as shown in Fig.3). The fuel cost coef-
ficient, emission coefficient, and generation limit are ref-
erenced in [22] and given in Tab. 2. The transmission
loss coefficients are given in Tab. 1. The load demand is
2.834 MW. The simulation program is written in MATLAB
and run at 1.6GHz Intel Pentium core i7 processor with
4GB-RAM. The source codes of this algorithm can be found
in https://github.com/Zhongbo-Hu/Prediction-Evolutionary-
Algorithm-HOMEPAGE.

In order to investigate the effectiveness of the MOGPEA
for solving the EED problems, two different cases are studied
as follows:

FIGURE 3. IEEE 30-bus 6 generator test system.

TABLE 1. Transmission loss coefficients.

TABLE 2. Generator cost and emission coefficients.

• Case 1: the transmission loss of power balance con-
straint is not considered.

• Case 2: the transmission loss of power balance con-
straint is considered.

Here, the number of populationN = 50 and the capacity of
the archiveNa = 50. Stopping criterion for two case are taken
as 100 and 200 maximum number of iterations, respectively.
Thirty independent runs of the MOGPEA are carried out to
collect the statistical results. In addition, the parameters of
several compared algorithms are given below.
MOPSO [17]: the inertia weight is 0.7, the personal learning
coefficient is 1.4, the global learning coefficient is 1.4, the
number of grids per dimension is 7.
NSGA-II [11]: the crossover percentage is 0.7 and the
mutation percentage is 0.7.
PESA-II [60] : the crossover percentage is 0.7 and the muta-
tion percentage is 0.7.

VI. RESULTS AND DISCUSSIONS
First, a simple multi-objective unconstrained test function is
used to verify the effectiveness of the two learning strategies.
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FIGURE 4. Comparisons of original MOGPEA and adding strategies MOGPEA.

Second, experimental result is obtained on the IEEE 30-bus
6-generator test system.

A. EFFECTIVENESS ANALYSIS OF TWO LEARNING
STRATEGIES
A unconstrained multiobjective function is firstly used to
verify the effectiveness of the two learning strategies. The
function is described as follows:

min f1 = 4x21 + 4x22
min f2 = (x1 − 5)2 + 4(x2 − 5)2

st. 0 < x1 < 5, 0 < x2 < 3

(27)

Next, the original MOGPEA (MOGPEA1), the original
MOGPEA+ strategy 2 (MOGPEA2) and the original MOG-
PEA + strategy 1 + strategy 2 (MOGPEA3) are verified on
this test function. Here, N = 40,D= 2, Na= 35, and Tmax =
30. Fig. 4 shows the Pareto fronts obtained by the above three
algorithms. From the figure, we can infer two conclusions:
• From Fig. 4, the uniformity of the Pareto front of MOG-
PEA3 is better than that of MOGPEA2, which is better
than that of MOGPEA1. Therefore, we can obtain con-
clusion 1: the strategy 1 and strategy 2 can improve the
uniformity of the Pareto front.

• From the third graph in Fig. 4, the coverage of the
extreme solutions of the Pareto front for the MOG-
PEA3 marked by two red circles is more widespread
than that of the MOGPEA2 marked by two green dia-
monds. It is more widespread than that of the MOG-
PEA1 marked by two blue squares. From the above,
we can obtain conclusion 2: the strategy 1 and strategy
2 can increase the diversity of the Pareto front.

B. IEEE 30-BUS 6-GENERATOR TEST SYSTEM
This section conducts two experiments in the IEEE 30-bus
6-generator test system to evaluate the performance of the
MOGPEA. One experiment is to compare the extreme solu-
tions and compromise solutions of the MOGPEA with other
famous algorithms. Another is to use some evaluation indica-
tor to test solution quality, such as SP, HV and CM.

1) COMPARISON OF EXTREME SOLUTIONS AND
COMPROMISE SOLUTIONS
First, the original GPEA is carried out to search for the
extreme solutions of the two objective of the EED problem

TABLE 3. Best cost and emission optimized individually.

FIGURE 5. Convergence of cost and emission objective on Case1.

in two cases respectively. Tab. 3 shows the obtained best
extreme solution for two cases, and Fig. 5 and 6 give the
convergence of two objectives for two cases. As can be
observed fromTab. 3, the optimal values of fuel cost objective
for Case 1 and Case 2 are 600.111417 $/h and 605.998378
$/h and the optimal values of the emission objective are
0.194203 ton/h and 0.194179 ton/h for Case 1 and Case 2.

Next, the proposed MOGPEA is implemented to simulta-
neously optimize both objectives of the EED problem, and
the results of extreme solutions and compromise solutions for
two cases are discussed below.

Case 1: Applying the MOGPEA to Case 1, the Pareto
front is displayed in Fig. 7. The figure clearly indicates that
the solutions are well-distributed and almost cover the entire
Pareto front of the problem. Tab. 4 and 5 compare the best
extreme solutions of theMOGPEA for fuel cost and emission
with results reported in the literatures that were obtained by
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FIGURE 6. Convergence of cost and emission objective on Case2.

using NSGA [10], NPGA [14], SPEA [34], MOPSO [17],
BB-MOPSO [22], FMOEP [36], MBFA [37], NSGA-II [11],
MOACSA [44] and SMODE [27]. In addition, to compare
the compromise solutions of different algorithms, the average
satisfactory degree (ASD) [22] is calculated. Tab. 6 compares
the results obtained by the MOGPEA for the compromise
solution and the ASD with results reported in the literatures
that were obtained by using NSGA [10], NPGA [14], SPEA
[34], FCPSO [20], BB-MOPSO [22] and MOCDOA [50].
The bold values in Tab. 4-6 are the best obtained results.

As seen from Tab. 4 and 5, 600.11 $/h and 0.1942 ton/h are
the two best extreme values for the fuel cost and emission,
respectively. In Tab. 4, although the MOGPEA generates the
same best cost value as BB-MOPSO, NSGA-II, MOACSA
and SMODE, the obtained corresponding emission by the
MOGPEA is 0.2219 ton/h, which is the best among the four
compared algorithms. In addition, the MOGPEA is better
than the other six comparison algorithms in terms of the
best cost (includingNSGA,NPGA, SPEA,MOPSO, FMOEP
and MBFA). In Tab. 5, it is clear that the proposed MOG-
PEA gives minimum emission of 0.1942 ton/h, which is
equal to the emission obtained from the SPEA, MOPSO,
BB-MOPSO, FMOEP, MBFA, NSGA-II, MOACSA and
SMODE algorithms, and it performs better than NSGA and
NPGA for the problem. In Tab. 6, according to the ASD,
the MOGPEA attains the best ASD value among seven algo-
rithms (equal to 0.7677).In other words, the proposed MOG-
PEA gives the best compromise solution of 609.54 $/h and
0.2009 ton/h, which are significantly better than the solutions
given by the other algorithms. All of these results demonstrate
the potential and effectiveness of the MOGEPA to solve the
EED problem.

Case 2: The best cost and best emission of Case 2 obtained
by the MOGPEA are given in Tab. 7 and 8, respectively.
The results are compared to those reported in the literature
including NSGA, NPGA, SPEA, MOPSO, MODE, FMOEP,
MBFA, NSGA-II, MOACSA and SMODE. From Tab. 7 and
8, it is easy to observe that theMOGPEA obtains the best fuel
cost (equal to 606.004453$/h) and the best emission (equal
to 0.194181 ton/h) compared to all the other algorithms. The

FIGURE 7. Pareto front using MOGPEA on Case1.

FIGURE 8. The box plot of the SP value on Case2.

above results obtained by the MOGPEA are very competitive
among all comparison algorithms, which demonstrates the
effectiveness of the MOGPEA in solving EED problems.

2) COMPARISON OF SOLUTION QUALITY
Three commonly used multiobjective performance metrics
are used to evaluate the quality of the solution obtained by
MOGEPA. In addition, the solution quality of the MOGPEA
is compared with that of MOPSO [17], NSGA-II [11] and
PESA-II [60]. This section only considers the solutions for
Case 2.

(1) Spacing (SP): The spacing (SP) [61], proposed by
Schott, is adopted to evaluate the uniformity of the Pareto
optimal set found. The calculation of the SP is as follows:

SP =

√√√√ 1
|Ar| − 1

|Ar|∑
i=1

(d − di)
2
,

di = min
qj∈Ar∧qj 6=qi

m∑
k=1

|fk (qi)− fk (qj)| (28)

where di is the Euclidean distance between two consecutive
solutions in the nondominated solution set and d̄ is the mean
values of all di. The SP values are closely related to the unifor-
mity of the solution set, that is, the smaller the value, the more
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TABLE 4. Best cost of ten algorithms on Case 1.

TABLE 5. Best emission of ten algorithms on Case 1.

TABLE 6. Best compromise solution of seven algorithms on Case 1.

uniform it is. When SP value is equal to 0, the obtained
nondominated solution is equidistant. Fig. 8 shows the SP
value of the MOGPEA for 30 runs on Case 2. The obtained
The SP values of four algorithms are compared in Tab. 9.
It can be observed that, compared with the MOPSO, NSGA-
II and PESA-II, the average performance of the MOGPEA
is the best. To more clearly and intuitively demonstrate the
uniformity of the obtained nondominated solution, Fig. 9
shows the Pareto front of the MOGPEA and the other three
algorithms. From Fig. 9, the uniformity of the MOGPEA is
clearly superior to that of MOPSO, NSGA-II and PESA-II.
All in all, the uniformity of the obtained solutions by the
MOGPEA is very competitive compared with other three
algorithms.

(2) Hypervolume (HV): The hypervolume (HV) [25], pro-
posed by Zitler and Thiele, is a comprehensive performance
index that can be used to evaluate both convergence and diver-
sity. The larger the HV value, the better the comprehensive
performance of the algorithm. The definition of HV is as

follows:

HV =
|Ar|⋃
i=1

vi (29)

Here, vi is the hypervolume of the reference point and the ith
solution in the solution set. The reference point is same for the
four algorithms. Fig. 10 shows the HV value of theMOGPEA
for 30 runs on Case 2. Tab. 10 shows the comparison results
among four different algorithms in terms of HV. From this
table, we can see that the HV value of MOGPEA is the
largest. In other words, the comprehensive performance of
the MOGPEA is superior to those of the MOPSO, NSGA-II
and PESA-II.

(3) C-metric (CM): When the true Pareto front of multi-
objective problem is not known, CM [62] is often used to
evaluate the quality of the obtained solutions. Let S1, S2 j S
be the two solution sets obtained by two different algorithms.
The CM is defined by the following formula.
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FIGURE 9. Pareto fronts and compromise solution for the four algorithms on Case 2.

TABLE 7. Best cost of ten algorithms on Case 2.

FIGURE 10. The box plot of the HV value on Case2.

CM (S1, S2) =
|{a2 ∈ S2, ∃a1 ∈ S1 : a1 ≺ a2}|

|S2|
(30)

CM (S1, S2)=0 means that none of the solutions in S2 are
dominated by the solutions in S1. CM (S1, S2)=1 means that

all of the solutions of S1 dominate or are equal to some
solutions of S2. Tab. 11 shows the comparison results among
the four algorithms in terms of CM. From Tab. 11, nearly
12% and 10% of the solutions obtained by the NSGA-II and
PESA-II respectively, are dominated by those of the MOG-
PEA. However, 96%, 22% and 6% of the solutions obtained
by the MOGPEA are dominated by those of the MOPSO,
NSGA-II and PESA-II, respectively. Thus, the coverage of
the MOGPEA is better than that of the PESA-II. However,
it not as good as that of the MOPSO and NSGA-II.

According to the above analysis, it can be concluded that
the MOGPEA has a better performance for Case 2 in terms
of the uniformity and diversity of the solutions. However, it
may not be very competitive for the convergence of solutions.
This result can be attributed to the collective efforts of the
two learning strategies proposed. On the one hand, the update
strategy of the leader based on the maximum distance is able
to assign the leader to the location with sparse solutions,
while the leader-guiding strategy proposed is able to make
the leader move in the direction of its sparse neighborhoods.
Therefore, their collective efforts ensure the uniformity and
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TABLE 8. Best emission of ten algorithms on Case 2.

TABLE 9. System statistical results of the SP for Case2.

TABLE 10. Statistical results of the HV for Case2.

TABLE 11. Statistical results of the CM for Case2.

diversity of solutions in the external archive set. On the
other hand, the high exploration capability of the proposed
reproduction operator makes the convergence rate of our
algorithm slow. All in all, the MOGPEA has good uniformity
and diversity . However, there is still room to improve its
convergence.

VII. CONCLUSION
This paper first proposes a grey prediction evolution
algorithm (GPEA) by resorting to the even grey model
(EGM(1,1)). The GPEA differs from most of metaheuris-
tics in that its reproduction operator does not make use
of any mutation and crossover operators but rather consid-
ers the consecutive three population series of evolutionary
algorithms as time series and uses the EGM(1,1) model to
construct an exponential function for obtaining offspring.
To solve the environmental/economic dispatch (EED) prob-
lem ,which is a constrainedmultiobjective optimization prob-

lem with conflicting fuel cost and emission objectives, a mul-
tiobjective grey prediction evolution algorithm (MOGPEA)
is developed in which two learning strategies are introduced
for improving the uniformity and diversity of the obtained
Pareto optimal solutions. One is a leader-updating strategy
based on the maximum distance to measure the degree of
sparseness of the solutions, and the other is a leader-guiding
strategy based on the sparse mark to search the area around
a leader. Furthermore, the constraints of the EED problem
are solved using a special function processing strategy, a
selection strategy based on the dominance relation replaces
greedy selection of the GPEA, and a cyclic crowded sorting
method maintains the external archive.

A standard IEEE 30-bus 6-generator test system is used
to verify the effectiveness of the MOGPEA. Two cases in
this system have been considered. The extreme solutions
and compromise solutions of the MOGPEA are compared
with that of state-of-the-art algorithms. The compared results
exhibit that the MOGPEA has a good compromise solu-
tion and highly diverse Pareto optimal solutions. Three met-
rics (SP, HV, CM) all show that MOGPEA yields solutions
exhibiting better diversity and uniformity compared with the
MOPSO, NSGA-II and PESA-II. The experimental results
show that the MOGPEA is efficient and competitive for
solving the multiobjective EED problem. This paper demon-
strates that the novel GPEA can obtain competitive solutions
for the EED problem, and the two learning strategies (i.e.,
Leader-updating strategy and Leader-guiding strategy) have
good effects on improving the uniformity and diversity of the
Pareto front. In the future, we will use the algorithm and the
two learning strategies to investigate more realistic dynamic
EED (DEED) problems.
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