IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 4, 2020, accepted April 24, 2020, date of publication May 4, 2020, date of current version May 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992286

A High-Performance Multiply-Accumulate Unit by
Integrating Additions and Accumulations Into
Partial Product Reduction Process

CHE-WEI TUNG ' AND SHIH-HSU HUANG ", (Senior Member, IEEE)

Department of Electronic Engineering, Chung Yuan Christian University, Taoyuan City 32023, Taiwan

Corresponding author: Shih-Hsu Huang (shhuang @cycu.edu.tw)

This work was supported in part by the Ministry of Science and Technology (MOST), Taiwan, under Grant 107-2218-E-033-007.

ABSTRACT In this paper, we propose a low-power high-speed pipeline multiply-accumulate (MAC)
architecture. In a conventional MAC, carry propagations of additions (including additions in multiplications
and additions in accumulations) often lead to large power consumption and large path delay. To resolve this
problem, we integrate a part of additions into the partial product reduction (PPR) process. In the proposed
MAC architecture, the addition and accumulation of higher significance bits are not performed until the PPR
process of the next multiplication. To correctly deal with the overflow in the PPR process, a small-size adder
is designed to accumulate the total number of carries. Compared with previous works, experimental results
show that the proposed MAC architecture can greatly reduce both power consumption and circuit area under

the same timing constraint.

INDEX TERMS Digital circuits, logic circuits, multiplying circuits, pipeline processing, power dissipation.

I. INTRODUCTION

The multiply-accumulate (MAC) unit is a fundamental block
for digital signal processing (DSP) applications [1]. Espe-
cially, in recent years, the development of real-time edge
applications has become a design trend [2], [3]. Thus, there
is a strong demand for high-speed low-power MAC units.

A conventional MAC unit is composed of two individ-
ual blocks: a multiplier and an accumulator (i.e., an accu-
mulate adder). An N-bit MAC unit includes an N-bit
multiplier and a (2N+«-1)-bit accumulator (adder), where
o is the number of guard bits used to avoid overflow
(caused by long sequences of multiply-accumulate opera-
tions). A lot of previous works [4]-[12] paid attention to
the optimization of multiplier and the optimization of adder,
respectively.

A multiplier [4]-[7] usually has three steps. The first step
is the partial product generation (PPG) process. For exam-
ple, AND gates can be used to generate a partial product
matrix (PPM) for an unsigned multiplication. The second step
is the partial product reduction (PPR) process. By using the
Dadda tree approach [4], [5], [7] or the Wallace tree approach

The associate editor coordinating the review of this manuscript and

approving it for publication was Gian Domenico Licciardo

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[4-6], the PPM can be reduced to become two rows. The third
step is the final addition. An adder (called the final adder) is
used to perform the summation of the final two rows. For an
N-bit multiplier, a (2N-1)-bit adder is required for the final
addition.

Various adder architectures [8]-[10] have been proposed
for the trade-offs among delay, area, and power. Furthermore,
various MAC unit models can be developed by replacing the
multiplier as well as the accumulator (adder) with various
architectures. Comparisons on delay, area and power among
different MAC unit models are reported in [11], [12].

In a conventional MAC unit, it is necessary to perform two
carry propagations: additions in multiplications and additions
in accumulations. Note that the carry propagation is time
consuming. Therefore, in [13], the multiplier output is fed
back to the input of the PPR process. Since the accumulation
is handled by the final adder, only one carry propagation is
required. Moreover, based on this architecture [13], the area
of 16-bit MAC unit can be further reduced 3.2% by fully
utilizing the compression [14].

In [13], [14], they do not discuss how to accommodate
guard bits in their designs. Ercegovac and Lang [15] add an
extra circuit to the final adder for handling guard bits. Owing
to this extra circuit, the carry propagation in the final adder

87367

https://orcid.org/0000-0001-6933-8112
https://orcid.org/0000-0001-8908-8384
https://orcid.org/0000-0002-1913-4928

IEEE Access

C.-W. Tung, S.-H. Huang: High-Performance MAC Unit by Integrating Additions and Accumulations Into PPR Process

becomes longer. Another drawback of this architecture [15]
is that it only supports sign-magnitude numbers.

Different from those previous works [13]-[15] that handle
the accumulation in the final adder, Hoang et al. [16] use
a carry-save adder to implement the final adder. In [16], a
carry-save format (one sum vector and one carry vector) is
sent to the accumulator without being added to only one
vector. Although this architecture [16] can remove the carry
propagation in the final adder, it requires a (2N+«-1)-bit
accumulator. Besides, it is also noteworthy to mention that
the concept of this architecture [16] has been used in modern
floating-point fused multiply-add (FMA) designs [17], [18].

Based on the architecture proposed by Hoang et al. [16],
some attentions [19], [20] have been paid to the compressor
design for the PPR process. For example, by using the com-
pressor proposed in [20], the number of LUTs for 8-bit MAC
unit can be reduced 21.3% in a Virtex 7 FPGA platform.

In this paper, we propose a novel MAC architecture for
high performance. In order to reduce critical path delays
and power dissipations (caused by carry propagations), our
basic idea is to integrate a part of additions (including a part
of the final addition in the multiplication and a part of the
addition in the accumulation) into the PPR process. In the
proposed MAC unit, the final addition of higher significance
bits is not performed in the current multiplication. Instead,
the final addition and accumulation of higher significance bits
are performed in the PPR process of the next multiplication.
As a result, the lengths of carry propagations can be greatly
reduced. Moreover, to correctly deal with the overflow during
the PPR process, an «-bit accumulator (adder) is designed
to count the total number of carries, where « is the number
of guard bits. Experimental results consistently show that the
proposed approach works well in practice.

The proposed MAC unit is a two-stage (i.e., two-cycle)
pipeline design. The first stage performs the PPG process,
the PPR process, a part of the final addition and the «-bit
addition (for handling overflow). The second stage performs
an addition to produce the accumulation result. Note that,
for power saving, the second stage can only be executed in
the last cycle (of the entire sequence of multiply-accumulate
operations) by applying the gating technique. For an
N-bit MAC unit, the main differences between the pro-
posed architecture and the conventional architecture are
below.

o Final addition in the multiplication. The conven-
tional architecture requires a (2N-1)-bit adder. On the
other hand, the proposed architecture only requires a
(2N-k-1)-bit adder, where k denotes the number of
higher significance bits whose additions (accumulation)
are not performed in the final addition.

¢ Accumulation in the MAC unit. The conventional archi-
tecture requires a (2N+«-I)-bit adder. On the other
hand, the proposed architecture only requires a (k + «)-
bit adder. Moreover, by applying the gating technique,
the (k + «)-bit adder can only be executed in the last
cycle.

87368

It is noteworthy to mention that the time-consuming carry
propagation is also a challenging issue in the modular mul-
tiplication [21], [22], [23]. Thus, some high-radix, scalable,
and signed digit multipliers [21], [22], [23] have been pro-
posed for modular multiplication. Different from those previ-
ous works [21], [22], [23], the proposed MAC unit is designed
for standard arithmetic (instead of modular arithmetic).

The remainder of this paper is organized as follows.
In Section II, we present the motivation. The architecture of
the proposed MAC unit is described in Section III. Then,
in Section IV, we use two examples, including an example
for the multiplication of two unsigned numbers and an exam-
ple for the multiplication of two 2’s complement numbers,
to demonstrate the detailed process of the proposed MAC
unit. In Section V, we report the detailed experimental results.
In Section VI, we make an extension to the application of a
systolic array. Finally, some concluding remarks are given in
Section VII.

Il. MOTIVATION

In a conventional MAC unit, carry propagations of additions
(including final additions in multiplications and additions in
accumulations) often result in large power consumption and
large path delay. To resolve this problem, we are motived to
reduce the lengths of carry propagations in the final addition
and the accumulation. Our basic idea is to integrate a part
of additions (including a part of the final addition and a
part of the accumulation) into the PPR process. As a result,
the lengths of carry propagations can be reduced.

In the proposed MAC architecture, to reduce critical path
delays (caused by the carry propagations), the addition and
accumulation in higher significance bits are not performed
until the PPR process of next multiplication. In other words,
our PPM (for the PPR process) consists of two PPMs: one
PPM is derived by the PPG and the other PPM is derived by
the accumulation.

Here we use our 4-bit MAC (displayed in Fig. 1) for
illustration. As shown in Fig. 1(a), our PPM is formed by two
PPMs: one PPM is from the PPG and the other PPM is from
the accumulation. Then, as shown in Fig. 1(b), we use the
Dadda tree approach to reduce our PPM to two rows.

In the final addition process, we only use an
(2N-k-1)-bit adder for the addition of the two rows (obtained
by the Dadda tree approach), where N is the number of bits of
each input and k represents the number of higher significance
bits whose additions (accumulation) are not performed. Since
this example is a 4-bit MAC, we have N = 4. Moreover,
in this example, we assume that k = 3. Thus, as shown
in Fig. 1(b), we only need to use a 4-bit adder for the final
addition. Note that the addition (accumulation) in higher
significance bits is not performed.

As displayed in Fig. 1(b), the two product terms in the
column of the highest significance bit have exceeded the
PPM width. Here we adopt the concept of [24] to handle
overflow. The values of these two product terms are sent to
an «-bit adder (accumulator) for counting the total number

VOLUME 8, 2020

C.-W. Tung, S.-H. Huang: High-Performance MAC Unit by Integrating Additions and Accumulations Into PPR Process

IEEE Access

(D)
QD)
LNCHD)

AT
‘ R . ®
T e BBBB@
‘/f* o o : ¢ o o o o ®
e+ [EEERY
(accumulation)(t-1) * _©
Diitiitig0hh,
T -
a-bit Adder (accu:jgtion)(t)
(a) (b)

FIGURE 1. Our 4-bit MAC. (a) Our PPM (b) Our PPR process.

of ‘I’ (i.e., the total number of carries) appearing in this
column during the entire sequence of multiply-accumulate
operations. On the other hand, as shown in Fig. 1(b), the PPM
formed by the product terms in other columns (including
the addition result of the (2N-k-1)-bit adder) are stored in
register accumulation. Note that the result of register accu-
mulation (i.e., the PPM formed by the current accumulation)
will be combined with the next PPG result to form the next
PPM.

Ill. PROPOSED ARCHITECTURE
In this section, we present the proposed two-stage (i.e., two-
cycle) MAC architecture. The first stage performs the PPG
process, the PPR process (based on the PPM that combines
the PPG result and the accumulation result), the (2N-k-1)-
bit addition (i.e., a part of the final addition) and the a-bit
addition (for dealing with the overflow in the PPR process).
Then, the second stage performs the (k + «)-bit addition to
produce the accumulation result.

The main features of the proposed architecture are below.

o Toreduce the lengths of carry propagations, we integrate
a part of additions into the PPR process.

« To handle overflow in the PPR process, an -bit adder is
used to count the total number of carries.

« By applying the gating technique, the second stage can
only be executed in the last cycle (of the entire sequence
of multiply-accumulate operations) for power saving.

The proposed two-stage pipeline MAC unit is displayed
in Fig. 2. Our PPM (for the PPR process) is composed of two
PPMs: one PPM is derived by the PPG and the other PPM is
derived by the accumulation.

For an unsigned MAC unit, in the PPG process, “AND”
gates can be directly used to generate the PPM. For a signed
MAC unit, because the influences of the sign bit should
be taken into account, several PPG algorithms [25]-[27]
have been proposed to generate the signed PPM. In the

VOLUME 8, 2020

Input_X Input_Y
,r N ,r N

REG_X REG_Y
l l

| Partial Product Generation

| |
—

Partial Product Reduction
,1:2N-1 { K 1' 1
[IR SR
a-bit Adder | : REG1 REG2 REG3) o |

| AR U
‘l$ i { enable

(k+a-1)-bit Adder U

.f 2N-+a-1

REG_Result

,i' 2N+a-1

Result

REG4 | = D_. |

FIGURE 2. The proposed MAC architecture.

proposed architecture, the Baugh-Wooley algorithm [25], [26]
is adopted in the PPG process to generate the signed PPM.

In the first stage of the proposed MAC unit, we only per-
form the (2N-k-1)-bit final addition. In other words, the final
addition of higher significance bits is not performed. Register
accumulation is used to store the PPM derived by the accu-
mulation (i.e., the result after the PPR process and the (2/N-
k-1)-bit final addition). Thus, register accumulation includes
three parts: REGI (i.e., the first row) has 2N-1 bits, REG2
(i.e., the second row) has k bits, which can define by the user,
and REG3 (i.e., the third row) has / bit. Using our 4-bit MAC
shown in Fig. 1(b) as an example, REG1 has 7 bits, REG2 has
3 bits, and REG3 has 1 bit. Note that, the initial value of each
bit in register accumulation is ‘0’. In each cycle, the result of
register accumulation will be combined with the PPG result
to form our PPM for the PPR process.

In the PPR process, we adopt the Dadda tree approach [4],
[5], [7] to reduce our PPM to two rows. The main rea-
son is that our PPM is not a conventional PPM. With
an analysis, we find that, compared with the Wallace tree
approach [4]-[6], the Dadda tree approach can use fewer
counters for our PPM. After our PPM is reduced to be two
rows, we perform the (2N-k-1)-bit final addition. Conse-
quently, as shown in Fig. 1(b), a three-row PPM is obtained.
Note that this three-row PPM will be stored in register accu-
mulation. Then, in the next cycle, the result of register accu-
mulation will be combined with the PPG result to form the
next PPM for the PPR process.

Since we use an (2N-k-1)-bit adder for the addition of the
last two rows obtained by the Dadda tree approach, a larger
k can have a smaller carry propagation in the (2N-k-1)-bit
adder. However, since the final addition and accumulation of

87369

IEEE Access

C.-W. Tung, S.-H. Huang: High-Performance MAC Unit by Integrating Additions and Accumulations Into PPR Process

k higher significance bits are performed in the PPR process
of the next multiplication, a larger k results in a larger PPM
for the PPR process. In theory, the value of k can be in the
range from 1 to 2N-1. The choice of the value of k depends
on given design constraints (e.g., timing constraints or area
constraints). However, in our experiences, the best value of k
(with respect to given design constraints) is often near to the
value of N.

When our PPM is reduced to be two rows, there are two
product terms in the column of the highest significance bit.
Note that this column (i.e., the column of the highest signifi-
cance bit) has exceeded the width of our PPM. Owing to the
limitation on the width of our PPM, these two product terms
will not be used to form the next PPM. Instead, the values of
these two product terms will be sent to the «-bit adder (accu-
mulator) for handling the overflow. Note that a translation
circuit is required to translate the values of these two product
terms to be a corresponding input value of the «-bit adder.

The inputs to the translation circuit are the values of these
two product terms in the column of the highest significance
bit. Note that the unsigned MAC unit and the signed MAC
unit should have different translation circuits (i.e., different
translation functions). The functions of the two translation
circuits are below (without loss of generality and for the
convenience of presentation, here we assume that « = 2 and
then express a decimal number as a two-bit binary number).

o The translation circuit of the unsigned MAC unit. Since
the two input values correspond to the least significant
bit of the -bit adder, the output is equal to the sum of the
two input values. Thus, if both the two input values are 0,
the corresponding output value is decimal O (i.e., binary
00); if one input value is 0 and the other input value is 1,
the corresponding output value is decimal 1 (i.e., binary
01); if both the two input values are 1, the corresponding
output value is decimal 2 (i.e., binary 10).

o The translation circuit of the signed MAC unit. The two
input values still correspond to the least significant bit of
the «-bit adder. However, owing to the Baugh-Wooley
algorithm [25], 26], the output is equal to the sum of the
two input values minus 1. A more detailed explanation
is given in the Appendix. Thus, if both the two input
values are 0, the corresponding output value is decimal
—1 (i.e., binary 11); if one input value is O and the
other input value is 1, the corresponding output value is
decimal O (i.e., binary 00); if both the two input values
are 1, the corresponding output value is decimal 1 (i.e.,
binary O1).

The accumulation result of the «-bit adder (accumulator)
is stored in register REG4. Note that the initial value of each
bit in register REG4 is ‘0’. The «-bit adder (accumulator)
has two inputs: one is from the result of register REG4 and
the other is from the result of the translation circuit (note
that the translation circuit is a circuit that translates the two
product terms in the column of the highest significance bit to
a corresponding value).

87370

a-1]

REG4[
le——

REGA[a-2]
<«
REG4[2]
-

CCla-2] CCla-3] ccp oc) ccpo]
<« 0 . * <«<—

XOR A A FA

I
I

a-1]

SCl

SClu-2)
sci
SC[1]

<—

> REG4 \

FIGURE 3. The mechanism of «-bit addition in the unsigned MAC unit.

In Fig. 3, we use the circuit that handles the mechanism
of «-bit addition (accumulation) in the unsigned MAC unit
for illustration. Note that this circuit is applicable to any «
value. Inputs car [0] and car [1] denote the two product terms
in the column of the highest significance bit. As displayed
in Fig. 3, we only need to use one AND gate and one XOR
gate to implement the translation circuit. In the addition of
each biti, wherei =0,1,2,...... , o — 1, SC[i] denotes the
sum bit and CC[i] denotes the carry bit. Thus, the value of
SC[i] will be stored in register REG4.

In the second stage of the proposed MAC unit, we pro-
duce the accumulation result. The inputs of the second
stage include register accumulation (consisting of REGI,
REG2 and REG3) and register REG4. Although the total
number of columns is (2N+«-1), since each column in
the (2N-k-1) rightmost columns has only one product term,
we only need to use a (k +a)-bit adder to perform the addition
of the (k + «) leftmost columns.

In the proposed MAC unit, the accumulation has been done
in both the «-bit addition and the next PPR process. Thus,
if we only need to obtain the final result in the last cycle,
we can disable the (k + «)-bit addition in other cycles for
power saving. As shown in Fig. 2, we use AND gate with an
enable signal to disable the (k + «)-bit addition. The enable
signal will be ‘1’ the last cycle and ‘0’ in other cycles. As a
result, with the gating technique, the second stage will only
be executed in the last cycle.

IV. EXAMPLES

In this section, we give two examples. In the first example,
we describe the behaviors of the unsigned MAC unit. In the
second example, we describe the behavior of the signed MAC
unit. Note that the only differences between the unsigned
MAC unit and the signed MAC unit are the PPM structure
and the «-bit addition mechanism.

The first example is given in Fig. 4. We use the case
13 x 13 4+ 12 x 15 to demonstrate the detailed process of the
unsigned 4-bit MAC unit. In Fig. 4, the values displayed in
blue are the results of register accumulation (including REG1,
REG?2, and REG3). The values displayed in red are the input
of -bit adder (i.e., the output of the translation circuit). Here
we assume that « = 2. The values displayed in yellow are the
result of register REG4.

In the first step (i.e., the first cycle), 13 x 13 is performed.
Our PPM is formed by two PPMs: one PPM is from the
PPG (for 13 x 13) and the other PPM is from register

VOLUME 8, 2020

C.-W. Tung, S.-H. Huang: High-Performance MAC Unit by Integrating Additions and Accumulations Into PPR Process

IEEE Access

Step1: 13x13 Step2: 12x15 | [Step3: 13x13+12x15

1101101 1111010
0110000 0000101
000010 011100
0010 cooo 0001111
00 01 010
0 0 1
1000101 1101010 100111111
1011000 1001101
000010 000000
00000 00010
0010101 0010110
0010100 0100001
000000 000100
10101001 10000010
00000000 00111101
o1o1oo1 ooo1111
000 010
0 1

+
o
-

+01

FIGURE 4. The case 13 x 13 + 12 x 15 in an unsigned 4-bit MAC unit.

accumulation (including REG1, REG2, and REG3). Note that
the initial value of each bit in register accumulation is ‘0’.
After the PPR process is done, the values of REG1, REG2 and
REG3 are 0101001, 000 and 0, respectively. In the column of
the highest significance bit, the two product terms are 1 and
0, respectively. Thus, the translation circuit translates these
two product terms to be binary value 01. Then, binary value
01 is sent to the «-bit adder for the accumulation. After the
«-bit addition, the value of register REG4 becomes 01.

In the second step (i.e., the second cycle), 12 x 15 is
performed. Our PPM is formed by two PPMs: one PPM is
from the PPG (for 12 x 15) and the other PPM is from register
accumulation (including REG1, REG2, and REG3). After
the PPR process is done, the values of REG1, REG2 and
REG3 are 0001101, 101 and O, respectively. In the column of
the highest significance bit, the two product terms are 1 and
0, respectively. The translation circuit translates these two
product terms to be binary value 01. Then, binary value 01 is
sent to the «-bit adder for the accumulation. After the a-bit
addition, the value of register REG4 becomes 10.

In the third step (i.e., the third cycle), we produce the
accumulation result. Each column in the 4 rightmost columns
has only one product term. Thus, we only need to use a
5-bit adder to perform the addition of the 5 leftmost columns.
Finally, as shown in Fig. 4, the correct result 101011101 is
obtained.

The second example is given in Fig. 5. We use the case
7x747x(-1) to demonstrate the detailed process of the signed
4-bit MAC unit. Note that here we use the 2’s complement
number system to represent a signed value.

In the first step (i.e., the first cycle), 7 x 7 is per-
formed. In the PPG process, we use the Baugh-Wooley algo-
rithm [25], [26] to generate the PPM. Note that, according to
the Baugh-Wooley algorithm [25], [26], it is necessary to add
an extra ‘1’ in the (N+1)-th column. In Fig. 5, we highlight
this extra ‘1’ with a black square. After the PPR process is
done, the values of REG1, REG2 and REG3 are 0100001,

VOLUME 8, 2020

[stept: x(7)] [step2: (Mx(-1)] [steps: (Mx(@)+7)x(-1)
0111111 0111111
0111110 0011111
001110 010110
o[1]1 0 o[1]o o
00 00 1011010
0 0 101
0 1 + 0
0101111 0101111 000101010
0111110 0111111
011110 000110
0010 1000
000 000
0 1
01110111 01010111
000111 0011111
010110 000010
00000 01100
01011011 00101011
01010110 01001111
000000 011000
10100101 01010101
00001100 01010101
0100001 1011010
000 11 0 1
1 0

+
o
o

+ 11

FIGURE 5. The case 7 x 7 + 7 x (—1) in a signed 4-bit MAC unit.

000 and 1, respectively. In the column of the highest signif-
icance bit, the two product terms are 1 and O, respectively.
Thus, the translation circuit translates these two product terms
to be binary value 00. Then, binary value 00 is sent to the «-bit
adder for the accumulation. After the a-bit addition, the value
of register REG4 becomes 00.

In the second step (i.e., the second cycle), 7x(-1) is per-
formed. Our PPM is formed by two PPMs: one PPM is from
the PPG (for 7x(-1)) and the other PPM is from register
accumulation (including REG1, REG2, and REG3). After
the PPR process is done, the values of REG1, REG2 and
REG3 are 1011010, 101 and 0, respectively. In the column
of the highest significance bit, both the two product terms are
0. The translation circuit translates these two product terms
to be binary value 11. Then, binary value 11 is sent to the
«-bit adder for the accumulation. After the «- bit addition,
the value of register REG4 becomes 11.

In the third step (i.e., the third cycle), we produce the
accumulation result. We use a 5-bit adder to perform the
addition of the 5 leftmost columns. Finally, as shown in Fig. 5,
the correct result 000101010 is obtained.

V. EXPERIMENTAL RESULTS
We have implemented a tool (a C++ program) to auto-
matically generate the proposed N-bit MAC in Verilog RTL
description. The users can specify the value of N and the value
of k for automatic generation, where k denotes the number of
higher significance bits whose additions (accumulation) are
not performed in the final addition. Note that the value of k
is equal to the bit width of register REG2.

In our experiments, we specify the value of N to be 16 (i.e.,
16-bit MAC). Besides, we assume that the maximum number
of multiplications in each multiply-accumulate operation is

87371

IEEE Access

C.-W. Tung, S.-H. Huang: High-Performance MAC Unit by Integrating Additions and Accumulations Into PPR Process

256. Thus, the number of guard bits (i.e., the value of &) is
set to be 8.

We have implemented several different configurations of
the proposed MAC architecture. For the convenience of pre-
sentation, we use the term Ours_k for the naming of each
configuration, where k represents the bit width of register
REG2. In our experiments, these Verilog RTL descriptions
are synthesized to gate-level netlists and targeted to TSMC
40 nm cell library by using Synopsys Design Compiler.

For comparisons, we also implemented the following two
MAC architectures: the conventional MAC architecture and
the state-of-the-art MAC architecture. In the conventional
MAC architecture [11], [12], the MAC unit is composed of
two individual blocks (i.e., a multiplier and an accumulator).
On the other hand, in the state-of-the-art MAC architec-
ture [16]-[20], the multiplier and the accumulator are tightly
integrated (i.e., a carry-save format is sent to the accumulator
without being added to only one vector).

According to the two MAC architectures, we implemented
five MAC unit models for comparisons: DT+RC, DT+CLA,
Hoang, Peiman, and Narendra. The models DT+RC and
DT+CLA are based on the conventional MAC architecture.
The models Hoang, Peiman, and Narendra are based on the
state-of-the-art MAC architecture. The details of these five
MAC unit models are elaborated below.

e DT+RC. Based on the conventional MAC architecture,
the PPR process of the multiplier is implemented by
the Dadda tree approach (DT) and the adders are imple-
mented by the ripple carry adder (RC).

e DT+CLA. Based on the conventional MAC architecture,
the PPR process of the multiplier is implemented by
the Dadda tree approach (DT) and the adders are imple-
mented by the carry look ahead adder (CLA).

e Hoang. This model is implemented according to the
MAC architecture proposed by Hoang et al. [16] (i.e.,
the state-of-the-art architecture). Note that, in [16],
the final adder of the multiplier is implemented by the
carry save adder. Then, a carry-save format is sent to the
accumulator.

e Peiman. This model is also implemented accord-
ing to the MAC architecture proposed by Hoang
et al. [16] (i.e., the state-of-the-art architecture). How-
ever, this model uses the compressor proposed by
Peiman et al. [19] for the PPR process.

e Narendra. This model is also implemented according to
the MAC architecture proposed by Hoang er al. [16].
However, this model uses the compressor proposed by
Narendra et al. 20] for the PPR process.

The first experiment is to perform logic synthesis with
the objective of minimizing power consumption under the
timing constraint that maximum path delay is at most
1.0 ns. Table 1 tabulates the synthesis results of different
unsigned 16-bit MAC unit models. Table 2 tabulates the
synthesis results of different signed 16-bit MAC unit mod-
els. In Table 1 and Table 2, the column Area denotes cir-

87372

TABLE 1. Results of unsigned MAC unit models under timing constraint.

Architecture Areg Delay Power Energy Normalized

(um”) (ns) (mW) (»J) Energy

DT+RC 2943.64 0.98 1.3247 1.30 100.00%
DT+CLA 3050.46 0.98 1.3589 1.33 102.58%
Hoang 2430.61 0.98 1.3065 1.28 98.63%
Peiman 2236.02 0.97 1.1722 1.14 87.59%
Narendra 222241 0.97 1.1605 1.13 86.71%
Ours_17 1970.21 098 0.8438 0.83 63.70%
Ours_16 1961.81 097 0.8440 0.82 63.06%
Ours_15 1949.57 097 0.8839 0.86 66.04%
Ours_14 1930.74 098 0.8558 0.84 64.60%
Ours_13 1962.50 0.97 0.8543 0.83 63.83%

TABLE 2. Results of signed MAC unit models under timing constraint.

Architecture Arc? Delay Power Energy Normalized

(pm?) (ns) (mW) (»J) Energy

DT+RC 2804.38 0.98 1.3349 1.31 100.00%
DT+CLA 2786.24 0.98 1.3495 1.32 101.09%
Hoang 2417.46 0.97 1.3451 1.30 99.74%
Peiman 2288.86 0.98 1.2417 1.22 93.02%
Narendra 2203.81 0.98 1.1901 1.17 89.15%
Ours_17 2010.35 0.98 0.8458 0.83 63.36%
Ours_16 1996.66 0.97 0.8410 0.82 62.36%
Ours_15 2000.38 0.97 0.8753 0.85 64.90%
Ours_14 1979.74 0.98 0.8844 0.87 66.25%
Ours_13 2005.14 0.97 0.8745 0.85 64.84%

cuit area, the column Delay denotes maximum path delay
(i.e., minimum possible clock period), the column Power
denotes power consumption, and the column Energy denotes
energy consumption (note that Energy = Delay x Power).
In the column Normalized Energy, the energy consumption
of each MAC unit is normalized with respect to that of
DT+RC.

Since both 16-bit DT+ RC and 16-bit DT4+CLA have
long carry propagations, these two MAC unit models have
large circuit area, large power consumption, and large energy
consumption under the timing constraint that maximum path
delay is at most 1.0 ns. Therefore, as shown in Table 1 and
Table 2, the proposed MAC architecture can greatly reduce
circuit area, power consumption, and energy consumption.
Using the synthesis results of 16-bit unsigned MAC unit
models (i.e., Table 1) as an example, the area of DT+RC is
2943.64 /unz, while the area of the configuration Ours_16
(i.e., the proposed MAC architecture using 16-bit REG2)
is only 1961.81 Mmz. Furthermore, as shown in Table 1,
the normalized energy consumption of the configuration
Ours_16 is only 63.06%. In other words, compared with
DT+RC, the configuration Ours_16 can save 36.94% energy
consumption.

Note that the synthesis results displayed in Table 1 and
Table 2 are under the timing constraint. From Table 1 and
Table 2, we have the following two observations.

VOLUME 8, 2020

C.-W. Tung, S.-H. Huang: High-Performance MAC Unit by Integrating Additions and Accumulations Into PPR Process

IEEE Access

TABLE 3. Results of unsigned MAC unit models under area constraint.

TABLE 4. Results of signed MAC unit models under area constraint.

Architecture Are? Delay Power Energy Normalized Architecture Areg Delay Power Energy Normalized

(um<) (ns) (mW) ®J) Energy (um?) (ns) (mW) ®J) Energy

DT+RC 1843.90 1.38 0.7224 1.00 100.00% DT+RC 1996.29 1.21 0.8700 1.05 100.00%
DT+CLA 1988.36 1.18 0.8816 1.04 104.35% DT+CLA 1991.30 1.14 0.9525 1.09 103.15%
Hoang 1995.16 0.96 1.1473 1.10 110.48% Hoang 1997.65 0.96 1.1527 1.11 105.12%
Peiman 1996.75 1.18 0.9032 1.07 106.91% Peiman 1983.59 1.20 0.9180 1.10 104.65%
Narendra 1978.15 1.22 0.8742 1.07 106.98% Narendra 1972.02 1.20 0.9144 1.10 104.23%
Ours_17 1996.97 0.91 0.8965 0.82 81.83% Ours_17 1994.48 0.99 0.8430 0.83 79.28%
Ours_16 1995.84 0.92 0.8986 0.83 82.93% Ours_16 1989.26 1.01 0.8237 0.83 79.03%
Ours_15 1998.33 0.92 0.9400 0.86 86.75% Ours_15 1999.92 0.95 0.8847 0.84 79.84%
Ours_14 1980.19 0.93 0.8859 0.82 82.64% Ours_14 1998.56 0.95 0.8747 0.83 78.94%
Ours_13 1972.48 0.95 0.8796 0.84 83.82% Ours_13 1968.62 0.98 0.8559 0.84 79.68%

o Comparisons on circuit areas. Compared with the
conventional MAC architecture (i.e., DT+RC and
DT+CLA), both the state-of-the-art MAC architecture
(i.e., Hoang, Peiman, and Narendra) and the proposed
MAC architecture (i.e., Ours_I17, Ours_16, Ours_15,
Ours_14, and Ours_13) can reach smaller circuit areas.
Especially, the proposed MAC architecture has a signif-
icant reduction on circuit area.

o Comparisons on power consumption and energy
consumption. Compared with the conventional MAC
architecture, both the state-of-the-art architecture and
the proposed MAC architecture can achieve smaller
power consumption and smaller energy consumption.
Especially, the reduction of the proposed MAC archi-
tecture on power consumption (energy consumption) is
significant. Using Table 1 as an example, compared with
the model DT+RC, the model Narendra can save only
13.29% energy consumption, while the configuration
Ours_16 can save 36.94% energy consumption.

The second experiment is to perform logic synthesis with
the objective of minimizing maximum path delay under the
area constraint that circuit area is at most 2000 xm?. Table 3
tabulates the synthesis results of different unsigned 16-bit
MAC unit models. Table 4 tabulates the synthesis results of
different signed 16-bit MAC unit models. As shown in Table 3
and Table 4, the proposed MAC architecture can greatly
reduce maximum path delay (i.e., minimum possible clock
period), power consumption, and energy consumption.

Note that the synthesis results displayed in Table 3 and
Table 4 are under the area constraint. From Table 3 and
Table 4, we have the following four observations.

o Comparisons on the models based on the conventional
MAC architecture. The models DT4+RC and DT+CLA
are based on the conventional MAC architecture. Com-
pared with DT4+RC, DT4+CLA can achieve a smaller
maximum path delay with a larger power consumption
(owing to the mechanism of carry look ahead).

o Comparisons on the models based on the state-of-the-art
architecture. The models Hoang, Peiman, and Naren-
dra are based on the state-of-the-art MAC architecture.

VOLUME 8, 2020

Compared with Hoang, both Peiman and Narendra can
achieve smaller power consumption and smaller energy
consumption with larger maximum path delays. The
reason is that both the compressors used in Peiman and
the compressors used in Narendra are 4:2 compressors
(for the PPR process).

o Comparisons on maximum path delays. Compared with
the model DT+RC, both the state-of-the-art MAC archi-
tecture and the proposed MAC architecture can achieve
smaller maximum path delays (i.e., smaller minimum
possible clock periods). Especially, the proposed MAC
architecture has a significant reduction on maximum
path delay.

o Comparisons on power consumption and energy con-
sumption. Compared with DT+RC, the state-of-the-
art MAC architecture achieves smaller maximum path
delay with larger power consumption. Consequently,
the energy consumption of the state-of-the-art MAC
architecture is even slightly larger than that of DT4RC.
On the other hand, the proposed MAC architecture can
reduce both maximum path delay and power consump-
tion at the same time. As a result, the proposed MAC
architecture has a great reduction on energy consump-
tion. Using Table 3 as an example, the configuration
Ours_17 (i.e., the proposed MAC architecture using
17-bit REG2) can save 18.17% energy consumption.

From these experiments, we find that, no matter timing
constraint or area constraint, the proposed MAC architecture
can always have a large reduction on energy consumption.
Thus, the proposed approach works well in practice.

VI. APPLICATION TO A SYSTOLIC ARRAY

The systolic array [28], [29] has been widely used in the
hardware acceleration for matrix multiplication. In recent
years, several research efforts [30], [31] have been paid to
map the inference of a convolutional neural network to a
systolic array. Note that a systolic array is composed of
multiple processing elements (PEs). Each PE corresponds to
a MAC unit. In this section, we address the application of the
proposed MAC architecture to a systolic array.

87373

IEEE Access

C.-W. Tung, S.-H. Huang: High-Performance MAC Unit by Integrating Additions and Accumulations Into PPR Process

¢ |
= 5
[]

(s,
—> y —>—y
il

result result

!

x

— -

(b)
FIGURE 6. (a) The conventional PE. (b) The proposed PE.

Fig. 6(a) gives the block diagram of the PE based on the
conventional MAC architecture [11], [12]. Note that the PE is
atwo-stage (i.e., two-cycle) pipeline design. The inputs of the
PE are x and y. The block MUL denotes the multiplier. In the
first stage, the multiplier performs the multiplication. Then,
the output of the multiplier is stored in a register. In the sec-
ond stage, the accumulator performs the accumulation. Then,
the accumulation result is stored in register result.

Fig. 6(b) gives the block diagram of the PE based on
the proposed MAC architecture. Note that the PE is a two-
stage (i.e., two-cycle) pipeline design. The inputs of the
PE are x and y. The block PPR denotes the PPR process.
In the first stage, the PPR process is performed. Then,
as described in Section III, the output of the PPR process
is stored in REG1, REG2, REG3 and REG4. In the second
stage, the adder is used to produce the accumulation result.
Note that the second stage (the adder) is only enabled in
the last cycle of the entire sequence of multiply-accumulate
operations.

Here we use 3 x 3 matrix multiplication as an example
to explain the differences between the two systolic arrays,
i.e., the systolic array based on the conventional PE (i.e., the
conventional MAC architecture) and the systolic array based
on the proposed PE (i.e., the proposed MAC architecture).
As shown in Fig. 7, a 3 x 3 systolic array consists of 9 PEs
(PEI~PE9). In Fig. 7, we use the term ¢; ; and the term b; j,
respectively, to represent the element of the two matrices,
where i denotes the row number (i.e., i = 0,1,2) and j
denotes the column number (i.e.,j = 0, 1, 2).

For the systolic array based on the conventional PE (i.e., the
conventional MAC architecture), Table 5 displays the detailed
operations of each PE (PE1~PE9) in each cycle. In Table 5,
the term MUL denotes the multiplication operation (i.e.,
the first stage of a conventional multiply-accumulate oper-
ation) and the term ACC denotes the accumulation operation
(i.e., the second stage of a conventional multiply-accumulate
operation).

For the systolic array based on the conventional PE (i.e., the
conventional MAC architecture), Table 5 displays the detailed
operations of each PE (PE1~PE9) in each cycle. In Table 5,
the term MUL denotes the multiplication operation (i.e.,
the first stage of a conventional multiply-accumulate oper-
ation) and the term ACC denotes the accumulation operation

87374

I b,232,,,
R bor biz
b b boz
P Dot
b0.0

‘a0z a0 @ —> PE1 [—>| PE2 |—>| PE3

Y Y Y
‘@ ay aw —> PE4 [—>| PE5 |—| PE6

Y Y Y
Bz @ @ —>{ PE7 —>{ PE8 [—| PE9

FIGURE 7. Block diagram of 3 x 3 systolic array.

(i.e., the second stage of a conventional multiply-accumulate
operation).

We use the detailed operations of PE1 shown in Table 5
as an example for explanation. Note that PEI is responsible
for producing the result of ag 0xbo.o0 + ao,1xb1,0 + ao 2xb2 .
In the first cycle, the multiplication of ago and bg, i.e.,
MUL(ao,0, bo,0), is performed. Then, in the second cycle,
MUL(ao, 1, b1,0) is performed and the multiplication result of
the first cycle, i.e., the result of MUL(ag,0, bo.0), is accumu-
lated. In the third cycle, MUL(ao 2, b2,0) is performed and
the result of MUL(ao,1, b1,0) is accumulated. Finally, in the
fourth cycle, the result of MUL(ao 2, b2,0) is accumulated.

For the systolic array based on the proposed PE (i.e., the
proposed MAC architecture), Table 6 displays the detailed
operations of each PE in each cycle. In Table 6, the term PPR
denotes the PPR process (i.e., the first stage of our multiply-
accumulate operation) and the term ADD denotes the addition
operation (i.e., the second stage of our multiply-accumulate
operation).

We use the detailed operations of PE1 shown in Table 6
for the explanation. Note that PE1 is responsible for pro-
ducing the result of ap ox boo + ao,1xb1,0 + ao2xb2,. In
the first cycle, the PPR process is performed with respect to
inputs ap,o and bg o, i.e., PPR(ag 0, bo,0). Then, in the sec-
ond cycle, PPR(ag,1, b1,0) is performed. In the third cycle,
PPR(ap 2, b2.0) is performed. Finally, in the fourth cycle,
an addition (ADD) is performed to produce the accumulation
result.

So far, we have not discussed the systolic array based on
the state-of-the-art PE (i.e., the state-of-the-art MAC architec-
ture [16]-[20]). In fact, from the viewpoint of functionalities,
the two stages of the state-of-the-art MAC architecture are
the same as those of the conventional MAC architecture, i.e.,
multiplication operation (MUL) followed by accumulation
operation (ACC). Therefore, for the systolic array based on

VOLUME 8, 2020

C.-W. Tung, S.-H. Huang: High-Performance MAC Unit by Integrating Additions and Accumulations Into PPR Process

IEEE Access

TABLE 5. The detailed operations of each conventional PE in each cycle.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
PE1 MUL(aoo,boo) MUL(am ,b 1()) MUL(aOZ,bzo)
ACC ACC ACC
PE2 MUL(ago,bo1) MUL(ao1,bi1) MUL(ao2,bz1)
ACC ACC ACC
PE3 MUL(aoo,boz) MUL(am,blz) MUL(aoz,bzz)
ACC ACC ACC
PE4 MUL(a10,bo1) MUL(a11,b11) MUL(ai2,b21)
ACC ACC ACC
PES MUL(a]o,b()l) MUL(a”,b”) MUL(alz,b21)
ACC ACC ACC
PE6 MUL(aj,bo2) MUL(ai1,bi2) MUL(aj2,b2)
ACC ACC ACC
PE7 MUL(az(),bm) MUL(az|,b||) MUL(azz,b21)
ACC ACC ACC
PES MUL(az0,b01) MUL(a21,b11) MUL(a2,b>1)
ACC ACC ACC
PE9 MUL(azo,boz) MUL(32|,b|2) MUL(azz,bzz)
ACC ACC ACC
TABLE 6. The detailed operations of each proposed PE in each cycle.
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
PE1 PPR(ago,bgo) PPR(agy,b10) PPR(agy,bag)
ADD
PE2 PPR (agg,b01) PPR(ag;,b11) PPR(agy,ba1)
ADD
PPR(agg,boz) PPR(ag,b12) PPR(agy,by,)
PE3 ADD
PPR(ay,bg) PPR(ay;,by1) PPR(ay,byy)
PE4 ADD
PPR(ay,bg1) PPR(ay;,by1) PPR(ay,by1)
PES ADD
PE6 PPR(a;,bg2) PPR(a;;,by) PPR(aj2,bx)
ADD
PE7 PPR(az,bg;) PPR(ay;,by) PPR(az,b1)
ADD
PPR(a,0,bo1) PPR(ay;,b1) PPR(ay,by1)
PES ADD
PE9 PPR(aj0,bp2) PPR(ay,b12) PPR(aj,b)
ADD
the state-of-the-art PE, to deal with 3 x 3 matrix multiplica- TABLE 7. Comparisons on 3 x 3 systolic array.
tion, the detailed operations of each PE (PE1~PE9) in each
cycle are the same as Table 5. However, it is noteworthy Systolic Array Area (um?) Power (mW)
to mention that, in the state-of-the-art MAC architecture, Conventional 25239.42 36.0423
the output of the multiplier is in the carry-save format. SOTA 19834.29 32.1327
We have used TSMC 40 nm cell library to implement three Ours 17969.94 25.4412

3 x 3 systolic arrays based on these three different PE archi-
tectures: the conventional PE, the state-of-the-art PE, and the
proposed PE. Note that, for low power, we adopt the model
DT+RC for the conventional PE and the model Narendra
for the state-of-the-art PE. The clock rate is assumed to be
1 GHz. Table 7 gives the implementation results. The row
Conventional denotes the systolic array based on the conven-
tional PE. The row SOTA denotes the systolic array based
on the state-of-the-art PE. The row Ours denotes the systolic
array based on the proposed PE. As shown in Table 7, com-
pared with the systolic array based on the conventional PE,
the systolic array based on the proposed PE can save 28.8%

VOLUME 8, 2020

circuit area and 29.4% power consumption; compared with
the systolic array based on the state-of-the-art PE, the systolic
array based on the proposed PE can save 9.4% circuit area and
20.8% power consumption.

Further, according to these three different PE architectures,
we also have used TSMC 40 nm cell library to implement
three 5 x 5 systolic arrays. The clock rate is also assumed to
be 1 GHz. Table 8 gives the implementation results. As shown
in Table 8, compared with the systolic array based on the
conventional PE, the systolic array based on the proposed PE

87375

IEEE Access

C.-W. Tung, S.-H. Huang: High-Performance MAC Unit by Integrating Additions and Accumulations Into PPR Process

TABLE 8. Comparisons on 5 x 5 systolic array.

Systolic Array Area (um?) Power (mW)

Conventional 70109.50 166.86
SOTA 55095.25 148.76
Ours 49916.50 114.35

can save 28.8% circuit area and 31.5% power consumption;
compared with the systolic array based on the state-of-the-
art PE, the systolic array based on the proposed PE can save
9.4% circuit area and 23.1% power consumption.

From Table 7 and Table 8, we find that, compared with
both the systolic array based on the conventional PE (i.e.,
the conventional MAC architecture) and the systolic array
based on the state-of-the-art PE (i.e., the state-of-the-art MAC
architecture), the systolic array based on the proposed PE
(i.e., the proposed MAC architecture) can greatly reduce both
circuit area and power consumption under the same timing
constraint.

VIl. CONCLUSION
This paper presents a low-power high-speed two-stage
pipeline MAC architecture for real-time DSP applications.

Our basic idea is to integrate a part of additions (including
a part of the final addition in the multiplication and a part
of the addition in the accumulation) into the PPR process.
As aresult, critical path delays and power dissipations caused
by carry propagations can be reduced. To correctly deal with
the overflow during the PPR process, an ¢-bit accumulator is
used to count the total number of carries. Experimental results
consistently show that the proposed approach works well in
practice.

The proposed MAC architecture is applicable to both
the design of an unsigned MAC unit and the design of a
signed MAC unit. Note that the only differences between the
unsigned MAC unit and the signed MAC unit are the PPM
structure and the «-bit addition mechanism.

Moreover, the proposed MAC architecture is also applica-
ble to the systolic array (for performing the matrix multipli-
cation). Implementation data show that, compared with the
systolic array based on the conventional PE (i.e., the con-
ventional MAC architecture), the systolic array based on
the proposed PE (i.e., the proposed MAC architecture) can
greatly reduce both circuit area and power consumption under
the same timing constraint.

APPENDIX

In this Appendix, we give a detailed explanation to the
translation circuit of the signed MAC. Here, without loss of
generality, we suppose X and Y are two 2’s complement N-bit
integers. Thus, we can express X and Y as follows:

N-2 .
X = —xN_122N_1 +Z, 0 x;i2!
1=
_ N-2 .
Y = _nylzzN 1+ Zizo yizl
where x;, y; € {0, 1}.

87376

Let P be the product of X and Y. From the Baugh-Wooley
algorithm [25], [26], the product P can be expressed below:

N-2N-2 ..
_ 2N -2 e Y v
P=xN_1yn—127"77 + Zi:o Z/:O xiyj2
N-IN W2
+2 Zi:O YN-1%;2
N-IN W2 i N _ 2N-]
+2V Yy e 2t -2

Note that our PPM generated in the PPG process has only
2N-1 columns (e.g., as displayed in Fig. 5, our PPM has only
7 columns for the signed 4-bit MAC unit). In other words,
our PPM does not deal with the 2N-th column. Therefore, the
product P’ obtained by our PPM can be expressed below:

N=2 «N-2 "
/ 2N-2 .t
P =xy_1yn-12 + E o E 0 xiyj2
N-2 .
2N—l — ‘21
+ E o IN-1%

N-2 .
+2N-1 ZJ.:O xvoy2 + 2N

As a result, we have P = P’ — 22N—1 1n order to obtain P,
we need to add —22N~! into P’. Note that the weight of the
least significant bit of the a-bit adder is 22N-1 Therefore,
—22N=1 corresponds to decimal —1 for the «e-bit adder.

The inputs to the translation circuit are the two carries (i.e.,
the two product terms) generated by the PPR process. The
«-bit adder is responsible to accumulate the sum of the two
carries. However, to compensate for 22N-1 e output value
of the translation circuit (i.e., the input value to the «-bit
adder) should be the sum of the two carries minus 1.

Note that the translation circuit is used to translate the two
carries to be a corresponding input value of the «-bit adder.
From the above discussions, the function of the translation
circuit of the signed MAC is derived as below.

« If both the two input values (i.e., the two carries) are 0,
the sum of the two input values is 0. Thus, after subtract-
ing 1, the output value is decimal —1.

« If one input value is 0 and the other input value is 1,
the sum of the two input values is 1. Thus, after sub-
tracting 1, the output value is decimal 0.

« If both the two input values are 1, the sum of the two
input values is 2. Thus, after subtracting 1, the output
value is decimal 1.

REFERENCES

[1]1 A. Abdelgawad, “Low power multiply accumulate unit (MAC) for future
wireless sensor networks,” in Proc. IEEE Sensors Appl. Symp. Proc.,
Galveston, TX, USA, Feb. 2013, pp. 129-132.

[2] H. O. Ahmed, M. Ghoneima, and M. Dessouky, ‘““Concurrent MAC unit
design using VHDL for deep learning networks on FPGA,” in Proc.
IEEE Symp. Comput. Appl. Ind. Electron. (ISCAIE), Penang, Malaysia,
Apr. 2018, pp. 31-36.

[3] V. Camus, C. Enz, and M. Verhelst, “Survey of precision-scalable
multiply-accumulate units for neural-network processing,” in Proc. IEEE
Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Hsinchu, Taiwan, Mar. 2019,
pp. 57-61.

[4] W.]. Townsend, E. E. Swartzlander, and J. A. Abraham, “A Comparison
of Dadda and Wallace Multiplier Delays,” in Proc. SPIE Annu. Meeting
Opt. Sci. Technol., San Diego, CA, USA, 2003, pp. 552-560.

VOLUME 8, 2020

C.-W. Tung, S.-H. Huang: High-Performance MAC Unit by Integrating Additions and Accumulations Into PPR Process

IEEE Access

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

K.L.S.Swee and L. H. Hiung, ‘““Performance comparison review of 32-bit
multiplier designs,” in Proc. 4th Int. Conf. Intell. Adv. Syst. (ICIAS), Kuala
Lumpur, Malaysia, Jun. 2012, pp. 836-841.

S. Asif and Y. Kong, “Design of an algorithmic wallace multiplier using
high speed counters,” in Proc. 10th Int. Conf. Comput. Eng. Syst. (ICCES),
Cairo, Egypt, Dec. 2015, pp. 133-138.

C.-W. Tung and S.-H. Huang, “Low-power high-accuracy approximate
multiplier using approximate high-order compressors,” in Proc. 2nd
Int. Conf. Commun. Eng. Technol. (ICCET), Nagoya, Japan, Apr. 2019,
pp. 163-167.

C. Nagendra, M. J. Irwin, and R. M. Owens, “Area-time-power tradeoffs
in parallel adders,” IEEE Trans. Circuits Syst. I, Analog Digit. Signal
Process., vol. 43, no. 10, pp. 689-702, Oct. 1996.

J. Saini, S. Agarwal, and A. Kansal, “Performance, analysis and com-
parison of digital adders,” in Proc. Int. Conf. Adv. Comput. Eng. Appl.,
Ghaziabad, India, Mar. 2015, pp. 81-83.

L. Pilato, S. Saponara, and L. Fanucci, ‘‘Performance of digital adder archi-
tectures in 180 nm CMOS standard-cell technology,” in Proc. Int. Conf.
Appl. Electron. (AE), Pilsen, Czech Republic, Sep. 2016, pp. 211-214.

P. Jebashini, R. Uma, P. Dhavachelv, and H. K. Wye, “A survey and com-
parative analysis of multiply-accumulate (MAC) block for digital signal
processing application on ASIC and FPGA,” J. Appl. Sci., vol. 15, no. 7,
pp. 934-946, Jul. 2015.

P. A. Patil and C. Kulkarni, “A survey on multiply accumulate unit,” in
Proc. 4th Int. Conf. Comput. Commun. Control Autom. (ICCUBEA), Pune,
India, Aug. 2018, pp. 1-5.

P. F. Stelling and V. G. Oklobdzija, “Implementing multiply-accumulate
operation in multiplication time,” in Proc. 13th IEEE Sympsoium Comput.
Arithmetic, Asilomar, CA, USA, Jul. 1997, pp. 99-106.

A. Abdelgawad and M. Bayoumi, “High speed and area-efficient multi-
ply accumulate (MAC) unit for digital signal prossing applications,” in
Proc. IEEE Int. Symp. Circuits Syst., New Orleans, LA, USA, May 2007,
pp. 3199-3202.

M. D. Ercegovac and T. Lang, Digital Arithmetic. San Mateo, CA, USA:
Morgan Kaufmann, 2003.

T. T. Hoang, M. Sjalander, and P. Larsson-Edefors, “A high-speed, energy-
efficient two-cycle multiply-accumulate (MAC) architecture and its appli-
cation to a double-throughput MAC unit,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 57, no. 12, pp. 3073-3081, Dec. 2010.

B. Liebig, J. Huthmann, and A. Koch, “Architecture exploration of high-
performance floating-point fused multiply-add units and their automatic
use in high-level synthesis,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process., Workshops Phd Forum, Cambridge, MA, USA, May 2013,
pp. 134-143.

A. Wahba and H. Fahmy, ‘“Area efficient and fast combined
Binary/Decimal floating point fused multiply add unit,” IEEE Trans.
Comput., vol. 66, no. 2, pp. 226-239, Feb. 2017.

P. Aliparast, Z. D. Koozehkanani, and F. Nazari, “An ultra high speed
digital 4-2 compressor in 65-nm CMOS,” Int. J. Comput. Theory Eng.,
vol. 5, no. 4, pp. 593-597, Aug. 2013.

C. P. Narendra and K. M. R. Kumar, “Low power compressor based
MAC architecture for DSP applications,” in Proc. IEEE Int. Conf. Signal
Process., Informat., Commun. Energy Syst. (SPICES), Kozhikode, India,
Feb. 2015, pp. 1-5.

A. Rezai and P. Keshavarzi, ‘“High-throughput modular multiplication
and exponentiation algorithms using Multibit-Scan—-Multibit-Shift tech-
nique,” [EEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 9,
pp. 1710-1719, Sep. 2015.

A. Rezai and P. Keshavarzi, ‘‘High-performance scalable architecture for
modular multiplication using a new digit-serial computation,” Microelec-
tron. J., vol. 55, pp. 169-178, Sep. 2016.

A. Rezai and P. Keshavarzi, “Compact SD: A new encoding algorithm
and its application in multiplication,” Int. J. Comput. Math., vol. 94, no. 3,
pp. 554-569, Mar. 2017.

D. Nguyen, D. Kim, and J. Lee, “Double MAC: Doubling the performance
of convolutional neural networks on modern FPGAs,” in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Lausanne, Switzerland, Mar. 2017,
pp. 890-893.

VOLUME 8, 2020

(25]

[26]

[27]

(28]

(29]

(30]

(31]

M. Sjalander and P. Larsson-Edefors, “High-speed and low-power mul-
tipliers using the Baugh—Wooley algorithm and HPM reduction tree,” in
Proc. 15th IEEE Int. Conf. Electron., Circuits Syst., St. Julien’s, Malta,
Aug. 2008, pp. 33-36.

L.-D. Van and J.-H. Tu, “Power-efficient pipelined reconfigurable fixed-
width Baugh—-Wooley multipliers,” IEEE Trans. Comput., vol. 58, no. 10,
pp. 1346-1355, Oct. 2009.

K. Tsoumanis, S. Xydis, C. Efstathiou, N. Moschopoulos, and
K. Pekmestzi, “An optimized modified booth recoder for efficient
design of the add-multiply operator,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 61, no. 4, pp. 1133-1143, Apr. 2014.

F. Moldovan, ““Partitioning and mapping algorithms into fixed size systolic
arrays,” IEEE Trans. Comput., vol. C-35, no. 1, pp. 1-12, Jan. 1986.

N. Petkov, Systolic Parallel Processing. New York, NY, USA: Elsevier,
1992.

X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and
J. Cong, “Automated systolic array architecture synthesis for high through-
put CNN inference on FPGAs,” in Proc. 54th Annu. Design Autom. Conf.,
Austin, TX, USA, Jun. 2017, pp. 1-6.

J. J. Zhang, K. Basu, and S. Garg, “Fault-tolerant systolic array based
accelerators for deep neural network execution,” IEEE Des. Test. Comput.,
vol. 36, no. 5, pp. 44-53, Oct. 2019.

CHE-WEI TUNG received the B.S. degree in
electronic engineering from Chung Yuan Chris-
tian University, Taoyuan City, Taiwan, in 2018,
where he is currently pursuing the M.S. degree
in electronic engineering, and the dual M.S.
degree in electrical engineering from the Univer-
sity of Wisconsin-Milwaukee. His current research
interests include high-performance circuit, system
design, approximate computing, and VLSI arith-
metic circuits.

SHIH-HSU HUANG (Senior Member, IEEE)
received the B.S. degree in computer science
and information engineering from National Chiao
Tung University, Hsinchu, Taiwan, in 1989,
the M.S. degree in computer science from National
Tsing Hua University, Hsinchu, in 1991, and the
Ph.D. degree in computer science and informa-
tion engineering from National Taiwan University,
Taipei, Taiwan, in 1995.

From 1995 to 2000, he was with the Com-

puter and Communications Research Laboratories, Industrial Technology
Research Institute, Hsinchu, rising to the position of deputy manager of
the IC Design Department, responsible for the design of high performance
ICs. In 2000, he joined the Department of Electronic Engineering, Chung
Yuan Christian University, Taoyuan City, Taiwan, as a Faculty Member,
where he is currently a Full Professor. From 2008 to 2012, He served as
the Chairman for the Department of Electronic Engineering, Chung Yuan
Christian University, where he serves as the Director of the Research Center
for Intelligent Electronics, since 2013. His current research interests include
high-performance circuit and system design, electronic design automation,
and design for testability. He received the Distinguished Professor Award
from Chung Yuan Christian University, in 2018.

87377

	INTRODUCTION
	MOTIVATION
	PROPOSED ARCHITECTURE
	EXAMPLES
	EXPERIMENTAL RESULTS
	APPLICATION TO A SYSTOLIC ARRAY
	CONCLUSION
	REFERENCES
	Biographies
	CHE-WEI TUNG
	SHIH-HSU HUANG

