
Received April 25, 2020, accepted May 1, 2020, date of publication May 4, 2020, date of current version May 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992281

Analysis of Oscillatory Behavior of Heart by
Using a Novel Neuroevolutionary Approach
ADNAN KHAN1, MUHAMMAD SULAIMAN 1, HOSAM ALHAKAMI 2,3,
AND AHMAD ALHINDI 2,3, (Member, IEEE)
1Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan
2Department of Computer Science, Umm Al-Qura University, Mecca 21955, Saudi Arabia
3Center of Innovation and Development in AI (CIADA), Umm Al-Qura University, Mecca 21955, Saudi Arabia

Corresponding author: Muhammad Sulaiman (msulaiman@awkum.edu.pk)

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by
Grant Code: 19-COM-1-01-0022.

ABSTRACT This paper aims at the analysis of the VdP heartbeat mathematical model. We have analysed
the conditionality of a mathematical model which represents the oscillatory behaviour of the heart. A novel
neuroevolutionary approach is chosen to analyse the mathematical model. The characteristics of the cardiac
pulse of the heart are examined by considering two major scenarios with sixteen different cases. Artificial
neural networks (ANNs) are constructed to obtain the best solutions for the heartbeat model. Unknown
weights are finely tuned by a combination of a global search technique the Harris Hawks Optimizer (HHO)
and a local search technique the Interior Point Algorithm (IPA). Stable behaviour of solutions obtained
by considering different cases demonstrates that the model under consideration is well-conditioned. The
accuracy of our novel procedure is established by getting the lowest residual errors in our solution for all
cases. Graphical and statistical analysis are added to further elaborate the accuracy of our approach.

INDEX TERMS Cardiac pulse model, hybridized soft computing, artificial neural networks, non-linear
ordinary differential equations, heuristics, interior-point algorithm, Harris Hawks optimizer.

I. INTRODUCTION
Themain objective of this work is to examine the efficiency of
a novel neuroevolutionary approach consisting of hybridized
heuristics. Our stochastic procedure is used to analyse the
dynamics of nonlinear Van der Pol (VdP) based heartbeat
mathematical model of second-order nonlinear ordinary dif-
ferential equations (ODEs). The VdP oscillatory system has
been used for the accurate, and theoretical insight to under-
stand different behaviours of cardiac pulses [1]–[3], such as
periodicity, erratic behavior, relaxation, and bifurcations [4].
In terms of nonlinear oscillator [5], [6], the modified form of
VdP heart dynamic model is mathematically represented as
following:

ẍ + α(x − v2)(x − v1)ẋ +
x(x + e)(x + d)

ed
= F(t),

x(0) = c1 and ẋ(0) = c2, (1)

in equation (1) the fiber of heart is represented by x, α is pulse
shape modification factor of heartbeat. When the heart model
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is simulated, the value of α changes, parameters v1 and v2
which are asymmetric component that modify damping term
that exist in typical VdP ordinary differential equation, e is
the duration of ventricular contraction while the term d is a
factor that is created to replace the harmonic force term in
standard VdP equation with the cubic term and the factor
F(t) on right hand side of equation (1) is representing the
external force factor. System in equation (1) is a nonlinear,
second-order differential equation with two initial conditions
representing a well-posed problem. Exact solution for VdP
nonlinear oscillatory system is not available. Due to this
reason, various numerical and exact methods are designed to
find out the approximate solutions. For example, the Ado-
mian Decomposition Method (ADM) [7], [8], He’s parame-
ter expanding method [9], Laplace Decomposition Method
(LDM) [10], method of linearization [11] and Homotopy
Analysis Method (HAM) [12], etc. All these methods have
their own applications, characteristics and limitations, but the
stochastic techniques has its own organized potency, because
of their strength. Moreover, techniques listed above are rarely
used for the solution of Van der Pol dynamic model in the
field of bio-informatics.
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Artificial intelligence techniques are considered effec-
tive, accurate and reliable for the solution of many uncon-
strained and constrained optimization problems arising in
different fields [13]–[15]. Some recent artificial intelligence
methodologies based on artificial neural networks (ANNs)
appeared with different applications [16], [17]. These include
second-kind fredholm integral equations [18], analysis the
bending of beam column [19], astrophysics models [20],
bilinear programming problems [21] and inverse kinematic
problems [22].

Feed-forward ANNs are used as universal function approx-
imation procedures for the development of stochastic numer-
ical solvers. Due to their strength and stability, they are
widely used for the solutions of nonlinear systems [23]–[27].
By combining global search and local search optimiza-
tion approaches, these networks are typically optimized by
reducing the residual errors in solutions. Recent implemen-
tation of these methods is the solution of VdP oscillatory
nonlinear systems [28], [29], fractional optimal control prob-
lems [30], [31], fuel ignition model in the theory of com-
bustion, longitudinal heat transformation fins model [32],
nano-fluidics problems, the fuel ignition mechanism in the
theory of combustion [33], Navier Stoke’s equations [34],
the longitudinal heat transfer fins model [35], [36], non-
linear Troesch form equations in the field of plasma
physics [37], [38], thin film flow problems in fluid mechan-
ics [39], system of linear Volterra integral equations [40],
pantograph form of functional ODE and boundary value
problems (BVPs) [41], [42], traveling singularity problems of
the nonlinear Painleve form equations [43], magneto-hydro
dynamics (MHD) study [44]–[46], electrical conducting
solids models [47], electromagnetic theory problems [48],
fuzzy differential equations [49], [50], the study of spherical
cloud model in thermodynamics [51], nonlinear equations
of Lane Emden form [51]–[53] and nonlinear systems of
fractional order [54], [55].

These methodologies have encouraged many researchers
to scrutinize explicitly the stability and power of stochas-
tic numerical techniques to build an alternative, yet sim-
ple, precise, intelligent, efficient, stable, steady computing
systems to examine the problems like VdP model of the
heartbeat.

In this research article, a stochastic technique is estab-
lished based on feed-forward ANNs which are optimized
with a hybrid of the ‘‘Harris Hawks Optimizer’’ (HHO) and
the ‘‘Interior Point Algorithm’’ (IPA). This soft computing
paradigm is used to analyse the VdP nonlinear dynamic
heartbeat model as in equation(1). Global and local search
characteristics of HHO and IPA are combined to optimize
the design parameters of the ANNs for solutions of VdP
nonlinear dynamic heartbeat model. The results of the pro-
posed method for the model (1) are compared with reference
numerical solutions to verify the accuracy of the proposed
method. Four main scenarios and sixteen different cases are
considered by varying the factor of external forcing, damping

coefficients, and pulse shape modification factor, while the
value of the ventricular contraction period is kept constant.

The convergence and accuracy of our results obtained by
the proposed scheme are statistically analysed in terms of
standard deviation, mean square errors, absolute errors, mean
absolute deviation (MAD), root-mean-square error (RMSE),
and error in Nash–Sutcliffe efficiency (ENSE) by using
results of multiple independent runs. Moreover, Nash Sut-
cliffe efficiency illustrates its reliability, applicability, and
effectiveness.

II. HEART BEAT MODELING BASED ON VAN DER
POL NONLINEAR OSCILLATOR
In this portion of the paper, we describe the essential back-
ground of the Van der Pol (VdP) model as presented in
equation (1). The Van der Pol oscillators which are also
known as relaxation oscillators, were originally proposed for
modelling of electronic circuits [56] in electrical engineering
and are been frequently used in theoretical models of bio-
logical sciences like cardiac rhythm. The following nonlinear
oscillatory model [56], [57] is a system based mathematical
modeling of VdP heart model:

ẍ + α(x2 − 1)ẋ + ωx = 0, (2)

here ω and α in system (2) are constant coefficients, associ-
ated to duffing and damping parameters of the system.

In the terms of synchronization, chaos and limited cycles,
VdP equation is similar to biological systems and that is
why VdP system based differential equations are frequently
used in representations of theoretical heart oscillations [1],
[2], [4], [5], [7], [9], [12]. Moreover, VdP equation generates
the external dynamic frequency of pacemaker, without any
variation in amplitude and this is a vital particularity of the
cardiac pacemaker. Zebrowski and Grudzinski were first to
introduce these classical VdP models of heart [1].

Later on scientists modified the classical model of VdP
and the properties of VdP model of heart are dramatically
changed by fixing stable and saddle locations as x = −2d
and x = −d respectively. Voltage related VdP heart model
with updated terms of asymmetric damping is as follows:

ẍ + α(x2 − µ)ẋ +
x(x + d)(x + 2d)

d2
= 0. (3)

The distance among these fixed points can not be changed,
so for further modification in equation (3) and changes in
depolarization period another parameter e is introduced as
follows:

ẍ + α(x2 − µ)ẋ +
x(x + e)(x + d)

ed
= 0, (4)

the damping term α(x2−µ) is replaced with (x−v2)(x−v1),
which is asymmetric with respect to the variable x, for further
updates in (4) it is modified as [4], [29], [56], [58]:

ẍ + α(x − v2)(x − v1)ẋ +
x(x + e)(x + d)

ed
= 0. (5)
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The conditions v1, v2 < 0, must be satisfied to keep up the
automatic oscillatory feature of heart. The modified model
has the capability mathematically represent the fundamen-
tal physical characteristics of heart pulse subject to normal
conditions. But in the presence of external forcing factor or
external pacemaker F(t), system in equation (5) is given as:

ẍ + α(x − v2)(x − v1)ẋ +
x(x + e)(x + d)

ed
= F(t),

x(0) = c1, and ẋ(0) = c2. (6)

The given system in equation (6) is a nonlinear VdP oscil-
lations based heart model to examine the characteristics of
a cardiac pulse. Extra information about the given model is
in [59].

III. PROPOSED DESIGN OF SOFT COMPUTING
The proposed soft computing scheme for the study of heart
dynamics model, consists of two parts, in the very first part of
the scheme an unsupervised ANNs model is designed for the
system of a differential equation (1) and in the second part of
the scheme unknown weights are finely tuned using a hybrid
algorithm of the ‘‘Harris Hawks Optimizer’’ (HHO) and the
‘‘Interior Point Algorithm’’ (IPA). The designed methodol-
ogy is graphically presented in figure (5).

A. SERIES SOLUTIONS FOR HEART BEAT
MATHEMATICAL MODEL
The mathematical model for solutions of ordinary differential
equations is formulated in the form of continuous mapping
by manipulating the strength of approximation theory [58].
These networks and their nth-derivatives of the solutions x(t)
are given as follow:

x̂(t) =
m∑
j=1

ϕjf (wjt + βj),

ˆ̇x(t) =
m∑
j=1

ϕj ḟ (wjt + βj),

ˆ̈x(t) =
m∑
j=1

ϕj f̈ (wjt + βj),

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

x̂(n)(t) =
m∑
j=1

ϕjf (n)(wjt + βj), (7)

in above equation (7), ϕ = [ϕ1, ϕ2, ϕ3, . . . , ϕm], w =
[w1,w2, w3, . . .wm] and β = [β1, β2, β3, . . . , βm] are real
valued vectors with bounded ranges. Networks in (7) are
activated with log-sigmoid function ζ (t) = 1/(1 + e−t ) and
the derivatives of log-sigmoid function in updated form are

given in equations (8) below:

x̂(t) =
m∑
j=1

ϕj

(
1

1+ e−(wj(t)+βj)

)
,

ˆ̇x(t) =
m∑
j=1

ϕjwj

(
e−(wj(t)+βj)

(1+ e−(wj(t)+βj))2

)
,

ˆ̈x(t) =
m∑
j=1

ϕjw2
j

(
2e−2(wjt+βj)

(1+ e−(wjt+βj))3
−

e−(wjt+βj)

(1+ e−(wjt+βj))2

)
.

(8)

The mathematical model of (1) can be construct by using
appropriate combination of neural networks given in equa-
tions (7) or (8). The graphical composition of neural network
based solutions of VdP based heart model are presented in the
form of input, hidden layers and output as given in figure (1).

1) FITNESS FUNCTIONS
Fitness function for finding best solutions to heart dynam-
ics model (1) are constructed as optimization problems.
A minimization objective function of mean squared error is
formulated as:

minimize ε = ε1 + ε2, (9)

where ε1 denotes mean square error of the function in non-
linear VdP equation (5), which is formulated as:

ε1 =
1
N

M∑
m=1

(
ˆ̈x + α(x̂m − v2)(x̂m − v1)x̂m

+
x̂m(x̂m + e)(x̂m + d)

e× d

)2

,

for N =
1
h
, x̂m = x̂(tm) and tm = mh, (10)

on the other hand ε2 represents mean squared error related to
given initial conditions as following:

1
2
((c1 + x̂0)2 + ( ˆ−c2 + ẋ0)2). (11)

With the help of a hybrid optimization technique we will tune
the solution weights w = [ϕ,w, β] for ANNs model, such
that, the fitness value ε of the system (1) minimize solution
to zero. In this case solution of heart beat dynamic model (1)
will be an ideal or near to exact solution. i.e. if ε −→ 0 then
x̂(t) −→ x(t).

B. HYBRID OPTIMIZER HHO-IPA
The unknown parameters of the ANNs model are required
to be trained for getting the best solutions of nonlinear
VdP dynamic heart model (1). To accomplish this task,
we have combined two optimization algorithms to get an
intelligence computing technique. This hybrid technique is
based on the Harris Hawks Optimizer (HHO) and the Interior
point algorithm (IPA). HHO is considered a nimble, accu-
rate, intelligent, potent, and reliable technique in the class
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FIGURE 1. Graphical abstract of ANNs for Van der Pol dynamic heart model.

of particle swarm intelligence paradigms which are used
mostly in various fields of numerical and applied sciences.
This paradigm is Nature-inspired and was first introduced
by Heidari et al. [60]. HHO is a global search technique,
which means that it finds suitable or near best candidate
solutions of the given optimization problems inside a uni-
fied search zone. The flowchart of HHO is in figure (2).
HHO is an efficient optimizer to solve accurately uncon-
strained and constrained nonlinear optimization problems.
The global search strength of HHO is hybridized with an
effective local search algorithm, namely, IPA to get the best
results rather quickly for an optimization problem. The finest
individual solution of the global search algorithm HHO is
selected as a starting point of local search technique IPA.
Thus for quick and further tuning of unknown weights, IPA
is used which is a single path following technique with
better local search capability. The graphical abstract of IPA
is given in figure (3) [61]. Many optimization problems

are solved successfully by using IPA appearing in different
fields, including hyperbolicity cone problems [62], nonlinear
non-convex programming [63], parameter approximation of
discrete-time infective disease models [64] and the flow of
optimal power with FACTS devices [65], solutions of these
problems motivated us to choose IPA, which is an interesting
choice for local search.

Keeping in mind the power of HHO as a global search
technique and IPA as a local search technique, a hybrid com-
puting scheme HHO-IPA in figure (5) is applied for obtaining
suitable design parameters of ANNs model to get solutions
to the system of heartbeat model as shown in equation (1).
For HHO we will use MATLAB script while IPA is executed
in Matlab toolbox built-in function ‘‘fmincon’’. Proposed
scheme HHO-IPA is sensitive to settings in tables (1) and (2),
a small change in these settings may cause premature conver-
gence of the algorithm. Parameters settings are prepared with
comprehensive experimentations and care.
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FIGURE 2. Flowchart of Harris Hawks Optimizer (HHO).

TABLE 1. Setting of parameters used for Harris Hawks Optimization.

IV. EXPERIMENTAL SETUP AND RESULTS
In this section we present our results obtained by the hybrid
soft computing approach for two major scenarios with six-
teen different cases related to the VdP heartbeat model, see
figure (4). The problem considered here is a generalized VdP
equation with initial conditions. It consists of a second-order,
nonlinear ordinary differential equation (ODEs) given as an

initial value problem (IVP). Different cases are taken for each
scenario based on different values of asymmetric damping
terms, i.e. v1 and v2, and pulse shape modification factor α.
The results of the proposed scheme are comparedwith the ref-
erence numerical solutions obtained from the Adams method
(AM). The worth of the proposed scheme is proved through
the numerical and graphical interpretation of the results.
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FIGURE 3. Illustration of the IPA.

TABLE 2. Setting of parameters used for ‘‘fmincon’’ program for the implementation of ‘‘interior point algorithm’’.

A. PROBLEM-1: VDP DYNAMIC HEARTBEAT MODEL
IN THE ABSENCE OF FORCING TERM
Two different scenarios are taken into this problem.
Scenario-1 is taken based on changes in pulse shape
modification term α while scenario-2 consider the changes
in asymmetric damping terms (v1, v2) which represent terms
associated to the voltage of heartbeat dynamic model (1),
in the absence of forcing term F(t) that appears in a
normal state of a natural pacemaker. While d represents
the coefficient of cubic factor which switches to harmonic
forcing term and the term e in classical VdP equation

is constant and is used to tune period of ventricular
contraction [4], [29], [56], [58].
(a) Scenario-1: Effects of variations in pulse shape modifi-

cation factor ‘‘(α)’’ of heartbeat model. To analyse the effects
of changes in value of ‘‘(α)’’ we considered four cases as
follows [58]:

Case1: Consider Dynamic heartbeat model for v1 = 0.83,
e = 6, d = 3, v2 = −0.83, and α = 3.

Case2: Consider Dynamic heartbeat model for v1 = 0.83,
e = 6, d = 3, v2 = −0.83, and α = 2.

Case3: Consider Dynamic heartbeat model for v1 = 0.83,
e = 6, d = 3, v2 = −0.83, and α = 1.
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FIGURE 4. Graphical overview of problems 1, 2: Scenarios and cases considered in this paper for VdP dynamics heartbeat model.

Case4: Consider Dynamic heartbeat model for v1 = 0.83,
e = 6, d = 3, v2 = −0.83, and α = 0.01.
The VdP nonlinear equation, obtained for the present sce-

nario with corresponding initial conditions can be written as
follows:

ẍ + α(x − 0.83)(x + 0.83)ẋ +
x(x + 6)(x + 3)

18
= 0,

x(0) = −0.1 and ẋ(0) = 0.025, (12)

equation (12) represents the cases C1, C2, C3 and C4, for α
equal to 3, 2, 1 and 0.01 accordingly.

Exact solution for the system in equation (12) does
not exist, while the best numerical solutions of respective
cases of the current scenario are determined with state-of-
the-art ‘‘RungeKuttaMethod’’ (RKM) usingMatlab function
ode45. The performance of designed scheme is compared
with the reference solutions of RKM for solutions with inputs
x in [0, 2] and with a step size of h = 0.1. The pro-
posed methodology described in the last section is used to

solve (12), while the fitness function (FF) for this scenario is
given as following:

ε =
1
N

N∑
m=1

(
ˆ̈xm + α(x̂m − 0.83)(x̂m + 0.83)x̂m

+
x̂m(x̂m + 6)(x̂m + 3)

18

)2

+
1
2

(
(x̂0 + 0.1)2 + ( ˆ̇x0 − 0.025)2

)
. (13)

Optimization of the fitness function (FF) (13) is performed
with the proposed hybrid scheme HHO-IPA and we got the
best set of trained weights with fitness values for the casesC1,
C2, C3 and C4 as 6.6486× 10−12, 1.0447× 10−11, 4.7537×
10−13 and 2.0005× 10−12 respectively, see figure (6). Solu-
tions for the four cases, i.e. x̂c1 , x̂c2 , x̂c3 and x̂c4 are derived
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FIGURE 5. Graphical flowchart of designed technique for solution of VdP dynamics heartbeat model.

using the weights of figure (7) and are given as follows:

x̂c1 =



−2.1285
1+e−(0.4053t−0.4084)

+
1.3586

1+ e−(−0.3502t−2.6372)

+
−0.3400

1+e−(2.5582t−3.196)
+

1.8950
1+ e(−0.6294t−1.4909)

+
1.7623

1+e−(0.7653t−0.3561)
+

−2.9351
1+ e−(1.5600t−3.2773)

+
−0.1552

1+e−(4.1185t−7.2004)
+

1.7523
1+ e−(2.2227t−3.1798)

+
−0.6997

1+e−(1.1985t+0.1017)
+

1.5691
1+ e−(3.4598t−6.4259)

,

(14)

x̂c2 =



2.1116
1+e−(1.4039t−2.6925)

+
1.7800

1+ e−(−0.4214t+1.1213)

+
−1.4704

1+e−(−2.0080t+4.7784)
+

1.2812
1+ e−(0.3376t+1.3421)

+
2.9244

1+e−(−0.0213t−2.0010)
+

2.9515
1+ e−(−0.7748t+2.1342)

+
−2.4066

1+e−(0.9261t−2.4286)
+

−2.6720
1+ e−(−0.1838t+0.6096)

+
−2.6162

1+e−(0.4300t+2.7706)
+

1.1361
1+ e−(1.3608t−1.1842)

,

(15)
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x̂c3=



2.0385
1+e−(−0.8603t−0.9258)

+
2.8794

1+ e−(−0.7457t+1.3186)

+
−0.5843

1+e−(0.4312t−1.6624)
+

−2.9660
1+ e−(0.7879t−3.2565)

+
−0.9673

1+e−(−0.8462+1.3543)
+

−2.3247
1+ e−(−0.7660t−0.8856)

+
2.0960

1+e−(1.0508t−2.7546)
+

−0.9373
1+ e−(−0.8462t+1.3542)

+
1.1136

1+e−(−0.6014t−3.2555)
+

−0.9374
1+ e−(−0.8462t+1.3540)

,

(16)

x̂c4 =



0.3313
1+e−(−0.3937t−0.1814)

+
1.7056

1+ e−(0.8318t−1.3627)

+
0.7222

1+e−(−0.3888t+0.5809)
+

−1.2072
1+ e−(−0.7245t−0.5976)

+
0.4064

1+e−(−1.0610t−1.2141)
+

−0.5178
1+ e−(0.2432t+0.5049)

+
0.9205

1+e−(−0.3752t−0.1277)
+

−0.9166
1+ e−(0.2678t+1.0637)

+
0.0290

1+e−(−1.3697t+2.0551)
+

−1.0858
1+ e−(0.4423t−1.6272)

,

(17)

Solutions plotted in figure (6) are obtained by using inputs
in interval [0, 2] with the step size of h = 0.1 in equa-
tions (14-17), for heartbeat model (12), AEs are calculated for
every case and are plotted in figure (6b). It is observed that
the accuracy of order 10−13 − 10−11 is attained for the first
two cases, however for the third case errors are much better
as 10−12−10−15, and for last case the accuracy is even better
by getting negligible errors as 10−12 − 10−14.
To find out the best weights for the ANNs model of the

given equation (12) and to calculate the convergence and
correctness of the proposed algorithm, 50 independent runs
of the hybrid intelligent computation scheme HHO-IPA are
performed. Statistical performance of HHO-IPA is shown
based on the results which we have established after 50
independent runs. These statistical analyses are carried out
in terms of the best solution, worst solution, mean values of
absolute errors (AE) and standard deviation (STD), as given
in table (3). It is clear that for these four cases i.e. C1, C2,
C3 and C4 the mean error values are around 10−09 − 10−08,
10−08 − 10−06, 10−07 − 10−05 and 10−10 − 10−09. Further-
more, the minimum standard deviation for every case study
of this scenario shows the coherent accuracy of our designed
scheme.
(b) Scenario-2: Effects of variations in asymmetric damp-

ing terms (v1, v2) on the dynamic heartbeat model.
In this scenario we have studied the effects of variation

in asymmetric damping parameters (v1, v2) on the heartbeat
dynamic model. We have considered four cases for this pur-
pose as follows:

Case1: Consider Dynamic heartbeat model for v1 =
0.93, e = 6, d = 3, α = 2, and v2 = −0.93.
Case2: Consider Dynamic heartbeat model for v1 =

0.83, e = 6, d = 3, α = 2, and v2 = −0.83.
Case3: Consider Dynamic heartbeat model for v1 =

0.63, e = 6, d = 3, α = 2, and v2 = −0.63.

Case4: Consider Dynamic heartbeat model for
v1 = 0.43, e = 6, d = 3, α = 2, and v2 = −0.43.

The VdP nonlinear equation, obtained for the present sce-
nario with corresponding initial conditions can be written as
follow:ẍ + 2(x − v2(x − v1))ẋ +

x(x + 6)(x + 3)
6× 3

= 0,

x(0) = −0.1 and ẋ(0) = 0.025,
(18)

equation (18) is analysed for four different cases C1, C2,
C3 and C4 respectively for (v1, v2) chosen as (0.93,−0.93),
(0.83,−0.83), (0.63,−0.63) and (0.43,−0.43).

Exact solution for the problem in equation (18) is also not
known, for this reason, numerical solutions of equation (18)
are calculated by using AM, and these solutions are used as
reference points to calculate errors in our outcome. We have
used the same experimental settings as in the previous sce-
nario, but the fitness function is given as:

ε =
1
N

N∑
m=1

(
x̂m + 2(x̂m − v2)(x̂m − v1)x̂m

+
x̂m(x̂m + 6)(x̂m + 3)

6× 3

)2

+
1
2

(
(x̂0 + 0.1)2 + (x̂0 − 0.025)2

)
. (19)

Weights for ANNs trained by HHO-IPA, with FF values
for cases 1, 3 and 4, are 7.9429 × 10−12, 2.3429 × 10−13

and 3.0588 × 10−13 respectively, and are graphically shown
in figure (8). Corresponding solutions based on these weights
are given as in 20-22:

x̂c1 =



−3.6967
1+e−(−1.7278t+3.9495)

+
0.1434

1+ e−(−0.8181t−0.3241)

+
0.0043

1+e−(2.4621t−2.1053)
+

0.1373
1+ e−(−0.8423t−0.3244)

+
4.1642

1+e−(−1.8931t+4.9025)
+

0.0514
1+ e−(−0.6783t−0.3366)

+
−1.2122

1+e−(−2.7061t+5.9757)
+

1.1642
1+ e−(0.2985t−0.8385)

+
−1.1322

1+e−(−0.8168t−0.3253)
+

−0.1337
1+ e−(−0.8254t−0.3250)

,

(20)

x̂c3 =



1.1060
1+e−(−0.5050t−0.7056)

+
−3.6388

1+ e−(0.7550t−2.7135)

+
−2.9744

1+e−(−1.0749t+2.0097)
+

0.9539
1+ e−(−0.1283t−0.5130)

+
−1.0255

1+e−(−0.6703t−2.6204)
+

−0.8354
1+ e−(0.0668t−2.1888)

+
0.4305

1+e−(0.9271t−0.5100)
+

−1.0787
1+ e−(0.4390t−1.7351)

+
2.2456

1+e−(−1.1526t+2.1596)
+

2.6392
1+ e−(1.1039t−2.6948)

,

(21)
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FIGURE 6. Solutions obtained by our approach are shown in Fig 6(a) and absolute errors are given in Fig 6(b) for four cases of problem 1, scenario-1.

FIGURE 7. Trained weights for ANNs model optimized through hybrid scheme for cases C1, C2, C3 and C4 based on variation in α for problem 1,
scenario-1.

x̂c4 =



0.8117
1+e−(−0.5662t+2.4732)

+
0.8259

1+ e−(−0.8180t+0.1691)

+
−2.1733

1+e−(−0.7388t−1.7488)
+

−3.7141
1+ e−(0.3526t−0.8723)

+
−1.5319

1+e−(−0.0161t−1.4839)
+

1.2671
1+ e−(−0.1666t+1.6901)

+
1.5969

1+e−(0.9643t−2.1267)
+

−1.8571
1+ e−(−0.8267t+0.4666)

+
2.1674

1+e−(−0.7294t−1.8080)
+

−0.0025
1+ e−(−3.8840t−3.2643)

,

(22)

The solution of x̂c2 of scenario-2 is same as the solution
of case2 of scenario-1. Suggested solutions are presented
in figure (8a) and are formed for inputs in interval [0, 2],
and using the step size of h = 0.1. However, the results
of absolute error for every case are graphically illustrated
in figure (8b). It is observed that the proposed hybrid scheme
attained the best accuracy of order 10−15 − 10−11.

To obtain the best weights for the ANNs model, fifty inde-
pendent runs of designed scheme HHO-IPA are performed,
and the experimental outcomes are listed in the table (3) in
the form of lowest error in solution, worst error in solution,
Mean and standard deviation (STD) of errors. It is clear that
for these four cases i.e. C1, C3 and C4 the mean values are
around 10−05 − 10−04, 10−11 − 10−10 and 10−10 − 10−09.
Besides, the accuracy of the designed scheme HHO-IPA is
verified by the lower values of STD.

B. PROBLEM-2: VDP DYNAMIC HEARTBEAT MODEL
IN THE PRESENCE OF FORCING TERM
Two different scenarios are taken into this problem. Scenario-
1 is taken based on changes in pulse shape modification
term α while scenario-2 consider the changes in asymmetric
damping terms (v1, v2) which represent terms associated to
the voltage of heartbeat dynamic model (1), with the presence
of forcing term F(t) that appears in a normal state of the
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FIGURE 8. Solutions obtained by our approach are shown in Fig 8(a) and absolute errors are given in Fig 8(b) for four cases of problem 1, scenario-2.

FIGURE 9. Trained weights for ANNs model optimized through hybrid scheme for cases C1, C2, C3 and C4 based on variation in asymmetric damping
terms (v1, v2) for problem 1, scenario-2.

TABLE 3. The statistical analysis of errors of four different cases for scenario-1 and scenario-2 of problem-1, of heartbeat model.

natural pacemaker.While d represents the coefficient of cubic
factor which switches to harmonic forcing term and the term
e in classical VdP equation is constant that is used to control
the period of ventricular contraction. Rest of the settings are
the same as in problem-1, mathematically forcing term can
be represented as follows:

F(t) = Asin(ωt). (23)

(a) Scenario-1:Effects of variations in pulse shapemodifi-
cation factor ‘‘(α)’’ of heartbeat model. To analyse the effects
of changes in value of ‘‘(α)’’ we considered four cases as
follows [58]:

Case 1: Consider Dynamic heartbeat model for α = 0.5,
b = 2.5, ω = 1.9, e = 6, v1 = 0.97, v2 = −1 and d = 3.

Case 2: Consider heartbeat model for α = 0.4, b = 2.5,
ω = 1.9, e = 6, v1 = 0.97, v2 = −1 and d = 3.
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Case 3: Consider heartbeat model for α = 0.3, b = 2.5,
ω = 1.9, e = 6, v1 = 0.97, v2 = −1 and d = 3.
Case 4: Consider heartbeat model for α = 0.2, b = 2.5,

ω = 1.9, e = 6, v1 = 0.97, v2 = −1 and d = 3.
The VdP equation derived from (1) for this scenario with

initial conditions is following:ẍ+α(x+1)(x−0.97)ẋ +
x(x + 6)(x + 3)

6× 3
= 2.5sin(1.9t),

x(0) = −0.1 and ẋ(0) = 0.025,
(24)

for α equal to 0.5, 0.4, 0.3 and 0.2 we analyse the model by
four cases C1, C2, C3 and C4 respectively. Equation (24) is
used for this scenario.

Adams numerical technique is used to calculate reference
solutions for the second order ODE (24). Exact solutions are
not available for this case. We have used same experimental
settings as in previous scenarios. The fitness function for this
scenario is given as:

ε =
1
N

N∑
m=1

(
ˆ̈xm + α(x̂m + 1)(x̂m − 0.97) ˆ̇xm

+
x̂m(x̂m + 6)(x̂m + 3)

6× 3

)2

− 2.5× sin(1.9× t)

+
1
2

(
(x̂0 + 0.1)2 + ( ˆ̇x0 − 0.025)2

)
. (25)

We have obtained the fitness values for problem-2
scenario-1 as 2.8836×10−10, 2.7479×10−10, 8.0300×10−11

and 2.7565 × 10−11 for a set of best weights respectively,
for cases C1, C2, C3 and C4. We have graphically illustrated
the ranges of these weights, see figure (11). Series solutions
obtained by using best weights which we have obtained for
this scenario are given in (26-29):

x̂c1 =



0.7467
1+e−(2.1014t−0.1162)

+
−1.0405

1+e−(−3.1418t+3.7057)

+
−2.4484

1+e−(1.9932t−0.2220)
+

1.7577
1+e−(2.7727t+2.5359)

+
0.7248

1+e−(−0.4597t−1.4897)
+

1.3928
1+e−(3.5827t−4.9314)

+
2.2016

1+e−(−1.9035t+3.7091)
+

−2.5529
1+e−(−2.1821t+2.0883)

+
0.2727

1+e−(0.4013t−3.9512)
+

−5.1389
1+e−(2.6355t−7.9241)

,

(26)

x̂c2 =



−2.7338
1+e−(1.6550t−2.7291)

+
2.3154

1+e−(2.1562t−1.6082)

+
−6.4876

1+e−(2.3027t−7.1152)
+

2.5692
1+e−(2.4369t+2.4153)

+
2.4003

1+e−(2.6334t−3.0941)
+

−0.2154
1+e−(−0.5292t−0.4531)

+
0.1146

1+e−(1.3681t+0.8648)
+

0.8287
1+e−(−0.8645t−0.6892)

+
−1.9497

1+e−(−3.2408t+4.5573)
+

−2.8754
1+e−(1.6017t−0.4486)

,

(27)

x̂c3 =



−3.4309
1+e−(−2.4260t+2.7255)

+
−1.6307

1+e−(−2.2954t+1.5736)

+
−2.7954

1+e−(1.7471t−1.8331)
+

0.9272
1+e−(−0.4634t−0.3235)

+
−6.5705

1+e−(2.2492t−7.0304)
+

4.0621
1+e−(1.6955t+2.4509)

+
−1.5434

1+e−(−1.9966t−1.8031)
+

2.8419
1+e−(2.9307t+−4.2248)

+
2.6178

1+e−(−1.6184t−0.3252)
+

−2.7630
1+e−(1.4511t−2.6194)

,

(28)

x̂c4 =



−3.9300
1+e−(−2.5963t+3.8815)

+
1.1808

1+e−(3.3764t+2.8544)

+
2.6626

1+e−(2.1623t−2.3982)
+

−2.3341
1+e−(−0.0228t+0.9476)

+
3.1784

1+e−(−1.2856t+4.4091)
+

0.4512
1+e−(0.4425t+0.7795)

+
0.4893

1+e−(−0.3455t−1.0076)
+

−3.2730
1+e−(1.9483t−3.5433)

+
−4.9540

1+e−(2.3017t−6.9413)
+

1.0879
1+e−(−2.2731t+0.2468)

.

(29)

Solutions for this scenario are achieved by using inputs
between [0, 2] with a step size of h = 0.1. By using our
best set of weights we get equations (26 − 29) and are illus-
trated in figure (10). The values of AE in our solutions from
the reference numerical solution for all cases of problem-2
scenario-1 are given in figure (11). It is obvious that AEs for
all cases are achieved of order around 10−09 − 10−13. The
statistical analysis of our results is measured in terms of errors
in the best solution, worst solution, mean values of absolute
errors (AE) and standard deviation (STD). These results are
established based on 50 independent runs and are given in
table (4). The mean values for cases i.e. C1, C2, C3 and C4
are around 10−09 − 10−07, 10−04 − 10−02, 10−09 − 10−07

and 10−10 − 10−08. It is worth to note, that the accuracy of
our designed schemeHHO-IPA is verified by the lower values
of standard deviation in errors for solutions of all cases.

(b) Scenario-2: Effects of variations in asymmetric damp-
ing terms (v1, v2) on the dynamic heartbeat model.

In this scenario we have studied the effects of variation
in asymmetric damping parameters (v1, v2) on the heartbeat
dynamic model. We have considered four cases for this pur-
pose as follows:

Case 1 Consider Dynamic heartbeat model for v2 = −1,
b = 2.5, e = 6, ω = 1.9, α = 0.5 and v1 = 0.97, d = 3.

Case 2 Consider Dynamic heartbeat model for v2 = −3,
b = 2.5, e = 6, ω = 1.9, α = 0.5 and v1 = 0.87, d = 3.

Case 3 Consider Dynamic heartbeat model for v2 = −4,
b = 2.5, e = 6, ω = 1.9, α = 0.5 and v1 = 0.67, d = 3.

Case 3 Consider Dynamic heartbeat model for v2 = −5,
b = 2.5, e = 6, ω = 1.9, α = 0.5 and v1 = 0.47, d = 3.

The mathematical model of VdP and corresponding initial
conditions for this scenario is given as:

ẍ + 0.5(x − v2)(x − v1)ẋ +
x(x + 3)(x + 6)

3× 6
= 2.5× sin(t × 1.9),

x(0) = −0.1 and ẋ = 0.025,

(30)
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FIGURE 10. Solutions obtained by our approach are shown in Fig 10(a) and absolute errors are given in Fig 10(b) for four cases of problem 2,
scenario-1.

FIGURE 11. Trained weights for ANNs model optimized through hybrid scheme for cases C1, C2, C3 and C4 based on variation in α for problem 2,
scenario-1.

replacing (v1, v2) = (0.97,−1), (0.87,−3), (0.67,−4) and
(0.47,−5), in equation (30 we get cases C1, C2, C3 and C4,
of this scenario, respectively.

Exact solution for the system in equation (24) does not exist
in literature; for this reason, approximate solutions of equa-
tion (24) are found by using AM, and these solutions are used
as reference solutions. We have used the same experimental
settings as in previous scenarios. Fitness function for these
variations is as follows:

ε =
1
N

N∑
m=1

(
ˆ̈xm + 0.5(x̂m − v2)(x̂m − v1)x̂m

+
x̂m(x̂m + 6)(x̂m + 3)

6× 3

)2

− 2.5× sin(t × 1.9)

+
1
2

(
( ˆ̇x0 − 0.025)2 + (x̂0 + 0.1)2

)
(31)

The set of trained weights optimized through HHO-IPA,
respectively for cases C2, C3 and C4 with fitness values
3.6962 × 10−10, 1.8650 × 10−10 and 2.0357 × 10−10 are
graphically represented in figure (13). Using these weights
the derived solutions for cases C2, C3 and C4 are mathemati-
cally defined as follows:

x̂c1 =



0.7467
1+e−(2.1014t−0.1162)

+
−1.0405

1+e−(−3.1418t+3.7057)

+
−2.4484

1+e−(1.9932t−0.2220)
+

1.7576
1+e−(2.7727t+2.5359)

+
0.7248

1+e−(−0.4597t−1.4897)
+

1.3928
1+e−(3.5827t−4.9314)

+
2.2016

1+e−(−1.9035t+3.7091)
+

−2.5529
1+e−(−2.1821t+2.0883)

+
0.2727

1+e−(0.4013t−3.9512)
+

−5.1389
1+e−(2.6355t−7.9241)

,

(32)
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FIGURE 12. Solutions obtained by our approach are shown in Fig 12(a) and absolute errors are given in Fig 12(b) for four cases of problem 2,
scenario-2.

FIGURE 13. Trained weights for ANNs model optimized through hybrid scheme for cases C1, C2, C3 and C4 based on variation in asymmetric damping
terms (v1,v2) for problem-2, scenario-2.

TABLE 4. The statistical analysis of errors for four different cases for scenario-1 and scenario-2 of problem-2, of heartbeat model.

x̂c2 =



0.3091
1+e−(−2.6845t−0.0899)

+
−3.5999

1+e−(0.9953t−1.5538)

+
−3.1778

1+e−(−1.9091t−2.2014)
+

4.0139
1+e−(−2.7938t+8.5594)

+
0.2328

1+e−(3.2578t−5.3330)
+

−3.0240
1+e−(0.2102t+0.3699)

+
−1.5976

1+e−(0.3611t−1.3396)
+

1.01746
1+e−(3.6784t−3.7313)

+
−1.3492

1+e−(−2.9540t+2.3764)
+

1.6509
1+e−(4.0286t−4.7675)

,

(33)

x̂c3 =



2.1160
1+e−(2.0180t+2.7664)

+
−3.1155

1+e−(3.5157t−4.0161)

+
−1.2446

1+e−(−1.02256t−0.1344)
+

−0.8967
1+e−(−0.3769t+0.0366)

+
−6.6985

1+e−(2.3287t−7.9767)
+

−2.7543
1+e−(−3.0748t+3.1021)

+
2.1647

1+e−(−1.9743t+0.1478)
+

3.4242
1+e−(3.8073t−4.2497)

+
−2.1390

1+e−(1.559t−3.4066)
+

0.7325
1+e−(1.3713t+0.7520)

,

(34)

VOLUME 8, 2020 86687



A. Khan et al.: Analysis of Oscillatory Behavior of Heart by Using a Novel Neuroevolutionary Approach

FIGURE 14. The graphs of fitness values for every case of both problems for fifty independent runs of heartbeat model. (a) and (c) shows scenario-1 of
problem-1 and problem-2 for unlike values of α respectively, while (b) and (d) shows scenario-2 of problem-1 and problem-2 for unlike values of
(v1, v2).

x̂c4 =



1.8071
1+e−(3.7645t−3.9468)

+
1.6267

1+e−(−0.5002t−0.0036)

+
−0.7320

1+e−(1.9901t−4.3959)
+

−2.1784
1+e−(−2.3896t−2.1521)

+
0.1828

1+e−(2.1332t−3.3589)
+

0.6432
1+e−(0.0422t−1.4856)

+
−0.6390

1+e−(3.5042t−4.1228)
+

−5.3473
1+e−(2.1846t−7.4540)

+
1.6060

1+e−(−1.5835t+0.0701)
+

−1.7584
1+e−(−2.9690t+2.7533)

.

(35)

Best solution of x̂c1 in the present scenario and x̂c1 in
previous scenario are similar. We got our results based on the
inputs in the interval [0, 2] with h = 0.1 taken as step size
and the AE in our solutions and reference numerical solutions
are given in figure (13). It is evident that the accuracy of the

order between 10−11 − 10−07 is achieved by our designed
technique. Fifty independent runs are simulated based on our
hybrid scheme HHO-IPA. Our experimental outcomes are
presented in terms of the best error in solution, worst error
in solution, STD and Mean of error which is listed in the
table (4). It is observed that the mean values for these three
cases i.e. C2, C3 and C4, respectively are of order 10−05 −
10−06, 10−04−10−06 and 10−04−10−05. Additionally, lower
values of standard deviation revealed the exactness of our
proposed scheme.

V. DISCUSSION ON RESULTS
In this research, we have considered a VdP heartbeat model
see figure (4). It is a second-order, non-linear ordinary differ-
ential equation with initial conditions. Our analysis is divided
into two main problems and sixteen subcases, see figure (4).
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FIGURE 15. The graph of MAD values considering sixteen cases of HBM for fifty independent runs of heartbeat model. (a) and (c) shows scenario-1 of
problem-1 and problem-2 for unlike values of α respectively, while (b) and (d) shows scenario-2 of problem-1 and problem-2 for unlike values
of (v1, v2).

TABLE 5. Convergence complexity for the proposed algorithm based on performance indicators for every change in heartbeat model.

Below we present details of our experimental outcome in this
paper:

A. PROBLEM-I, SCENARIO-I
In this scenario, we have analyzed the effects of variations
in pulse shape modification factor α in heartbeat model.

We have subdivided this scenario into four cases by choosing
different values of α. It is worth noting, that the exact solution
doesn’t exist for equation (12). Results obtained by RKM
are used as reference solutions. It is observed that results
obtained by our hybrid scheme of ANNs and HHO-IPA are
better than RKM solutions. Our results forC1,C2,C3, andC4
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FIGURE 16. The graph of RMSE values considering sixteen cases of HBM for fifty independent runs of heartbeat model. (a) and (c) shows scenario-1 of
problem-1 and problem-2 for unlike values of α respectively, while (b) and (d) shows scenario-2 of problem-1 and problem-2 for unlike values
of (v1, v2).

are 6.6486E-12, 1.0447E-11, 4.7537E-13, and 2.0005E-12
respectively, see figure (6b). These solutions are obtained
by using the best weights obtained by our optimizer the
HHO-IPA, see figure (7). As in figure (6b), solutions for
α = 1 are best in terms of residual errors. On the other
hand, solutions at α = 2, 3 are comparatively worse. For
α = 0.001, we got average solutions. This means that
higher values of pulse shape modification factor results in
exponentially growing solutions, see figure (6a).

B. PROBLEM-I, SCENARIO-II
In this scenario, we have analyzed the effects of variations in
asymmetric damping terms (v1, v2) on the dynamic heartbeat
model in the absence of forcing term. Four subcases are
considered by varying values of (v1, v2). The exact solu-
tion to this problem is not known. We have considered
the solutions obtained by Adam’s numerical technique as

reference solutions. The same experimental settings are used
as in scenario-I. After training weights of ANNs, our opti-
mizer HHO-IPA, successfully got better solutions with lower
errors. Fitness values of our solutions for C1, C3, and C4 are
7.9429E-12, 2.3429E-13, and 3.0588E-13 respectively, see
figure (8). In all four cases, errors are in the range of E-15 to
E-11. Moreover, the graphs of our solutions are similar with
slight variations. This points to the better conditionality of
the mathematical heartbeat model. Best, mean, worst, and
standard deviations in our errors are listed in the table (3).
The best weights for this scenario are given in figure (9).

C. PROBLEM-II, SCENARIO-I
In this problem, the forcing term is considered. It is given
in equation (23). In scenario-I, we study the effects of pulse
shape modification factor α. We have considered four sub-
cases for different values of α. The mathematical model
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FIGURE 17. The graphs of ENSE considering sixteen cases of HBM for fifty independent runs of heartbeat model. (a) and (c) shows scenario-1 of
problem-1 and problem-2 for unlike values of α respectively, while (b) and (d) shows scenario-2 of problem-1 and problem-2 for unlike values
of (v1, v2).

for this scenario is given in equation (24). As there is
no exact solution for this problem, so we have considered
solutions obtained by Adam’s numerical technique as ref-
erence solutions. The same experimental setup is used as
in previous scenarios. We have obtained better fitness val-
ues for C1, C2, C3, and C4 as 2.8836E-10, 2.7479E-10,
8.0300E-11, and 2,7565E-11. These errors are graphically
illustrated in figure (10) and corresponding weights are
shown in figure (11). It is obvious from our experiments that
errors in our solutions are lower and are ranging between
E-13 and E-10. It is interesting to note that with forcing term
solutions are almost similar for all four cases, see figure (10a).

D. PROBLEM-II, SCENARIO-II
In this scenario, we have kept values of α constant, and
analyzed the effects of variations in (v1, v2) on the heart-
beat model in the presence of forcing term. For this

purpose, we have considered four cases. Reference solu-
tions by Adam’s technique are used for calculating errors
in our results. The set of trained weights optimized through
HHO-IPA, respectively for cases C2, C3, and C4 are shown
in figure (13). We have plotted our solutions in figure (12a).
It is observed that there are variations in solution graphs for
different values of (v1, v2). This points to the significance of
terms (v1, v2) in the heartbeat model in presence of forcing
term. Absolute errors are given in figure (12b), where for
all cases errors in our solutions are ranging between E-13 to
E-09. Detailed statistical analysis of absolute errors in our
solutions are given in table (4).

VI. COMPARATIVE PERFORMANCE-INDEX TESTS
In this section, we have analysed our experimental outcome
base on performance indicators as given in equations (36-39),
and (40-43). These indicators have further revealed the better
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TABLE 6. Convergence complexity for the proposed algorithm based on global performance indicators for every change in heartbeat model.

TABLE 7. Computational complexity analysis results for various changes in heartbeat model.

convergence and accuracy of our designed soft computing
technique.

Mathematical expressions for mean absolute deriva-
tion (MAD), root-mean-square error (RMSE) and error in
Nash–Sutcliffe efficiency (ENSE) are given as follows:

MAD =
1
N

N∑
m=1

(
|x̂(ti)− x(ti)|

)
, (36)

RMSE =

√√√√ 1
N

N∑
m=1

(
x̂(ti)− x(ti)

)2
, (37)

NSE = 1−

( ∑N
i=1(x̂(ti)− x(ti))

2∑N
i=1(x(ti)−

1
N

∑N
i=1(x(ti)))2

)
, (38)

ENSE = |1− NSE|. (39)

The values of performance indicators containing fitness,
ENSE, MAD, and RMSE for fifty independent runs are cal-
culated, and the consistency and effectiveness of the designed
computing approach are inspected.

Graphical illustrations of MAD,fitness, ENSE and RMSE
respectively are presented on semi-log scale for 50 runs, see
figures (14), (15), (16) and (17).

It is observed that different values of MAD, RMSE and
ENSE performance indicators varied directly with fluctua-
tions in fitness values between low and high. It is noted

that for problem-1 scenario-1, and C1 these variations are
negligible as seen from values of MAD, ENSE and RMSE.
Additionally, for mentioned case the value of these indica-
tors are comparatively decreased. Reliability of our designed
technique is further inspected through by percentage of con-
verged runs on the basis of pre-described criterion of MAD,
fitness, ENSE and RMSE values. The successfully converged
runs (Cr) for fifty separate simulations is calculated for each
case and our results are tabulated in table (5) for both prob-
lems. These calculations are done based on the following
criteria, i.e. (CrFIT ) ≤ E − 07, (CrMAD) ≤ E − 05,
(CrRMSE ) ≤ E − 05 and (CrENSE ) ≤ E − 07. It is interesting
to note that the average rate of convergence of our scheme is
almost 100%.

Further estimation of the performance of our designed
technique is carried out by describing its efficiency through
global indicators, i.e.global MAD, global RMSE, global
ENSE and global fitness. Formulations for these indicators
are following:

GbMAD =
1
Rn

Rn∑
r=1

 1
Gp

Gp∑
i=1

|x̂r (ti)− x(ti)|

 , (40)

GbRMSE =
1
Rn

Rn∑
r=1


√√√√ 1
Gp

Gp∑
i=1

(x̂(ti)− x(ti))2

 , (41)
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TABLE 8. Notations and abbreviations used in this paper.

GbENSE =
1
Rn

Rn∑
r=1

( ∑N
i=1(x̂(ti)− x(ti))

2∑N
i=1(

1
N

∑N
i=1(x(ti))− x(ti))2

)
, (42)

GbFIT =
1
Rn

Rn∑
r=1

εr , (43)

whereGp in above equations is a number of total input values,
Rn is number of total executed runs, εr is objective value of
r th experiment, x̂(t) and xr (t) are the standard solutions for
same number run. The inputs t ε [0, 2] with the step size
0.1 are taken in this study, i.e., Gp = 21 and Rn = 50.
Results of GbFit , GbMAD, GbRMSE and GbENSE are listed
in Table (6) for all problems. Furthermore, the lower values

of global performance indicators for most of the cases shows
the coherent accuracy and consistency of HHO-IPA.

Computational complexity analysis (CCA) is performed
for the designed algorithm based on average time taken
for the calculation of unknown parameters of ANNs by
HHO-IPA, the average number of function evaluations and
population creation. Values of CCA operators are given
in Table (7) together with mean and standard deviation
considered for 50 independent runs of designed technique
for all case studies of both problems. It is evident that
the mean values of population creation, number of function
evaluations and time for problem-1 are about 1570, 74, 536
and 38s respectively. While these values for problem-2 are
about 1577, 75, 259, and 39s respectively. All calculation
and evaluation for this research are done on HP Laptop
AMD A4− 4300 APU with Radeon(TM )HDGraphics CPU
@2.50 GHz 2.50 GHz, 8.00 GB RAM , 64 bit operating
system, ×64 based Processor, in Microsoft Windows 10
Education edition running R2015a version of MATLAB.

VII. CONCLUSIONS
We conclude this research by stating the following key
findings and contributions which are revealed from our
experiments:
• A soft computing procedure is designed to analyse
the mathematical model of Van der Pol type equa-
tions. These equations represent the heartbeat dynam-
ics. Series solutions are constructed with the help of
artificial neural networks. Unknown weights are finely
tuned by a combination of a global search technique
the Harris Hawks Optimizer HHO) and a local search
technique the Interior Point Algorithm (IPA) named as
HHO-IPA.

• Approximate series solutions of the VdP heartbeat
model are proposed and graphically plotted. Our out-
come is in strong agreement with the reference solutions.
We have considered two scenarios and sixteen different
cases to analyse the mathematical model.

• To check the consistency and accuracy of HHO-IPA,
we analysed our results by calculating values of perfor-
mance indicators, like, absolute errors in solutions, mean
and standard deviations in errors. Lower values of these
indicators suggested that HHO-IPA can tune unknown
weights consistently and accurately for all problems
considered in this study.

• Values ofMAD, ENSE, RMSE,GbMAD,GbENSE, and
GbRMSE are calculated based on our outcome. Optimal
values of these indicators dictate that we have attained
better results for HBM.

• Computational complexity analysis is carried out by
considering function evaluations, mean execution time,
number of iterations taken to calculate optimal design
weights for our problems. In all cases, negligible fluc-
tuations in these values is observed. It indicated that our
algorithm is stable and can handle difficult operations by
consuming less time.
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• Additionally, interested readers can replace different
activation functions. Using orthogonal polynomials to
construct the weighted series solution is still worth to
investigate.

• By our results we have shown that VdP oscillatory
model for hear dynamics is a well-conditioned model.

• Ourmethodology can be implemented to solve problems
in biomathematics, and physics.
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