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ABSTRACT In this paper, a third-order S-curve is used to model the motion issue. A closed method of
solving is derived for the optimal point-to-point(P2P) time issue based on the model. Based on the P2P
time-optimal solution, a closed multi-axis synchronization algorithm (MASA) method is proposed. This
method considers the kinematic equation of the S-curve based on the inverse function of the multivariate
function. Therefore, the inverse function of the execution time is derived via the kinematic equation of the
P2P time optimization issue and solving a set of smaller bandwidth parameters is an important attempt in
this paper. Otherwise, based on the MASA proposed in this paper, a synchronous computing framework
suitable for the planning of robot space poses was designed. This framework can effectively solve problems
with robot pose planning. The innovations of this article can be summarized as:(1)Based on the third-order
S-curve, this paper deduced a complete method for solving the P2P time-optimal curve.(2) Based on the
method for solving the time-optimal curve, this paper further derived three synchronization methods based
on time constraints.(3) Based on the MASA proposed in this paper, a synchronous computing framework
suitable for the planning of robot space poses was designed. The continuity and smoothness of the robot
joint spatial motion can be guaranteed in the Descartes space. Few scholars have studied the closed solution
method of multi-axis synchronization. The research in this paper promotes the theoretical research of motion
control.

INDEX TERMS Motion control, multi-axis synchronization, S-curve, time optimal.

I. INTRODUCTION
In recent years, the robotics and digital processing indus-
tries based on motion control have developed rapidly. For
a multi-motor electromechanical system, multi-axis motion
planning has always been one of the difficulties and a topic of
interest. Multi-axis motion planning requires multiple effec-
tors to move in coordination so that the system can provide
the specified task trajectory. The requirements of multi-axis
motion planning for an electromechanical system are as
follows.

Firstly, considering the performance of the motor and the
actual needs of the application scenario, the motion of the
motor must not exceed the specified bandwidth. Secondly,
considering the stability and trajectory accuracy of the sys-
tem, the motion trajectory of the motor should be continuous
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and smooth. Thirdly, in industrial applications, time opti-
mality has always been an important performance indicator.
Fourthly, multi-axis synchronization is also a big challenge.
Finally, on the basis of the above, it is necessary to satisfy the
principle of lowest energy as much as possible.

There are two application scenarios for multi-axis synchro-
nization. One is point-to-point(P2P) motion, that is to say
there exists only start and end points in the whole motion pro-
cess. The other is multi-point motion, that is to say there exist
many points in the whole motion process. This thesis focuses
on studying the problem of multi-axis synchronization with
P2P. The reasons are as follows.

Firstly, the P2P multi-axis synchronization problem is an
important and basic issue in robotics and motion control.
However, this part of research lacks model-based theoretical
research. If we can make a theoretical breakthrough on this
issue, it can not only be directly applied to real scenes, but
also help other scholars to do more in-depth research.
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Secondly, the current multi-axis P2P synchronization algo-
rithms have some defects. Specific analysis will be made
below.

Finally, the author’s research fields also cover the multi-
point multi-axis synchronization issue. We hope to apply the
theory of multi-axis P2P synchronization to multi-axis multi-
point synchronization. In fact, based on the research in this
article, some results have been obtained. The detail will be
introduced below.

A. CURRENT RESEARCH AND SHORTCOMING OF P2P
MOTION
The LSPB(Linear segment with parabolic blend) planning
method has been proposed previously. It ensures that the
velocity continuously changes within the limits of velocity
and acceleration. Moreover, the calculation is simple, which
can solve some practical problems. However, it causes the
acceleration to hop and significantly impacts the motor in
practical applications. This impact also greatly influences the
accuracy of the tip trajectory. Therefore, continuous S-curve
planning has been proposed for the position curve C2[1].
This planning method uses a bounded input quantity inte-
gral of Jerk to obtain the acceleration, with the acceleration
curve changing smoothly. Curves of this type have been
widely used because they are time-optimal, smooth and easy
to calculate. At the same time, a great deal of research
has been conducted to eliminate the disadvantages of this
method [2]–[7], and good results have been achieved. To fur-
ther improve the control effect and trajectory accuracy, some
studies have combined the S-curve and the kinematic model
of the system. For example, in reference [8], a kinematic
model was used to solve the vibration problem during the
acceleration and deceleration of the robot in the production
and processing lines.

It should be noted that although the S-curve has a con-
tinuous acceleration curve, it is not differentiable. A great
deal of research has been conducted to address this issue.
A traditional S-curve can be interpreted as a continuous
and differentiable position curve constructed by piecewise
cubic polynomial functions. Therefore, a higher-order poly-
nomial function can be used to describe the motion curve,
which is further evolved into a higher-order S-curve to over-
come this problem [9], [10]. In addition, some scholars have
used continuous and infinitely differentiable harmonic func-
tions [11], [12] or the Sigmoid function [13] to construct
a Jerk curve, which can make the Jerk and acceleration of
the S-curve smoother and enables the motors to run more
smoothly.

However, when the model order increases, the solution to
the trajectory becomes more complicated, especially when
solving the multi-axis synchronization issue. To solve this
problem, some dynamic optimization algorithms have been
introduced in the field. For example, in Reference [14],
an optimization method based on MPC was used to achieve
synchronized planning of multi-axis and multi-position
points. In Reference [13], the scaling factor and binary search

methods were used to solve the multi-axis synchronization
issue. In addition, more intelligent algorithms have attracted
attention from researchers in the field. In Reference [15],
a sextic polynomial was used to describe the joint motion
curve and to search for feasible paths in complex geometric
environments in combination with the GA and PSO algo-
rithms. In Reference [16], the PSO algorithm was used to
optimize the curve parameters. In References [17], [18],
a more novel intelligent algorithm was used to optimize the
target trajectory directly in the joint space.

However, there are following shortcomings for the exist-
ing P2P synchronization solutions from the current research
situation.

The first problem is how to solve the optimal curve quickly
and efficiently when the target position is too close. Current
methods use iteration or search to find suitable parameters.

Secondly, current synchronous solutions are focused on
control methods, optimization methods, and intelligent algo-
rithms. Although these methods can solve the synchroniza-
tion problem, some algorithms cannot guarantee the global
optimality, and some research results cannot be applied in
real-time systems because they require a large amount of
calculations.

In summary, few scholars have studied the model-based
closed solution method for P2P time optimization and
multi-axis P2P synchronization problems. This greatly limits
the application range of the algorithm and reduces the solu-
tion efficiency. In practical applications, it relies heavily on
high-cost hardware, which seriously restricts the application
effect. Therefore, model-based analysis and derivation are
extremely meaningful in this situation.

B. RESEARCH OF THIS ARTICLE
Based on the study of the third-order S-curve equation of
motion, a closed solution method for uniaxial P2P time opti-
mal curve is derived. This algorithm can directly calculate
the time-optimal trajectory of P2P without iteration or opti-
mization. This algorithm can solve the motion parameters in
a closed and efficient way.

Then, based on the closed solution of uniaxial axis P2P
time optimal curve, the inverse mapping with adjustable
bandwidth parameters is solved by using the inverse function
of multiple functions. This theory reveals the changing pro-
cess of S-curve and the relations between parameters. Before
that, no more scholars have developed relevant research.

After solving the inverse mapping, an effective multi-
axis synchronization algorithm (MASA) is proposed. Differ-
ent from the previous research, the algorithm is composed
of closed solution formulas with high efficiency and low
calculation cost.

In the end, a synchronization calculating framework is
designed for robot planning based on MASA. It is effective
and provides the guarantee for continuity and smoothness of
robot joint space motion.

In addition, for the problem of P2P multi-axis synchro-
nization, this article conducts a series of relatively basic
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theoretical derivations and gives a set of new ideas for
multi-axis synchronization.More importantly, this theory and
framework can be applied to high-order S-curves or other
composite S-curves. In theory, this article also has greater
innovation and contribution.

The rest of the paper is structured as follows. In
Chapter II, the time optimality of the S-curve is demonstrated,
the iterative update equation of the S-curve is derived, and
the parameters of the third-order S-curve of the research
object are defined and described. In Chapter III, a closed
solving method for time-optimal planning is derived for the
7-segment S-curve. In Chapter IV, the multi-axis synchro-
nization issue is transformed into a parameter optimization
issue based on time constraints. Then, according to the system
bandwidth parameters, three different optimization methods
are derived. In Chapter V, experiments and data analyses are
conducted for the proposed method. Chapter VI summarizes
the work and describes future research.

II. S-CURVE PLANNING MODEL
The concept of the S-curve was first proposed in [1]. Many
articles pointed out that the S-curve was demonstrated by
the Pontryagin’s minimum-value principle to have the time
optimality under a given bandwidth. However, the S-curve
is a third-order integral system with amplitude limitation.
Similarly, nth order integral systems with amplitude limita-
tion can achieve the goal of time optimality by stepping the
control quantity to its maximum value; however, a more com-
plicated judgment of amplitude limitation is required. The
dual-integral system is taken as an example to demonstrate
the existence conditions of time optimality.

A. PROOF OF TIME OPTIMALITY
A simple dual integral system and its state space equation are
as follows:

ẋ =
[
0 1
0 0

]
x +

[
0
1

]
u (1)

The boundary conditions of the system are:

|u| ≤ M

x1 (t0) = 0, x2 (t0) = 0

x1
(
tf
)
= S, x2

(
tf
)
= 0 (2)

The optimal control quantity u∗ is obtained to minimise the
performance indicator:

J =
∫ tf

t0
dt = tf − t0 (3)

According to the minimum-value principle, the Hamilton
function of the system is:

H [x (t) , u (t) , t] = 1+ λ1x2 + λ2u (4)

The co-state equations and governing equations are:
λ̇2 = −

∂H
∂x2
= −λ1

λ̇1 = −
∂H
∂x1
= 0

(5)

The optimal control quantity is:

u∗ (t)− sign [λ2 (t)]M =

{
M λ2 (t) < 0
−M λ2 (t) > 0

(6)

It is thus clear that the time-optimal control is a switch-type
control, which requires the control variable to be maximum.
The above second-order integral system is a typical velocity-
displacement system, where x1 is the displacement, x2 is
the velocity and ẋ2 is the control quantity. The system is
required to start from a zero initial state and maintain a zero
velocity after reaching the specified position S. When the
control quantity reaches its maximum value, the shortest-time
performance can be guaranteed. However, in actual scenarios,
the velocity value cannot be infinitely increased, so it is
necessary to stop the input of the control quantity when the
velocity is increased to its maximum value. The planning
equation based on this idea is the LSBP mentioned earlier.
However, LSBP suffers from sudden changes in acceleration,
which can be directly solved by increasing the system order.
The motor bandwidth is generally limited, i.e. the maximum
velocity Vm, the maximum acceleration Am and the maxi-
mum value of jerkJm. Thus, this is a three-integral system
with an upper limit, with x =

[
S V A

]T
=
[
x1 x2 x3

]T
as the state variable, where S is the system displacement,
V is the system velocity and A is the system acceleration.
The control quantity u is jerk , and the |u| ≤ Jm.

ẋ =

 0 1 0
0 0 1
0 0 0

 x +
 0

0
1

 u (7)

For the above displacement system, the same method can
demonstrate that the goal of the shortest time can be achieved
by ensuring that the control quantity ẋ3 always takes its
maximum value Jm when it is acting. The switching con-
trol based on this type of input quantity evolves into the
third-order S-curve after adding relevant amplitude limit-
ing logics. As the entire motion process can be presented
by seven continuous piecewise functions, it is also called
a 7-segment S-curve. As the Jerk input of the 7-segment
S-curve is a step signal, discontinuous points remain in the
acceleration curve, which can be solved by increasing the
system order. Higher-order integral systems are also obtained
using the maximum-value principle. Another method is to
use a smooth and differentiable function to construct a Jerk
curve so that it has an approximate optimality under the
current order, e.g. [11], [12]. As all of the time-optimal curves
completely follow the bang-bang control rate or approximate
square wave control rate, they also have similar geometric or
mathematical properties. This paper analyses and derives the
7-segment S-curve. This is because in a third-order system, a
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polynomial equation of up to the third degree may be present.
According to Galois theory, polynomial equations below the
fourth degree have closed solutions, which means that all
problems in the 7-segment S-curve can have closed solutions.
At the same time, the 7-segment S-curve has been widely
used because of its C2 continuity. At the same time, the use
of the 7-segment S-curve allows for easier recognition of the
changing law of the system equations and provides a more
holistic idea for related research by other scholars. Therefore,
using the 7-segment S-curve is not only of practical signifi-
cance but also of academic significance.

B. S-CURVE PARAMETERIZATION AND ITERATION
EQUATION
The S-curve can be interpreted as a limited multi-integral
system, andmultiple integrations of the control quantity is the
final output of the system, that is, the displacement quantity.
The displacement expression of the S-curve can be expressed
as:

S =
∫ ts

tf
. . .

∫ ts

tf
u(t)︸ ︷︷ ︸

n

dt (8)

where u(t) is a time-varying system input and n is the system
order, that is, there is an nmultiple integral sign. Considering
the amplitude limitation, u(t) will continue to output within a
continuous period of time, or stop outputting within a certain
period of time. In other words, u(t) is segmented. Thus, the
input seriesU =

[
u1 . . . ui

]
can be used to denote the output

of each segment, and the time series T =
[
T1 . . . Ti

]
can be

used to denote the duration of each segment in U . U and T
can be used to uniquely denote a given S-curve model. Note
that tp is the pth sampling cycle.

Sp =
n−1∑
k=0

(tp)k

k!
S(k)p−1 +

(tp)n

n!
up

S(1)p =

n−1∑
k=1

(tp)k

k!
S(k)p−1 +

(tp)n−1

(n− 1)!
up

S(2)p =

n−1∑
k=2

(tp)k

(k − 1)!
S(k)p−1 +

(tp)n−2

(n− 2)!
up

...

...

S(n)p = up

(9)

Take n= 3 as an example, the above equation is written in
the form of iteration such that:

Sp = Sp−1 + Vp−1tp +
1
2
Ap−1t2p +

1
6
Jpt3p

Vp = Vp−1 + Ap−1tp +
1
2
Jpt2p

Ap = Ap−1 + Jptp
Jp = up (10)

where Sp is the system output during the pth sampling period,
Vn is the system velocity during the pth sampling period, An
is the system acceleration during the pth sampling period and
Jn is the system input during the pth sampling period. When
p = 1, S0,V0 and A0 are the initial position, initial velocity
and initial acceleration of the system, respectively. Note that
all of the other S-curve models can be written in similar
forms.

C. INTRODUCTION TO THE 7-SEGMENT S-CURVE
Based on the summary in II.A, S-curves of a given order can
be uniquely determined by U and T . A standard 7-segment
S-curve with a zero initial quantity is shown in Figure 1.

FIGURE 1. Schematic diagram of a 7-segment S-curve.

In Figure 1, the purple curve shows the output of the control
quantity jerk . It can be seen that jerk maintains the maximum
output Jm during the time periods of t1− t0 and t7− t6. On the
other hand, jerk maintains the reverse maximum output −Jm
during the time periods t3−t2 and t5−t4. The output is stopped
during the time periods of t2 − t1, t4 − t3 and t6 − t5. Note
that t0= 0.

The elements in the time series T and the input series U
have the following relationship:

t7 =
7∑

k=1

Tk

Tp = tp − tp−1, (p = 1, ..i)

T =
[
T1 T2 T3 T4 T5 T6 T7

]
U =

[
Jm 0 −Jm 0 −Jm 0 Jm

]
(11)

For the input seriesU of a standard S-curve, when the input
quantity is applied, it always takes the maximum value and
takes zero in the inactive state. Then, the input series U and
time series T are used to determine the S-curve. Together
with (10) and (11), and the specified sampling period Smp,
the S-curve can be differentiated into a series of points:
P =

[
P1 . . . Pn

]
.

n = roundup(
t7
Smp

) (12)

where roundup(∗) is the rounding-up function. In most arti-
cles, the S-curve model is expressed by a piecewise function.
However, in a motion control program, any theoretically
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continuous trajectory needs to be discretized. Therefore,
the recursive method used here has certain advantages.

In summary, this section described the S-curve with the
largest input quantity using two sets of parameters. In addi-
tion, the entire S-curve can be differentiated according to the
recursive equation described above. Note that there is no limit
on the maximum velocity and acceleration. Moreover, we did
not take into account the impact of the target position on
the entire velocity curve. All of these restrictions are directly
reflected in each element of the time series T . This will be
analyzed in detail in the next chapter in combination with the
time optimality theory.

There are also some discussions based on system models
and stability.

Firstly, for an n-order time-displacement system, it can be
understood as an n-fold integration system. The state space
model in modern control principles can describe this system
very conveniently and accurately. Now we expect the system
to move to the designated position. Without the intervention
of any control means, the system will be unstable due to
divergence. Indeed, this problem can be solved by designing
a controller. However, if the output of the system is expected
to reach the target point at a speed, the traditional control
method will cause incompetence.

In this paper, the state space equation is used to describe the
time-displacement system, and the minimum-value principle
is used to derive the time-optimal control rate of the second-
order system. In this case, the system is not only stable, but
also can guarantee time optimality.

However, when the order of the system further increases,
and the system has bandwidth constraints, the above solution
process becomes more complicated. In this paper, under the
guidance of the principle of minimum value, the optimal con-
trol rate of time is solved. This is the application of the opti-
mal control method. Therefore, the derivation of this paper
does not need to consider the problem of system stability.

III. TIME-OPTIMAL 7-SEGMENT S-CURVE OF P2P
In many papers, the solutions to the standard 7-segment
S-curve are usually to maintain a specific contour. However,
the curves are not solved based on time optimality. In this
chapter, we derive the curve based on time optimality. As the
goal of time optimality can directly improve the execution
efficiency, the results could be of great significance for prac-
tical applications.

A. SIMPLIFICATION OF THE MODEL
In the velocity-time curve, the area enclosed by the curve
and the time axis is the displacement through which the
effector moves. Two simple principles are considered to help
us identify the conditions for the time-optimal S-curve.

Firstly, on the premise of a given displacement, if the
effector has a higher velocity, the execution time will be
shorter. Thus, the velocity should be increased as much as
possible to shorten the execution time. Secondly, as it is
a point-to-point solution problem, zero velocity and zero

acceleration are maintained at the start and end points. For a
fixed bandwidth, the velocity-time curve must be symmetric
with respect to the center time point. If it is asymmetric, there
must be a lower utilization rate of velocity on one side, but
this makes the curve not the optimal one. Therefore, the time-
optimal velocity curve must be as high as possible within
the bandwidth limits and also symmetric with respect to the
center time point.

To facilitate the analysis of the problem, the vector dis-
placement Sr is simplified to a scalar distance Dr such that:

Sr = Sref − Scur
Dr = |Sr |

Dir = sign(Sr ) (13)

In the actual problem, the displacement has a directionDir ,
which complicates the derivation process. Accordingly, all
the displacements are reduced to a scalar distance Dr . The
scalar quantity Dr is used to obtain a non-negative time
series T and an input series moving by default in the positive
direction. The opposite motion can be obtained by inverting
the input series U . As a result, in all of the following deriva-
tions, a scalar distance D greater than zero is used. In the
final algorithm implementation, equation (14) can be used to
modify the actual direction of motion.

U = U · Dir (14)

In the next section, the above two criteria and assumption
will be used to derive the solving method to obtain the opti-
mal curve based on the maximum bandwidth of the system.
The system bandwidth corresponds to the three determined
variables of Vm,Am and Jm. In other words, the maximum
values of the first-, second- and third-order derivatives of the
position curve are not allowed to exceed this limit.

B. SOLVING THE SHORTEST-TIME PROBLEM AT THE
MAXIMUM BANDWIDTH
Now the entire acceleration phase of the system is directly
considered. In this phase, Jm is first used to increase the
system acceleration to Am. The calculation is as follows:

T1 = Tj =
Am
Jm

U1 = Jm (15)

Then, the system begins to perform a uniform acceleration
motion to increase the velocity. Finally,−Jm is used to reduce
the acceleration from Am to 0, and the velocity at this time
is Vm. Hence,

T3 =
Am
Jm

U3 = −Jm (16)

Whenever the system input is activated and when the accel-
eration is changed by Am, the amount of velocity change
incurred is:

Vj =
A2m
2Jm

(17)

VOLUME 8, 2020 85579



S.-D. Wang et al.: Planning Method for Multi-Axis P2P Synchronization Based on Time Constraints

Hence, it can be deduced that:

T2 =
Vm − 2Vj

Am
U2 = 0 (18)

Furthermore, the distance travelled by the system during
the entire ascent phase can be calculated as:

Dup =
V 2
m

2Am
+
AmVm
2Jm

(19)

As the curve is symmetric, if the system needs to increase
the velocity to its maximum value in the most efficient man-
ner and stop in the same way, a distance of 2Dup is required
to be travelled through.

If the target position is Dr ≥ 2Dup, the system will travel
through a distance of Dr−2Dup at the maximum velocity
of Vm. Hence,

T4 =
Dr − 2Dup

Vm
U4 = 0 (20)

In summary, the system can increase the velocity to its
maximum value according to the time optimality principle
when Dr ≤ 2Dup. The time series and input series of the
S-curve at this time are:

T1 = T3 = T5 = T7 = Tj

T2 = T6 =
Vm − 2Vj

Am

T4 =
Dr − 2Dup

Vm
U =

[
Jm 0 −Jm 0 −Jm 0 Jm

]
(21)

In addition, it should be noted that the above equation
needs to satisfy:

Vm − 2Vj ≥ 0 (22)

However, the system bandwidth parameters are arbitrarily
specified by the user. In the case of Vm − Vj< 0, Am is very
high. According to (22), a newmaximum acceleration Ãm can
be calculated as:

Ãm =
√
VmJm (23)

It can be easily demonstrated that:

Ãm < Am (24)

Ãm is used to replace the previous Am to ensure that the
S-curve exists. More importantly, Ãm < Am. In other words,
the new maximum acceleration value Ãm given by (23) does
not exceed the maximum value Am set by the previous user;
i.e. Ãm is within a safe and reasonable range, but is more
conservative. This condition is extremely important for the
completeness of the algorithm. With this method, a reason-
able Ãm for any given system bandwidth can always be found
so that the S-curve exists. Thus, in the following sections, it is
always assumed that the condition of Vm − 2Vj ≥ 0 is true.

C. SOLVING THE SHORTEST-TIME PROBLEM AT A
NON-MAXIMUM BANDWIDTH
In III.A, the distance conditions that can reach the maximum
bandwidth were derived. The S-curve in the standard state
makes full use of the bandwidth of each order. But once
the target position reaches Dr < 2Dup, the effector cannot
maximize the velocity. Thus, a set of reasonable bandwidth
parameters needs to be re-selected to match the current dis-
tance constraint. Iterativemethods have been used in previous
studies to find a suitable set of parameters. However, they
require additional time for the calculation, and it is always
difficult to ensure their completeness. There are also scaling
methods that can solve a smaller set of parameters while
preserving the contour of the curve; however, they lose time
optimality.

To address this problem, this paper makes the following
considerations. If the target position is closer to the current
position, there is not enough distance to increase the veloc-
ity to its maximum value. However, in theory, there is a
slightly smaller velocity value that can serve as the target
velocity and at the same time ensure the exact target distance.
Hence, in this section, based on the system model, a mapping
relationship is established between the target distance and
the maximum velocity, which is used to solve the expected
velocity value that can satisfy the distance constraint.

1) KINEMATIC SOLUTION AT A NON-MAXIMUM VELOCITY
In Section III.A, it was assumed that the target distance is
only great enough, and there is enough time and distance
to increase the acceleration and velocity to their maximum
values. This section focuses on the issue where the target dis-
tance is enough to increase the acceleration to its maximum
value, but not enough to increase the velocity to its maximum
value. Thus, we expect to establish a relationship between the
target position and the maximum velocity to solve this target
velocity.

Firstly, boundary conditions are derived based on the above
description. The upper limit of the distance is not allowed
to exceed 2Dup, and the lower limit is the condition that the
acceleration reaches its maximum value. Hence, the distance
can be expressed as:

Da = 4VjTj =
2A3m
J2m

(25)

Therefore, when Da ≤ Dr< 2Dup, it is the distance con-
straint for motion at a non-maximum velocity. Therefore,
within the interval

[
2Vj Vm

)
, there is a reasonable velocity

value Vr such that the effector can travel a distance of Dr .
Based on the above derivation, equation (19) can be used to
solve Vr :

JmV 2
r + A

2
mVr − AmJmDr = 0 (26)

Furthermore, according to the expression of T2 in (18), (24)
can be expressed as:

t2a +
3Am
Jm

ta +
2A3m − DrJ

2
m

AmJ2m
= 0 (27)
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where ta is the acceleration time to be solved. Equation (27)
is a one-variable quadratic equation for ta. By combining
the value range of Dr and the root relationship, the unique
solution to (27) can be determined as:

ta =

√
A4m + 4DrAmJ2m − 3A2m

2JmAm
(28)

In summary, when Da ≤ Dr< 2Dup, the 7-segment stan-
dard S-curve degenerates into a six-segment S-curve, and the
time series and input series are:

T1 = T3 = T5 = T7 = Tj

T2 = T6 =

√
A4m + 4DrAmJ2m − 3A2m

2JmAm
T4 = 0

U =
[
Jm 0 −Jm 0 −Jm 0 Jm

]
(29)

2) MOTION SOLUTION AT A NON-MAXIMUM
ACCELERATION
If the target distance is further reduced, then Dr < Da,
which means that Dr is small enough, and there is no longer
a need to increase the acceleration to its maximum value.
According to (25), with the acceleration as an unknown quan-
tity, a smaller acceleration Ar can be solved to satisfy the
distance constraint such that:

Ar =
3

√
DrJ2m
2

(30)

Equation (30) is transformed into a form of jerk time tj as
shown in (31).

tj =
3

√
Dr
2Jm

(31)

Thus, in the case of Dr < Da, the 7-segment standard
S-curve degenerates into a 4-segment S-curve, and the time
series and input series are:

T1 = T3 = T5 = T7 =
3

√
Dr
2Jm

T2 = T4 = T6 = 0

U =
[
Jm 0 −Jm 0 −Jm 0 Jm

]
(32)

3) DESIGN OF THE POINT-TO-POINT TIME-OPTIMAL
ALGORITHM
According to the analyses and derivations above, the algo-
rithm logic block diagram shown in Figure 2 can be obtained.

In essence, the algorithm establishes a mapping relation-
ship between the target displacement and runtime, which is a
continuous piecewise function. It can be seen from (33) that
the definition domain of the mapping is the entire real number
axis.

However, when the order of the system further increases,
and the system has bandwidth constraints, the above solution
process becomes more complicated. In this paper, under the
guidance of the principle of minimum value, the optimal

FIGURE 2. Logic diagram of the time-optimal algorithm for the P2P
problem.

control rate of time should be solved. This is the application
of the optimal control method. Therefore, the derivation of
this paper does not need to consider the problem of system
stability.

Using the above derivation and (21), (29) and (32), we can
see that the mapping means that under the premise of some
given system parameters, an arbitrary real number is mapped
into the parameter series T ,U , which denotes a smooth curve
in displacement-time space in combination with (10).

F (Sr |Vm,Am, Jm) 7→ T ,U

T = sum(T ) (33)

As this mapping satisfies both surjection and injection,
the algorithm is complete. That is, for any displacement inde-
pendent variable, a smooth curve can be uniquely determined.
This uniquely determined curve is the least time-consuming
one of all feasible solutions based on the minimum-value
principle in Chapter III. Therefore, F (Sr |Vm,Am, Jm) also
uniquely determines the shortest running time t . sum(T )
in (33) is the sum of the time series T . Therefore, the function
in (34) can be used to represent the mapping between the
target position and the shortest running time under the given
bandwidth parameters.

f (Sr |Vm,Am, Jm) = t (34)

Based on the above derivation, an inverse mapping f −1

related to the execution time t can be determined. With the
inverse mapping f −1, a desired running time tr and target
displacement Sr are given to solve a suitable set of bandwidth
parameters Ṽ , Ã, J̃ to help address the multi-axis synchro-
nization issue.

f (Sr |Vm,Am, Jm) 7→ tmin
f −1 (tr | Sr ,Vm,Am, Jm) 7→ Ṽ , Ã, J̃ (35)
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This problem will be further studied and analyzed in
Chapter IV.

IV. MULTI-AXIS SYNCHRONIZATION ISSUE BASED ON
TIME CONSTRAINTS
Consider f (S,V ,A, J) = t to be a multivariate function,
which can be expressed as follows:

f (S,V ,A, J)

=



VA2 + SAJ + JV 2

VAJ
|S| ≥

V 2

A
+
AV
J√

A4 + 4SAJ2 + A2

2AJ
2A3

J2
≤ |S| <

V 2

2A
+
AV
2J

2 3

√
4S
J

|S| <
2A3

J2

dom =
{
(S,V ,A, J) | S ∈ R,A > 0, J > 0,V ≥

A2

J

}
(36)

It can be shown that the left and right limits of the piecewise
function f (S,V ,A, J) at the end points are equal, and the
algebraic operation of the real variable is continuous [19];
therefore, f (S,V ,A, J) is also continuous. An image of
f (S,V |A, J) = t under a given A, J can be plotted in three-
dimensional coordinates, as shown in Figure 3.

FIGURE 3. Projection of f
(
S, V , A, J

)
in three-dimensional space under a

given A, J .

δ = {(S,V ,A, J) | S ≥ 0,A = 2, J = 1,V ≥ 4} is
selected as the definition domain of the function in Figure 3.
Firstly, it can be seen that the surface changes continuously.
Secondly, from the perspective of the overall trend, under
the same displacement S, the greater the velocity V is, the
shorter the time t is consumed. With the increase of system
bandwidth, the system can complete tasks in a shorter time
and vice versa, which can be well understood in a visualized
manner. It is also easy to demonstrate mathematically that
S,V ,A, J maintain a monotonic relationship with the run-
ning time t . Therefore, if three of the independent variables
S,V ,A, J are constants, f becomes a monotonic continuous
unary function. Hence, f must have a monotonic inverse
function f −1. The inverse mapping described in (35) can be
expressed as:

f −1J (tr | Sr ,Vm,Am, Jm) = J̃
f −1A (tr | Sr ,Vm,Am, Jm) = Ã
f −1V (tr | Sr ,Vm,Am, Jm) = Ṽ

(37)

As far as the multi-axis synchronization planning issue is
concerned, an effector consuming less time needs to extend its
motion time to synchronize with a slower effector. Therefore,
the three types of inverse mapping relationships described
in (37) need to solve the mapping of a smaller bandwidth
parameter under a more relaxed time constraint. As the map-
ping of f is an injection, there is also a positive relationship
shown in (38) between the parameters obtained by (37).

f
(
Sr |Vm,Am, J̃

)
= tr

f
(
Sr |Vm, Ã, Jm

)
= tr

f
(
Sr | Ṽ ,Am, Jm

)
= tr

(38)

This smaller bandwidth parameter allows the effector to
use the time tr to complete the displacement Sr . In the
following section, the details of solving the equations for
the three mappings described in (37) will be deduced, and
related algorithms will be designed. However, before that,
some preparations need to be made.

As far as the above solution to the time optimality issue is
concerned, we know that there is a maximum distance Dm
that can be reached at a given time t and under a given
bandwidth condition. In other words, there must exist a
Dm ≥ Dr to ensure that the inverse solution f −1 is available.
It is necessary to first determine the mapping of tr 7−→ Dm.

Firstly, a new system constant Tup is derived to represent
the shortest time required for the system to reach the maxi-
mum velocity Vm.

Tup =
Vm − 2Vj

Am
+ 2Tj = Tj +

Vm
Am

(39)

The mapping relationship of tr 7−→ Dm will be derived
below in combination with Tup.

If the target running time t is greater than 2Tup, this time
is sufficient to accelerate the velocity to its maximum value.
Hence, the maximum running distance is:

d = 2Dup + (t − 2Tup)Vm (40)

When the target running time is t ∈ [4Tj, 2Tup), there is not
enough time to increase the velocity toVm during this interval.
The vertex velocity to which the velocity can be increased
according to the optimal control rate is:

vp =
(
t
2
− 2Tj

)
Am + 2Vj (41)

The maximum distance can be equivalent to the product of
vp and t/2.

d =
v2p
Am
+
Amvp
Jm
=

t
2
vp =

AmJmt2 − 2A2mt
4Jm

(42)

When the target running time is t < 4Tj, the acceleration
cannot be maximized even if the maximum system input is
used. Therefore, there is no uniform acceleration phase nor
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a uniform motion phase. Hence, the maximum distance is
equivalent to the product of vp and t/2.

vp =
J
16
t2

d =
t
2
vp =

J
32
t3 (43)

In summary, the relationship between the target time tr and
themaximum target displacement d can be obtained as shown
by the function in (44).

ft (t |Vm,Am, Jm)

=


2Dup + Vm(t − 2Tup) t ≥ 2Tup
AmJmt2 − 2A2mt

4Jm
2Tup > t ≥ 4Tj

J
32
t3 4Tj > t

(44)

Secondly, in the following derivation, there will be solu-
tions to the unary cubic equation. Complete solutions to the
unary cubic equation have been derived previously. However,
the resulting set of rooting equations does not distinguish
between real roots and imaginary roots. The introduction of
the complex field adds to the complexity of the implementa-
tion of the entire motion control logic. In Reference [20], they
proposed a S.J. equation to give a more detailed discriminant
and solving method, which could effectively eliminate the
calculation of virtual roots.

Finally, from the analysis and derivation above, the time-
based synchronization algorithm is the inverse operation
for solving the time-optimal algorithm. Therefore, the time-
based synchronization algorithm must also be a continuous
piecewise function. It can be seen from the above derivation
of the time-optimal algorithm that when the independent
variable is within a certain range, it can be described by a
certain kinematic equation. Then, the difficulty of the inverse
mapping solution lies in determining the interval and deriving
the kinematic equation.

A. SOLVING THE MINIMUM VELOCITY PROBLEM UNDER
TIME CONSTRAINTS
The minimum velocity under time constraints can be
expressed as:

f −1V (tr | Sr ,Vm,Am, Jm) = Ṽ (45)

In this case, the target displacement is Sr , the maximum
system velocity is Vm, the maximum acceleration is Am and
the maximum Jerk value is Jm. The independent variable is
the expected running time tr . The mapping f −1V indicates that
the minimum velocity Ṽ at which Sr can be completed using
tr is solved. To ensure the minimum velocity, the effector
should increase the velocity to Ṽ in the most efficient way,
and then make a uniform motion. As a result, the character-
istic of this kind of problem is that the kinematic equation
maintains the uniformmotion phase as far as possible. Hence,
the velocity curve in this case is close to a trapezoid.

As Jerk remains the same under this problem, in the case
of Ṽ ≥ 2Vj, the acceleration is increased to Am, and vice
versa. Hence, when Ṽ ≥ 2Vj, a change in the vertex velocity
of the effector does not affect the acceleration. In the case
of Ṽ < 2Vj, a change in the vertex velocity of the effector
affects the acceleration. The two cases correspond to different
kinematic equations. Here, the distance in the critical state of
Ṽ = 2Vj is solved and denoted as DV .

DV = 4VjTj + 2Vj(tr − 4Tj) (46)

According to (46), the above case only occurs when
tr ≥ 4Tj. Hence,

f −1V : {tr , Sr } 7−→ [2Vj,Vm] (47)

where |Sr | ∈ [DV ,ft (tr )] and tr ∈ [4Tj,+∞).
In this interval, as the acceleration increases to its maxi-

mum value and if the velocity is expected to increase further,
there is a uniformly accelerated motion. We can use Ṽ to
denote the acceleration time ta:

ta =
Ṽ − 2Vj
Am

(48)

The displacement can be expressed as:

Dr =
(
tr − 2ta − 4Tj

)
Ṽ +

Ṽ 2

Am
+
AmṼ
Jm

(49)

We can transform (49) into an equation for the vertex
velocity such that:

Ṽ
2
+

(A2m − JmAmtr )
Jm

Ṽ + AmDr = 0 (50)

It can be judged from the root relationship that there are two
positive real roots in the equation. Based on the assumptions
in this case, we can know that the required Ṽ is within
the interval [2Vj,Vm]. After derivation, we can find that the
symmetry axis of the quadratic function in (50) is always on
the right side of the interval [2Vj,Vm], which is the smaller
one of the two roots. Therefore, the analytic expression of Ṽ
and the expression of time series T can be further deduced as:

T1 = T3 = T5 = T7 = Tj

T2 = T6 =
tup
2
− 2Tj

T4 = tr − tup (51)

where the

Ṽ =
AmJmtr−A2m−

√
A4m−2A3mJmtr + A2mJ2mt2r −4DrAmJ2m

2Jm
;

tup = 2(Tj +
Ṽ
Am

).

WhenDr takes a smaller value, there is not enough distance
to saturate the acceleration. Assume that the required vertex
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acceleration is ap. As there must be no uniformly accelerated
segment, the kinematic equation can be expressed as:

vp =
a2p
2Jm

Dr =
(
tr − 4

ap
Jm

)
vp +

v2p
ap
+
apvp
Jm

(52)

Furthermore, equation (52) can be transformed into:

2ap3 − Jmtra2p + JmDr = 0 (53)

By observing (52) from the root relationship, the equation has
one negative root and two positive roots. The two positive
roots can be further screened according to ap ∈ [0,Am). It is
easy to obtain the only feasible positive real number solu-
tion using the S.J. equation proposed in [20]. Subsequently,
ap and T are transformed into:

T1 = T3 = T5 = T7 = tj
T2 = T6 = 0
T4 = tr − 2tup

(54)

where the:  tj =
ap
Jm

tup = 2tj;

and: 
w = acos(

54Sr
Jmt3r

− 1)

ap =
Jmtr
6

(
cos

w
3
−
√
3sin

w
3
+ 1

)
Hence, a mapping relationship with the minimum velocity

Ṽ in the case of tr ∈ [4Tj,+∞) is established.

f −1V (tr | Sr ,Vm,Am, Jm)

=


nosolution ft (tr ) < |Sr |

formula(51) Dv ≤ |Sr | ≤ ft (tr )
formula (53) , (54) |Sr | < Dv

(55)

When tr ∈ [0, 4Tj), the time is not enough to increase
the acceleration to its maximum value. Therefore, motion can
still be described using (53). Hence, f −1V can be expressed as:

f −1V (tr | Sr ,Vm,Am, Jm)

=


4Tj ≤ tr


nosolution ft (tr ) < |Sr |

formula (51) Dv ≤ |Sr | ≤ ft (tr )
formula (54) |Sr | < Dv

0 < tr < 4Tj formula (54) |Sr | ≤ ft (tr )
(56)

The expressions are all analytic and it is easy to verify
that the function f −1V is continuous. In addition, it can be
found that two lines in (56) use the same kinematic equation.
When tr = 4Tj, Dv takes its minimum value 4VjTj and ft (tr )
is equal to 4VjTj. When tr < 4Tj, ft (tr ) < 4VjTj is true.
According to the existence conditions of Dv and the above

analysis, a logical expression of DV is designed, which could
make the whole algorithm logic more concise. The flow chart
of the entire algorithm is shown in Figure 4.

FIGURE 4. Logic diagram of the minimum velocity synchronization
algorithm under time constraints.

Note that max(∗,∗ ) indicates that the greater of the two
variables is taken.

B. SOLVING THE MINIMUM ACCELERATION PROBLEM
UNDER TIME CONSTRAINTS
The minimum acceleration under time constraints can be
expressed as:

f −1A (tr | Sr ,Vm,Am, Jm) = Ã (57)

Under time constraints, the values of the target displace-
ment Sr , system maximum velocity, acceleration and Jerk
are given. The independent variable is the expected running
time tr . The mapping f −1A indicates that the minimum accel-
eration Ã at which Sr can be exactly completed using tr
is solved. To ensure the minimum acceleration, the effector
has a longer period of uniform acceleration, which indirectly
shortens the uniform motion time. Note that the velocity
curve in this case is close to a triangle.

Assume that tr > 2Tup, then the following details are
considered. When Sr = ft (tr ), both the acceleration and
velocity reach their maximum values, and there is a uniform
motion phase. After that, Sr is reduced continuously. In this
case, we can keep the maximum velocity Vm unchanged
and reduce the acceleration to slow down the entire motion.
In this process, due to the constant decrease in acceleration,
the uniform acceleration time gradually increases, while the
uniform motion time decreases continuously. Therefore, it
can be inferred that the existence of Sr and Ã enables the
velocity to increase to Vm without a uniform motion phase.
In this case, the motion distance is DA = trVm/2.

Therefore, when tr ≥ 2Tup and trVm/2 ≤ Sr ≤ ft (tr ),
the motion can increase the velocity to its maximum value.
Note that there exist uniformmotion and uniform acceleration
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phases. We then deduce the kinematic equation. Assuming
that the acceleration is Ã. The uniform acceleration time is ta:

ta =
Vm − Ã2

Jm

Ã
=
Vm
Ã
−

Ã
Jm

(58)

The motion in this case can be expressed as:(
tr − 2ta − 4

Ã
Jm

)
Vm +

V 2
m

Am
+
ÃVm

Jm
= Sr (59)

We then transform (59) into an equation for Ã such that:

VmÃ
2
+ (JmSr − VmtrJm) Ã+ JmV 2

m = 0 (60)

It can be judged from the root system relationship that (60)
has two positive roots. Due to ta ∈ [0, tr ), it can be further
deduced that Ã always takes a smaller root. Hence, it can be
transformed into:

T1 = T3 = T5 = T7 = tj
T2 = T6 = tup − 2tj
T4 = tr − 2tup (61)

where the

Ã

=

JmtrVm−
√
(SrJm)2−2J2mSr trVm+J2mt2r V 2

m−4JmV 3
m−JmSr

2Vm
;

and 
tj =

Ã
Jm

tup = tj +
Vm
Ã
.

After that, when Sr continues to decrease until it is less
than trVm/2, the velocity cannot increase to its maximum
value, and there is no uniform velocity phase. Therefore,
the vertex velocity is vp = 2Sr/tr . The kinematic equation
can be transformed into:

Sr =
v2p
Ã
+
vpÃ
Jm

(62)

It is further transformed into:

vpÃ
2
− Jmsr Ã+ Jmv2p = 0 (63)

It can be inferred from the root system relationship that the
equation contains two positive roots. Hence, there is an accel-
eration phase. Thus, ta ∈ [0,tr/2]. Ã and T are transformed
into: 

T1 = T3 = T5 = T7 = tj

T2 = T6 =
1
2
tr − 2tj

T4 = 0.

(64)

where the

Ã =


Jmsr −

√
(srJm)2 − 4JmV 3

m − Jmsr

2vp
vp > 0

0 vp = 0;

and the

tj =
Ã
Jm
.

When tr < 2Tup, the maximum velocity cannot reach Vm.
Accordingly, only Sr ≤ ft (tr ) is needed to use (63). Therefore,
the minimum acceleration mapping under time constraints
can be expressed as the following piecewise function:

f −1A (tr | Sr ,Vm,Am, Jm)

=



2Tup ≤ tr
no solution ft (tr ) < |Sr |

formula (60) , (61) DA ≤ |Sr | ≤ ft (tr )
formula (63) , (64) |Sr | < DA

0 < tr < 2Tup
formula (63) , (64) |Sr | ≤ ft (tr )

(65)

When tr ≥ 2Tup, DA ≤ ft (tr ). When tr < 2Tup, ft (tr ) <
DA is always true. Therefore, equation (65) can be used to
determine the relationship of the size between ft (tr ) and |Sr |,
and then DA can be used to choose a kinematic equation.

C. SOLVING THE MINIMUM JERK PROBLEM UNDER
TIME CONSTRAINTS
The minimum acceleration under time constraints can be
expressed as:

f −1J (tr | Sr ,Vm,Am, Jm) = J̃ (66)

In this case, the values of the target displacement Sr , system
maximum velocity, acceleration and Jerk are given. The inde-
pendent variable is the expected running time tr . Themapping
f −1J indicates that the minimum acceleration J̃ at which Sr
can be exactly completed using tr is solved. The continuous
decrease in Jerk causes simultaneous changes in acceleration
and velocity.

If the maximum velocity Vm and the maximum accel-
eration Am are kept unchanged, while the Jerk decreases,
the time for the acceleration to increase to its maximum value
gradually increases, and the uniform acceleration time grad-
ually decreases. The minimum Jerk that can exactly increase
the acceleration and velocity to their maximum values can
be recalculated. It is worth noting that there is no uniform
acceleration phase nor a uniform motion phase in this case.

j =
A2m
Vm

tj =
Am
j

tup = 2tj

(67)

In addition, it can be proven that tup ≥ Tup. Hence, the case
of tr ≥ 2tup is first considered. In this case, J̃ ∈[j, Jm] and
the velocity and acceleration can be kept at their maximum
values. The lower bound of the distance can be calculated
when J̃ = j. In addition, in combination with the assumption
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of tr ≥ 2tup and the processing method in Section IV.B,
a more accurate DJ ,A,V expression can be obtained.

dJ ,A,V =
(
tr − 4tj

)
Vm + 2tjVm = trVm − 2

V 2
m

Am

dJ ,A,V ,2tup = 2
V 2
m

Am

DJ ,A,V = max(trVm − 2
V 2
m

Am
, 2
V 2
m

Am
)

(68)

Hence, when tr ≥ 2tup and Dr ∈ [DJ ,A,V , ft (tr )], (69) can
be used to describe its motion:

Dr =

tr − 2
Vm −

A2m
J̃

Am
− 4

Am
J̃

Vm +
V 2
m

Am
+
AmVm
J̃

(69)

It can be further transformed into:

J̃ =
VmA2m

trVmAm − V 2
m − AmDr

(70)

Then, T and U can be transformed into:

T1 = T3 = T5 = T7 = tj
T2 = T6 = ta
T4 = tr − 2ta − 4tj
U = Dir ·

[
J̃ 0 −J̃ 0 −J̃ 0 J̃

]
(71)

where the

tj =
Am
J̃
,

and the

ta =
Vm −

A2m
J̃

Am
.

According to the analysis above, when Dr = DJ ,A,V , the
acceleration and the velocity become saturated at the same
time, and there is no uniform acceleration phase. However,
an interesting phenomenon arises. As Jerk decreases further,
the acceleration becomes unsaturated first. This conclusion
can be demonstrated by the following derivation. Assume that
Dr is small and no uniform acceleration phase nor a uniform
motion phase is required. tr and J̃ can be used to denote the
vertex velocity and vertex acceleration such that:

ap = J̃
tr
4

vp = J̃ (
tr
4
)
2 (72)

ap = Am can be used inversely to solve the expression of J̃ ,
and the tr ≥ 2tup assumption is substituted into vp to get
vp ≥ Vm. Instead, Vm is used to replace vp and obtain
ap ≤ Am. At the same time, we can prove that there are cases
where vp = Vm and the acceleration is not saturated.

The minimum value DJ ,V of the distance in cases where
the acceleration is not saturated and the velocity is satu-
rated is calculated below. As there is no uniform velocity
phase, DJ ,V = Vmtr/2. Therefore, when tr ≥ 2tup and

Dr ∈ [DJ ,V ,DJ ,A,V ), we can continue to reduce Jerk while
maintaining the maximum velocity Vm. Assume that the
duration of Jerk is tj. Hence, the kinematic equation can be
transformed into:

Dr =
(
tr − 4tj

)
Vm + 2tjVm (73)

It can be further transformed into:

tj =
trVm − Dr

2Vm
(74)

Then, T and U can be obtained as:

T1 = T3 = T5 = T7 = tj
T2 = T6 = 0

T4 = tr − 4tj
U = Dir ·

[
J̃ 0 −J̃ 0 −J̃ 0 J̃

]
(75)

And the J̃ = Vm/t2j .
The kinematic equation when tr ≥ 2tup andDr ∈ [0,DJ ,V )

is considered below. As both the acceleration and the velocity
cannot be saturated, there is only variable accelerated motion.
The kinematic equation can be expressed as:

Dr =
J̃
32
t3r (76)

Then, T and U are transformed into:

T1 = T3 = T5 = T7 =
tr
4

T2 = T6 = 0

T4 = 0

U = Dir ·
[
J̃ 0 −J̃ 0 −J̃ 0 J̃

]
(77)

where the

J̃ =
32Dr
t3r

.

The cases of tr ∈ [2Tup, 2tup) are then analysed. During
this period, it is possible for the effector to maximise the
velocity and the acceleration. When Jerk decreases with Dr ,
the system consumes the uniform acceleration phase to slow
down the acceleration process, and the uniform accelera-
tion phase gradually decreases. Therefore, within a certain
range, the effector can maintain the maximum velocity and
the maximum acceleration. The lower bound distance is
DJ ,A,V = trVm/2. Therefore, when tr ∈ [2Tup, 2tup) and
Dr ∈ [DJ ,A,V , ft (tr )), the effector can maintain the maxi-
mum velocity and the maximum acceleration. Equations (70)
and (71) can be used to obtain a solution. As Dr decreases
further, a smaller Jerk cannot saturate the acceleration and
the velocity at tr/2. Hence, vp = aptr − a2r/J̃ . When Dr
decreases even further and if ap = Am is maintained, vp
gradually becomes less than Vm. If vp = Vm is maintained
independent of changes to ap and J̃ , the equation cannot hold.
So when Dr becomes smaller, the effector starts to reduce
the vertex velocity and keeps the acceleration saturated. The
motion in this case includes variable acceleration and uniform
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acceleration phases. In this case, the lower bound of the
distance spends all of the time on the variable acceleration
motion and the vertex acceleration is Am.

j =
4Am
tr

DJ ,A = j
t3r
32
=
Am
8
t2r (78)

Hence, when tr ∈ [2Tup, 2tup) and Dr ∈ [DJ ,A,DJ ,V ), the
kinematic equation can be described as:

T1 = T3 = T5 = T7 = tj
T2 = T6 = (tr − 4tj)/2

T4 = 0

U = Dir ·
[
J̃ 0 −J̃ 0 −J̃ 0 J̃

]
(79)

where the: 

vp =
2Dr
tr

J̃ =
2A2m(

Amtr − 2vp
)

tj =
Am
J̃

When Dr further reduces within the interval [0,DJ ,A), the
acceleration cannot maintain its maximum value. Therefore,
the kinematic equation can be described and solved by (77).

The case of tr ∈ [4Tj, 2Tup) is considered below. In this
case, due to the short time, the velocity cannot increase to
Vm but the acceleration can still increase to Am. Hence, for
Dr∈ [DJ ,A, ft (tr )), (78) and (79) can be used to solve the
problem. When Dr continues to decrease, (77) can be used
to solve the problem.

Finally, the case of tr ∈ (0, 4Tj) is considered. As the
time in this case is too short, the acceleration cannot be
maximized. Then, forDr∈ [0,DJ ,A), (77) can be used to solve
the problem.

Hence, f −1J can be further transformed into (80), as shown
at the bottom of this page.

D. TIME-CONSTRAINED MULTI-AXIS SYNCHRONIZATION
ALGORITHM
In the above section, we deduced the inverse mapping f −1∗
for different bandwidth parameters. f −1∗ can solve a set of
smaller bandwidth parameters to allow the effector to use any
given time tr to complete the Sr motion. In this section, a set
of multi-axis synchronization algorithm (MASA) is designed

based on the inverse mapping deduced above. The algorithm
is shown below.

Algorithm 1MAS Algorithm
Input: S,V , A, J , n
1: Init t = 0;
2: for i = 1 to n do
3: t = max(f (Si,Vi,Ai, Ji), t);
4: end for
5: for i = 1 to n do
6: Ui,Ti = f −1∗ (t, Si,Vi,Ai, Ji);
7: end for
8: return U ,T ;

Here, n is the number of effectors. S,V ,A, J is an
n-dimension array. Si,Vi,Ai, Ji represent the target displace-
ment, maximum velocity, maximum acceleration and max-
imum Jerk of the ith effector, respectively. U contains n
7-dimensional vectors, which store the output series of each
effector. T contains n 7-dimensional vectors, which store the
time series of each effector. f −1∗ denotes different inverse
solutions.

In Reference [21], it was pointed out that an increase
in Jerk increases the motor error. In reference [22], it was
proposed that minimizing energy Jerk should be the goal of
trajectory planning. In reference [22] introduces two optimi-
sation targets.

min max |U | (81)

The optimization goal (81) can minimize the system input
and further reduce the error. Another optimization target is:

min
∫ T

0
U2dt (82)

The optimization target (82) can minimize the energy con-
sumption of the effector.

But the problem based on energy optimization is extremely
complicated. Many scholars here use intelligent algorithms
[17], [18], iterative algorithms [9], [23], or numerical meth-
ods [24] to solve. In the [25], the author gave a more rigorous
mathematical derivation and theoretical proof, which cleverly
transformed the energy optimal problem into a convex prob-
lem, and Solved the optimal trajectory.

To address the multi-axis synchronization issue, multiple
targets, such as synchronous motion, time optimal and mini-
mum Jerk , are linearly combined into an objective function.

f −1J =



no solution ft (tr ) < |Sr |

formula (70) , (71) DJ ,A,V ≤ |Sr | ≤ ft (tr ){
formula (74) , (75)
formula(79)

2tup ≤ tr and DJ ,V ≤ |Sr | < DJ ,A,V
2tup > tr and DJ ,A ≤ |Sr | < DJ ,A,V

formula(77) others

(80)
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Numerical or intelligent algorithms [9], [17], [18] have been
used to optimize the objective function. These algorithms
have clear logic and mature computing modules. However,
it is difficult to guarantee the operating rate and convergence
of these methods. Moreover, it is almost impossible to imple-
ment and use these methods in real-time systems. When fac-
ing the P2P multi-axis synchronization issue, the algorithm
proposed in this paper is strict, concise, easy to implement,
complete and stable. As the algorithm directly gives a closed
solving equation, the computational speed is much faster than
the iterative method.

In addition, if f −1J is used in MASA, multi-axis synchro-
nization and optimization target (81) can both be achieved.
The acceleration is minimized when f −1A is used. But the
following derivations can be obtained:

minA = Ã =
1
4

∫ T

0
|U | dt (83)

In other words, f −1A minimizes A. According to the defini-
tions of Euclidean and McHarden distances, it can be proven
that:

min

√∫ T

0
U2dt < min

∫ T

0
|U | dt (84)

The relationship of the size between min
∫ T
0 |U | dt and

min
∫ T
0 U2dt is hard to determine. However, both optimiza-

tion targets minimize energy consumption and only use
unused metrics. Under the measure of L1 norm, f −1A achieves
the optimization.

V. SIMULATION AND EXPERIMENT
This chapter consists of three parts. In part 1, each inverse
mapping described in Chapter III is separately tested to verify
the correctness and completeness of the algorithm. In part 2,
a six-degree-of-freedom serial robots is built in a simulation
environment to investigate its effect on the actual application
platform. In the third experiment, this paper arranges the
algorithm to run in a real-time system. To verify that the
algorithm has good portability, efficiency and accuracy in
real-time system.

This article does not arrange comparison experiments with
other algorithms for the following reasons. Firstly, the prin-
ciple of minimum value and mathematical derivation prove
that under the premise of the same order, the algorithm in
this paper is time-optimized. Secondly, there exists no iter-
ation or optimization process in this algorithm, which can
generate the high computational efficiency. Thirdly, in the
field of multi-axis synchronization algorithms, there are few
closed-form algorithms. At last, it is difficult to implement
and use the current complex synchronization algorithms in
real-time systems.

In addition, as the method proposed in this paper is analyti-
cal, it is easy to verify that themapping is continuous, whether
it is a numerical verification method or a derivative method.

FIGURE 5. Logic diagram of the minimum acceleration synchronization
algorithm under time constraints.

Therefore, no continuous verification experiment is carried
out.

A. ALGORITHM SIMULATION EXPERIMENT
During the simulation experiment, the relevant algorithms
are implemented in MATLAB, and a series of verification
experiments is conducted. The simulation environment is a
64-bit Windows 10 operating system with MATLAB 2016b.

1) VERIFICATION OF BASIC MAPPINGS
In this experiment, the three inverse operations f −1V , f −1A and
f −1J proposed in Sections IV.A to IV.C and the F proposed
in Section III are implemented. Multiple datasets are used to
verify the relationship between the four mappings. Then, data
analyses of the three inverse mappings are carried out based
on the relevant theories described above.

The first experiment is performed to verify the correctness
of each mapping. That is, the experiment is conducted to
verify whether the correct optimal curve can be solved with a
set of given parameters.

The parameter settings are the following: Vm = 20,
Am = 20, Jm = 30 and target displacement Sr = 100.
This set of data is directly introduced into the mapping F ,
and then tr = sum (T ) = 6.6667 can be calculated. Then,
Vm,Am, Jm, tr are introduced to the three sets of inverse
mappings. The four methods could be used to obtain the same
time series and input series:

T

=
[
0.6667 0.3333 0.6667 3.3333 0.6667 0.3333 0.6667

]
,

U

=
[
30 0 −30 0 −30 0 30

]
.

According to the parameters, (10) is used to plot the
time variation of position, velocity, acceleration and Jerk ,
as shown in Figure 6.
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FIGURE 6. Position and derivative graphs with given parameter settings.
(a) Displacement of the seven-segment S curve over time. (b) Velocity of
the seven-segment S curve over time. (c) Acceleration of the
seven-segment S curve over time. (d) Jerk of seven-segment S curve over
time.

It can be seen that as the target displacement is large
enough, the velocity and acceleration reach their maximum
values. Figure 6(d) shows that the input also stays at its max-
imum value when activated, which means that the S-curve is

time optimal. In addition, all of the three inverse mappings
are also calculated correctly with a given time tr . This also
ensures that the second cycle of MASA can be solved cor-
rectly. It is worth noting that Sr is the maximum displacement
within tr and the three inverse operations use different kine-
matic equations to obtain the same curve. This indicates that
the inference in the inverse operation is correct.

When Sr = −100, it can be obtained that:

T

=
[
0.6667 0.3333 0.6667 3.3333 0.6667 0.3333 0.6667

]
,

U

=
[
−30 0 30 0 30 0 −30

]
.

It can be seen that T remains non-negative and the sign of
U changes. This indicates that the simplified framework of
the vector displacement Sr to the scalar distanceDr proposed
in this paper is correct.

After that, the parameters are set to Vm = 20Am = 20,
Jm = 30 and target displacement to Sr = 25. As the
displacement is small, according to the algorithm designed
in Figure 2, (29) can be used for the calculation, as shown
in Figure 7.

It can be seen from the above set of data that the time
for uniform acceleration is reduced. In this case, the vertex
velocity is lower than Vm and the other bandwidth parameters
reach their maximum values. In the literature, to save the
contour of the curve, proportional scaling or iterative search
is used to find a set of feasible parameter settings. These
methods not only consume extra time and space, but also
cannot ensure time optimality. The method proposed in this
paper can efficiently solve the optimal parameter settings
simply by solving quadratic equations.

Similarly, with Sr = 10, a curve can be obtained, as shown
in Figure 8.

From this set of data, it can be seen that as the tar-
get displacement is further reduced, the acceleration no
longer needs to reach the maximum bandwidth but the
mapping F can still solve feasible and optimal parameter
settings.

Finally, with Sr = 0, it can be obtained that:

T =
[
0 0 0 0 0 0 0

]
,

U =
[
30 0 −30 0 −30 0 30

]
.

Sr = 0 means that the effector is not moving. This is com-
mon in multi-axis synchronization scenarios. As is shown
above, although the input series contains non-zero terms, the
entire non-negative time series is summed to zero. This also
shows that the mapping F can correctly solve Sr = 0.
This experiment confirms the correctness, continuity and

optimality of the mapping F and the correctness of the
distance assumption. This method features a higher speed
and lower computational complexity as compared to legacy
algorithms.
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FIGURE 7. Positions and derivative graphs with Sr = 25. (a) Displacement
of the seven-segment S curve over time. (b) Velocity of the seven-segment
S curve over time. (c) Acceleration of the seven-segment S curve over
time. (d) Jerk of seven-segment S curve over time.

2) FURTHER VERIFICATION OF INVERSE MAPPINGS
In this experiment, a series of simulations are performed to
verify the correctness and completeness of the three inverse
mappings and to compare the differences between them.

FIGURE 8. Positions and derivative graphs with Sr = 10. (a) Displacement
of the seven-segment S curve over time. (b) Velocity of the seven-segment
S curve over time. (c) Acceleration of the seven-segment S curve over
time. (d) Jerk of seven-segment S curve over time.

According to the analysis above, when the bandwidth is
determined, given a large Sr , the unique shortest time tm can
be determined. In the following experiments, the bandwidth
parameter settings are fixed, and Sr and tr are continuously
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changed to observe the changes in the three inversemappings.
The fixed bandwidth parameter settings are the following:
Vm = 20, Am = 20 and Jm = 30.
The inverse mapping f −1V is first tested. According to the

data in experiment V.A.1, with Sr = 100, the shortest time
can be calculated as tm = 6.6667. The parameter values of
Sr = 100 and tr = 7 are substituted into f −1V to solve the
following kinematic series:

T

=
[
0.6667 0.2577 0.6667 3.8179 0.6667 0.2577 0.6667

]
,

U

=
[
30 0 −30 0 −30 0 30

]
.

The above series is plotted in Figure 9.
It can be seen that both the acceleration and Jerk reach the

maximum bandwidth. But as there is more time, the vertex
velocity drops in motion. In addition, it can be seen from the
figure that the position curve is second-order differentiable
and third-order continuous.
tr is further increased to 20 below. We can solve the kine-

matic series in this case:

T =
[
0.4170 0 0.4170 18.3319 0.4170 0 0.4170

]
,

U =
[
30 0 −30 0 −30 0 30

]
.

From the displacement graph in Figure 10(a), it can be
clearly seen that there is a longer uniform motion period.
As can be seen from the velocity curve in Figure 10(b),
the system only increases the velocity to 5.2176. From
Figure 9(c), the acceleration of the curve does not increase
to its maximum value. Jerk still maintains the maximum
bandwidth. In Figure 10(b), it can be seen that the contour
of the velocity curve is close to a trapezoid.

The inverse mapping f −1A is verified below. Assume that
Sr = 100 and tr = 7. The following series can be solved
by f −1A :

T

=
[
0.4226 1.1547 0.4226 3.0000 0.4226 1.1547 0.4226

]
,

U

=
[
30 0 −30 0 −30 0 30

]
.

It can be seen that both the velocity and Jerk reach the
maximum bandwidth. But as there is more time, this makes
the vertex acceleration in motion decrease. In addition, it can
be seen from the figure that the position curve is second-order
differentiable and third-order continuous.

After the execution time tr is further extended to 20, the
following kinematic series and graphs can be solved:

T =
[
0.0334 9.9331 0.0334 0 0.0334 9.9331 0.0334

]
,

U =
[
30 0 −30 0 −30 0 30

]
.

Figure 12(a) shows that the displacement curve is very
curvy, which indicates that the effector is in a variable
motion for a long time. Figure 12(b) shows that the effec-
tor is in a uniform acceleration phase for a long time.

FIGURE 9. Kinematic graphs solved by f−1
V with Sr = 100 and tr = 7.

(a) Displacement of the seven-segment S curve over time. (b) Velocity of
the seven-segment S curve over time. (c) Acceleration of the
seven-segment S curve over time. (d) Jerk of seven-segment S curve
over time.

Figures 12(c) and 12(d) show that the effector starts a long
uniformly accelerated motion after obtaining a low accelera-
tion using the maximum Jerk . As analyzed earlier, the veloc-
ity contour in Figure 12(b) is close to a triangle.
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FIGURE 10. Kinematic graphs solved by f−1
V with Sr = 100 and tr = 20.

(a) Displacement of the seven-segment S curve over time. (b) Velocity of
the seven-segment S curve over time. (c) Acceleration of the seven-
segment S curve over time. (d) Jerk of seven-segment S curve over time.

Assume that Sr = 100 andtr = 7. The kinematic series
solved by f −1J is:

T =
[
1 0 1 3 1 0 1

]
,

U =
[
20 0 −20 0 −20 0 20

]
.

(d)
FIGURE 11. Kinematic graphs solved by f−1

A with Sr = 100 and tr = 7.
(a) Displacement of the seven-segment S curve over time. (b) Velocity of
the seven-segment S curve over time. (c) Acceleration of the seven-
segment S curve over time. (d) Jerk of seven-segment S curve over time.

The above series is plotted in Figure 13.
Figure 13(a) shows that the start-stop process of the effec-

tor is relatively smooth. Figures 13(b) and 13(c) show that
both the velocity and acceleration reach their maximum
values. Figure 13(d) shows that the Jerk of the executor is
only 20 due to the increase in execution time.
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FIGURE 12. Kinematic graphs solved by f−1
A with Sr = 100 and tr = 20.

(a) Displacement of the seven-segment S curve over time. (b) Velocity of
the seven-segment S curve over time. (c) Acceleration of the seven-
segment S curve over time. (d) Jerk of seven-segment S curve over time.

After the execution time is further extended to 20, the fol-
lowing kinematic series can be solved:

T =
[
5 0 5 0 5 0 5

]
,

U =
[
0.4 0 −0.4 0 −0.4 0 0.4

]
.

FIGURE 13. Kinematic graphs solved by f−1
J with Sr = 100 and tr = 7.

(a) Displacement of the seven-segment S curve over time. (b) Velocity of
the seven-segment S curve over time. (c) Acceleration of the seven-
segment S curve over time. (d) Jerk of seven-segment S curve over time.

Their curve contours are shown in Figure 14.
It is clear from Figure 14(d) that the Jerk drops to 0.4. In

addition, the entire motion process only contains a variable
motion. Figure 14(a) shows that the entire curve is extremely
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FIGURE 14. Kinematic graphs solved by f−1
J with Sr = 100 and tr = 20.

(a) Displacement of the seven-segment S curve over time. (b) Velocity of
the seven-segment S curve over time. (c) Acceleration of the seven-
segment S curve over time. (d) Jerk of seven-segment S curve over time.

smooth. Figure 14(c) shows that the maximum acceleration
of the effector is also only 2.

Finally, assume that tr = 1 and Sr = 0. This scenario
occurs when the current effector of MASA does not receive

a motion command, but other effectors need to move for 1 s.
Then, all of the three inverse mappings should not lead to any
motion. The calculation results are shown below.{

TV = [ 0 0 0 1 0 0 0 ]

UV = [ 0 0 0 0 0 0 0 ]{
TA = [ 0 0.5 0 0 0 0.5 0 ]

UA = [ 0 0 0 0 0 0 0 ]{
TJ = [ 0.25 0 0.25 0 0.25 0 0.25 ]

UJ = [ 0 0 0 0 0 0 0 ]

(85)

According to the above results, we can see that when
Sr = 0, the three inverse mappings use different kinematic
equations, and neither of them makes the effector move.
This shows that the inverse mapping can correctly select the
corresponding kinematic equation and calculate this special
set of results.

In experiment V.A.2, a series of experiments were con-
ducted with f −1V , f −1A and f −1J . Their implementations proved
that the three inverse mappings can indeed solve the kine-
matic series correctly. At the same time, the related parame-
ters can be optimized according to the above derivation.

B. ROBOT SIMULATION EXPERIMENTS
The standard DH parameter table of robot KingKong is given
in Table 1.

TABLE 1. Table of standard DH parameters of KingKong.

The schematic diagram of KingKong’s coordinate system
is shown in Figure 15.

1) VERIFICATION EXPERIMENT FOR THE JOINT SPACE
The bandwidth settings of the joint are the following: VJ ,m =
30deg/s,AJ ,m = 40deg/s2, andJJ ,m = 80deg/s3. The robot
is ordered to move from P1 to P2.

P1 =
[
0◦ −150◦ 60◦ −45◦ −45◦ 45◦

]
,

P2 =
[
100◦ −90◦ −60◦ −120◦ 45◦ 45◦

]
.

Figure 16(a) shows that the curves are smooth and contin-
uous, and they also reach the designated position accurately.
Figure 16(b) shows that all six joints move synchronously,
and the velocity curves are smooth and continuous.
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FIGURE 15. (a) Schematic for the KingKong parameters: dk is the linkage
length of the kth link and ak is the linkage torsion of the kth link. jk is
the kth joint. (b) Visualization of the KingKong model.

According to the joint angle, the end position was recom-
puted with the motion trajectory shown in Figure 17.

2) VERIFICATION EXPERIMENT FOR THE DESCARTES SPACE
It is known that the interpolation of the robot’s end-effector
pose is difficult. Here, we combine the proposed MASA,
Euler angles and parametric equations to solve this prob-
lem. According to basic robotic theories, the end transforma-
tion matrix T of a robot can be obtained through the joint
angle and DH parameters. T belongs to a special Euclidean
group. Through the transformation relationship between the
rotation matrix and Euler angles, T can be mapped into a
six-dimensional scalar to denote the pose of the robot end-
effector. x, y, z denote the position P of the robot end-effector
in the base coordinate system, which can be retrieved directly
from T . α, β, γ are Euler angles solved by the rotation matrix
of T . α, β, γ can be used to denote the attitude angle of the
robot’s end-effector in the base coordinate system.

fkine (ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6) 7−→ T ∈ SE3

T 7−→ ξ = [ x y z α β γ ] (86)

The above method can be used to determine the current
pose ξc of the robot.

We shall first determine the target position Pr , the target
attitude angle Qr and the parametric equation ϒ of the curve
to be run.

The length of the entire curve can be calculated using
Pc,Pr , ϒ , L. The space angle Q1 to be rotated can be cal-
culated using Qc and Qr . Based on the bandwidth parameter

FIGURE 16. The motion trajectory of the KingKong. (a) Displacement of
the seven-segment S curve over time. (b) Velocity of the seven-segment S
curve over time. (c) Acceleration of the seven-segment S curve over time.
(d) Jerk of seven-segment S curve over time. Axis 1 is the blue line. Axis 2
is the red line. Axis 3 is the yellow line. Axis 4 is the purple line. Axis 5 is
the green line. Axis 6 is the light blue line.

settings given by the user, MASA is used with L and Q1 for
smooth interpolation of the robot spatial pose. Four kinematic
series could then be generated. The ξi of each cycle could be
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FIGURE 17. Start and end positions of KingKong’s motion.

calculated based on the kinematic series. After Ti is inversely
calculated using the parametric equationϒ , it is then mapped
back into the joint space by an inverse kinematics algorithm.
Here, the inverse kinematic calculations and multiple solu-
tions of the UR robot are chosen using the method described
in [26].

The bandwidth parameters of the system in spatial motion
are first set, where the end-effector velocity bandwidth is
VP,m = 0.15 m/s,AP,m = 0.2 m/s2 and JP,m = 0.3 m/s3.
The bandwidth of the spatial angle change is VQ,m =

30 deg/s,AQ,m = 40 deg/s2 and JQ,m = 80 deg/s3.
The initial position of the robot is at[
−90◦ −150◦ 45◦ −90◦ −90◦ −90◦

]
. The end-effector’s

change matrix solved by forward kinematics is:
0.0000 1.0000 0.0000 −0.0928
−0.2588 0.0000 0.9659 −0.2528
0.9659 0.0000 0.2588 0.5710

0 0 0 1


The pose is solved as:[
−0.0928 −0.2528 0.5710 90.0000 75.0000 −180.0000

]
.

The pose of the target is:[
−0.0928 −0.2528 0.38 120.0000 120.0000 −160.0000

]
.

The curve is a straight line, which can be calculated as fol-
lows: L = 0.1910,Q1 =

[
30.0000 −45.0000 20.0000

]
.

By introducing the data in to MASA, the following kine-
matic series can be solved in TL ,UL ,TQ, andUQ as shown at
the bottom of this page.

We first plot the kinematic graphs of the robot’s
end-effector pose; the results are shown in Figure 18.
Figure 18(a) shows that the robot’s end pose reaches the

specified angle in a correct, smooth and synchronized way.
The other panels of Figure 18 show that this planning process
complies with the given system bandwidth.
It can be seen that the robot’s end-effector completes the

specified position motion, and it complies with the spec-
ified bandwidth parameter settings. It can be seen from
Figures 18 and 19 that the position motion and the pose
motion are synchronized.
According to the pose obtained by synchronous planning,

the joint angle series is inversely solved. The resulting plots
are shown below.
It can be seen that the robot’s end-effector completes the

specified position motion, and it complies with the spec-
ified bandwidth parameter settings. It can be seen from
Figures 18 and 19 that the position motion and the pose
motion are synchronized.
According to the pose obtained by synchronous planning,

the joint angle series is inversely solved. The resulting plots
are shown below.
Figure 20 shows that both the velocity and acceleration

curves are continuous. An important advantage of this plan-
ning framework is that the entire planning process is analyt-
ical. As a result, any trajectories of the variable segments
and the uniform segments in the Descartes space can be
calculated. In other words, it can effectively guarantee the
controllability of the trajectory space velocity when perform-
ing some specific processes.

C. EXPERIMENT IN REAL-TIME SYSTEM
In the third experiment, this paper arranges the algorithm to
run in a real-time system. To verify that the algorithm has
good portability, efficiency and accuracy in real-time system.
Our laboratory was commissioned to build an explosive

ordnance disposal (EOD) robot with dual cooperative series
robots. The controller we use is Beckhoff C-6920. This con-
troller runs under the 32-bit Windows 7 operating system and
provides the TwinCat, a real-time motion control platform.
The controller works at 24V DC. As shown in Figure 21.
Themotor of the series robot usesKollmorgenRGM.RGM

works at 48V DC. As shown in Figure 22.

TL =
[
0.5682 0.2435 0.5682 0 0.5682 0.2435 0.5682

]
UL =

[
0.3000 0 −0.3000 0 −0.3000 0 0.3000

]
TQ =

 0.2379 0.9041 0.2379 0 0.2379 0.9041 0.2379
0.4820 0.2960 0.4820 0.2400 0.4820 0.2960 0.4820
0.1469 1.0862 0.1469 0 0.1469 1.0862 0.1469

 ,
UQ =

 80.0000 0 −80.0000 0 −80.0000 0 80.0000
80.0000 0 −80.0000 0 −80.0000 0 80.0000
80.0000 0 −80.0000 0 −80.0000 0 80.0000

 .
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FIGURE 18. Kinematic graphs of KingKong’s end-effector pose.
(a) Displacement of the seven-segment S curve over time. (b) Velocity of
the seven-segment S curve over time. (c) Acceleration of the seven-
segment S curve over time. (d) Jerk of seven-segment S curve over time.

RGMcommunicates with C-6920 through CanOpen proto-
col. CANopen is a high-level communication protocol based
on the control area network (Controller Area Network, CAN).
It is often used in embedded systems and is also a field bus
commonly used in industrial control.

FIGURE 19. Kinematic graphs of the arc length at KingKong’s joint spatial
position. (a) Displacement of the seven-segment S curve over time.
(b) Velocity of the seven-segment S curve over time. (c) Acceleration of
the seven-segment S curve over time. (d) Jerk of seven-segment S curve
over time.

As shown in Figure 23(a) and Figure 23(b), EOD robot is
composed of two serial manipulators, mobile platform and
vision system. Additionally, EOD robot is characterized by a
high-performance explosion-proof tank, which is convenient
to handle the explosives in the process of detonation.
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FIGURE 20. Kinematic graphs of the arc length at KingKong’s joint spatial
position. (a) Displacement of the seven-segment S curve over time.
(b) Velocity of the seven-segment S curve over time. (c) Acceleration of
the seven-segment S curve over time. (d) Jerk of seven-segment S curve
over time. Axis 1 is the blue line. Axis 2 is the red line. Axis 3 is the yellow
line. Axis 4 is the purple line. Axis 5 is the green line. Axis 6 is the light
blue line.

The software architecture of manipulators is shown in
Figure 24.

FIGURE 21. C6920 controller.

FIGURE 22. RGM of Kollmorgen.

FIGURE 23. Model diagram of EOD robot.

A series of control commands and functions are provided
in the Human Machine Interface (HMI) of the control termi-
nal. These upper-level motion functions will be parsed into
robotmotion commands inActioner.Planner then solves the
corresponding motion sequence according to the upper-level
motion instructions. The Mapper is responsible for con-
verting the motion sequence into motor motion commands.
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FIGURE 24. The software architecture of double manipulators.

Finally, the MotionController is responsible for communi-
cation and control with the motor. The MASA proposed in
this article will be implemented in Planner. The dissipation
of energy needs to be considered at any time because the
battery is used for EOD robot in the complex environment.
Themulti-axis synchronization of EOD robot is using the f −1A
mapping with energy optimal.

Based on the derivation above, Codesys language of Twin-
Cat is used to achieve the MASA and the motion control
module of robot, shown in Figure 25.

FIGURE 25. Algorithm interface of double manipulators system.

The P2P time optimal algorithm ScSolver and the anti-
mapping ScTminASolver are completed in TwinCat. Related
functions can be found in the folder of planner. Since the algo-
rithm proposed in this paper only requires solving quadratic
polynomial equations, the synchronization logic is clear and
simple. Even if transplanted to the TwinCat platform, it does
not require complicated programming and data structures.
This is the larger advantage of the algorithm proposed in this
paper.

EOD robot after assembly is shown in Figure 26:

FIGURE 26. EOD robot.

TABLE 2. Table of standard DH parameters of WuKong.
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EOD robot has two series robots. The robot on the left
side is small and the DH performance has been shown in the
Chapter V. B. The robot on the right side is named WuKong,
and its DH performance is shown in the following table.

Additionally, there are offsets between the two robots and
the origin of the coordinate system. The two offset matrices
are:

BaseK =


1 0 0 0.07
0 0.4226 0.9063 0.1373
0 −0.9063 0.4226 0.0894
0 0 0 1



BaseW =


1 0 0 −0.03
0 0.4226 −0.9063 −0.1346
0 0.9063 0.4226 0.0881
0 0 0 1


According to the original plan, the experiment of the EOD

robot was indeed arranged here. However, due to the epi-
demic, we were unable to return to campus. In this regard,
we take the following remedial measures to prove that the
algorithm proposed in this paper has a good effect even if it
is applied in a real-time platform.

Firstly, the TwinCat platform can turn any 32-bit Win7
system into a real-time controller. Our EOD robot has com-
pleted the communication and debugging of TwinCat and
RGMs and been running normally for more than one year.
As long as the TwinCat can output the correct position,
the EOD robot can correctly execute the control instructions.
Therefore, a 32-bit Win7 Industrial Personal Computer (IPC)
with a lower configuration is used as the controller in this
chapter. In the following experiment, this paper will analyze
the performance of the algorithm in real-time system accord-
ing to the closed-loop period of the controller and the control
signal.

Secondly, since this set of algorithms and robot motion
framework has been implemented in the TwinCat platform
in 2018. During this year there are also some experiment and
testing. For example, the synchronization framework of this
paper has been used in [26] to demonstrate the running effect
of KingKong. In addition, we also submitted some previous
videos. Hope to show you the effect of the algorithm applied
to the series robot.

The configuration of IPC isWin 7 system of 32-bit, celeron
CPU. The closed-loop cycle of TwinCat in IPC is 2ms, that
is to say TwinCat will communicate with the driver once
every 2 ms. During this period, the expected positions of the
actuator at the next time would be calculated.

1) EXPERIMENT OF MULTI-POINT IN JOINT SPACE
First set the three via points of WuKong:

P1 =
[
180◦ −30◦ 45◦ −90◦ −90◦ −45◦

]
;

P2 =
[
90◦ −150◦ 45◦ −90◦ −90◦ −45◦

]
;

P3 =
[
270◦ −150◦ 45◦ −90◦ −90◦ −45◦

]
;

The motion bandwidth of WuKong is the same as that of
KingKong.

FIGURE 27. Start and end positions of WuKong’s motion. (a) shows the
trajectory between P1 and P2. (b) shows the trajectory between
P2 and P3.

The position points planned in the controller can draw the
curve of the robot end trajectory and each joint.

First of all, as is shown in Figure28 (a), (b), (c), (d),
each joint has completed synchronous movement, and in the
process, each order curve does not exceed the bandwidth
parameter. It can be seen from the position curve that each
joint has reached the specified position correctly. The speed
curve is smooth, and the acceleration curve is continuous.
And Jerk has always maintained the maximum output. Other-
wise the Jerk curve is symmetrical. In addition, the TwinCat
also runs normallywithout any abnormalities. This shows that
the algorithm can run smoothly in a closed loop of 2ms.

2) EXPERIMENT OF MULTI POINT MOTION IN CARTESIAN
SPACE
After that, KingKong will be ordered to complete a set of
spatial movements to implement KingKong’s tool change
process.

As shown in Figure 29. KingKong has replaceable knives
at the end, which can help replace different knives through
the equipment box next to the tank. Among them, O is the
origin of the car body coordinate system

(
0 0 0

)
. The entire

tool change process is as follows.
First of all, the end of KingKong moves from any location

to point A
(
−0.2719 0.157 0.3

)
above the first tool, and

then moves to point B
(
−0.2719 0.157 0.1

)
in a straight

line. After placing tool 1, KingKong will move to point A
in a straight line again. At this time, there is no tool at
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FIGURE 28. The motion trajectory of the WuKong. (a) Displacement of the
seven-segment S curve over time. (b) Velocity of the seven-segment S
curve over time. (c) Acceleration of the seven-segment S curve over time.
(d) Jerk of seven-segment S curve over time. Axis 1 is the blue line.
Axis 2 is the red line. Axis 3 is the yellow line. Axis 4 is the purple line.
Axis 5 is the green line. Axis 6 is the light blue line.

the end of the KingKong. Subsequently, the robot moves to
point C

(
−0.3484 0.23 0.3

)
in joint space where is above

tool 2. Along with the straight line, it descends to point

FIGURE 29. Key points of the tool change process.

D
(
−0.3484 0.23 0.1

)
. After replacing the tool 2, it moves

to point C in a straight line. The whole tool change process
is over.

Four space locations are obtained with the key space points
from the description above.

ξA =
[
−0.2719 0.157 0.3 0 π/2 0

]
;

ξB =
[
−0.2719 0.157 0.1 0 π/2 0

]
;

ξC =
[
−0.3484 0.23 0.3 0 π/2 0

]
;

ξD =
[
−0.3484 0.23 0.1 0 π/2 0

]
;

The initial location of KingKong is:

P1 =
[
90◦ −150◦ 45◦ −90◦ −90◦ −90◦

]
;

Use the bandwidth parameter from the previous experi-
ment. The planned position of each joint can be obtained in
the controller. Using forward kinematics, the trajectory of the
robot end in Cartesian space can be drawn.
The end of robot moves along with the correct special

trajectory and complete the tool change, shown in Figure 30.

FIGURE 30. Spatial trajectory of tool change process.

From Figure 31(a), (b), (c), (d), we can see the continuous
and smooth location curve, speed curve and acceleration
curve. In addition, the curve in joint space is stable when the
proposed algorithm and framework are operated in general
cartesian space. The risk of motion shaking can be avoided
by directly reducing the parameter of bandwidth.

However, there are still some major issues that need to be
discussed and further studied.

Firstly, Figure 20(d) and 31(d) show that although the
Descartes space curve is regular and stable, the Jerk curve
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FIGURE 31. Kinematic graphs of the arc length at WuKong’s joint spatial
position. (a) Displacement of the seven-segment S curve over time.
(b) Velocity of the seven-segment S curve over time. (c) Acceleration of
the seven-segment S curve over time. (d) Jerk of seven-segment S curve
over time. Axis 1 is the blue line. Axis 2 is the red line. Axis 3 is the yellow
line. Axis 4 is the purple line. Axis 5 is the green line. Axis 6 is the light
blue line.

mapped back to the joint space has a huge hop. This problem
is caused by the third-order S-curve Jerk hopping. In the
experiment described in [26], the third-order S-curve is

FIGURE 32. Displacement curve for the single-axis multi-point time
optimality.

compared with the fifteen-segment S-curve of the sine struc-
ture, and this problem is significantly improved. Therefore,
using a smoother planning equation in the Descartes space
can further improve the smoothness of the joint space curve.

Secondly, it can be seen that although the overall plan
achieves the bandwidth and time optimality of the Descartes
space, the motion in joint space is not constrained. This
is a huge problem of this framework. After all, in actual
applications, developers directly obtain the parameter values
of the motor. There are two more visualized solutions to
this problem. Firstly, the motion in the Descartes space is
directly planned through the operating bandwidth parameters
of the motor. This causes the motion in the Cartesian space
to be unstable. Related research can be found in [17], [18].
Secondly, due to the typical variable inertia system of the
robot, the motor output torque is affected by the joint angle,
and the acceleration that can be provided at different times
is also time-varying. In other words, the kinematic equations
have to be considered in the entire planning process if it
is expected to plan the optimal trajectory in the Descartes
space directly from the joint space and meet the kinematic
constraints. Related research can be found in [8], [12].

VI. SUMMARY AND OUTLOOK
A. SUMMARY
Multi-axis synchronization has always been one of the high-
lights and difficulties in the field of motion control. Most
multi-axis synchronization issues are solved by the frame-
work of control principles or iterative algorithms. These
methods have strict requirements for both hardware and
software. This paper conducted analyses based on the kine-
matic equations of the time-optimal curves and solved the
time-constrained synchronization algorithm from the per-
spective of multivariate function inverse mapping. The the-
ories and methods proposed in the paper have the following
contributions.

Firstly, according to the derivation and analyses of the
paper, the smoothness of the S-curve can be improved by
increasing the order of the system or constructing a more
continuous Jerk curve. This is of great significance for the
theoretical basis of the time-optimal curve.
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Secondly, based on the third-order S-curve, this paper
deduced a complete method for solving the P2P time-optimal
curve. Compared with traditional methods, the proposed is
not only fast but can also ensure time optimality.

Thirdly, based on the method for solving the time-optimal
curve, from the perspective of inverse mapping of multivari-
ate functions, this paper further derived three synchroniza-
tion methods based on time constraints. The experiments
showed that the algorithm is fast and effective. Users may
adopt appropriate methods based on their different needs.
More importantly, this algorithm is simple to implement and
requires minimal computation.

Finally, based on the MASA proposed in this paper,
a synchronous computing framework suitable for the plan-
ning of robot space poses was designed. This framework
can effectively solve problems with robot pose planning. The
continuity and smoothness of the robot joint spatial motion
can be guaranteed in the Descartes space.

However, there are still problems and deficiencies in the
research of the paper.

Firstly, although the paper proposed feasible theories and
ideas to solve the multi-axis synchronization based on P2P
time optimality, it is difficult to solve higher-order S-curves.
The authors once established a fifteen-segment S-curve using
a sine function. A large number of judgements and com-
plicated equations occurred in the process of solving the
time optimality and synchronization issues of such complex
S-curves, which is not for solving multi-point passing issues.
Therefore, combining it with an intelligent algorithm is a
feasible solution.

Secondly, in the proposed MASA-based robot pose syn-
chronization framework, when the spatial motion is mapped
back into the joint space, the motion curve is unconstrained.
This is an extremely important issue that needs to be consid-
ered. The introduction of kinematic equations will make the
bandwidth parameters of the entire robot time-varying, which
was not tackled in this paper.

B. OUTLOOK
According to the ideas and derivations in Chapter II, the P2P
time-optimal curve of the system can be easily obtained.
Based on the P2P optimal curve, a P2P multi-axis synchro-
nization algorithm was derived.

However, in practical applications, the problem that the
effector passes through multiple points in sequence also
exists. Based on the results of this paper, the single-axis
multi-point time optimization issue was solved. Based on
the Rolle’s median theorem in higher mathematics, a series
of inferences were obtained to guide us through this prob-
lem. As the third-order S-curve was used as the motion
model, solving the first-order quartic equation was involved
in the multi-point motion problem. That is to say, the
third-order S-curve reached the limit for solving the multi-
point time-optimal curve problem in a closed manner. An
example of solving this problem is shown in the figure below.
It can be seen very intuitively that the curve is symmetric at

each vertex, which is in agreement with the optimal theory
mentioned in this paper.

Based on the third-order S-curve single-axis multi-point
time-optimal algorithm, we are thinking about whether the
problem of multi-axis multi-point synchronization can be
solved. However, this is really difficult, especially in rela-
tion to theoretical work. Following the idea described here,
the multi-point kinematic series that consumes the longest
time can be used as a benchmark to allow other effectors
to be synchronized with it; however, we found that this is
not feasible. The next attempt is to investigate whether it
is necessary to extend the execution time of the slowest
executor. If this problem can be solved, a more systematic
and comprehensive multi-axis synchronization theory can be
presented.
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