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ABSTRACT Cloud-edge computing is a hybrid model of computing where resources and services provided
via the Internet of Things (IoT) between large-scale and long-term data informs of the cloud layer and small-
scale and short-term data as edge layer. The main challenge of the cloud service providers is to select the
optimal candidate services that are doing the same work but offer different Quality of Service (QoS) values
in IoT applications. Service composition in cloud-edge computing is an NP-hard problem; therefore, many
meta-heuristic methods introduced to solve this issue. Also, the correctness of meta-heuristic and machine
learning algorithms for evaluating service composition problem should be proven using formal methods to
guarantee functional and non-functional specifications. In this paper, a hybrid Artificial Neural Network-
based Particle Swarm Optimization (ANN-PSO) Algorithm presented to enhance the QoS factors in cloud-
edge computing. To illustrate the correctness and improve the reachability rate of candidate composited
services andQoS factors for the proposed hybrid algorithm, we present a formal verificationmethod based on
a labeled transition system to check some critical Linear Temporal Logics (LTL) formulas. The experimental
results illustrated the high performance of the proposed model in terms of minimum verification time,
memory consumption, and guaranteeing critical specifications rules as the Linear Temporal Logic (LTL)
formulas. Also, we observed that the proposed model has optimal response time, availability, and price with
maximum fitness function value than other service composition algorithms.

INDEX TERMS Cloud-edge computing, Internet of Things, service composition, formal verification, quality
of service, artificial neural network, and particle swarm optimization.

I. INTRODUCTION
Cloud computing is a new technology to help enterprises
and organizations to subcontract information processing ser-
vices [1], [2]. Also, edge computing is a unique and entirely
Internet-based approach providing a small-scale and avail-
able considerable number of services platform for a variety
of Internet of Things (IoT) applications [3]. By increasing the
complexity of service negotiations and the number of smart
devices and real-time user requests, centralized cloud-based
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solutions are not supportable to guarantee Service Level
Agreement (SLA) in the service allocation, composition, and
scheduling. So, cloud-edge computing can be increased flex-
ibility of service availability and interoperability on the 5G
platform in the IoT environment [4], [5]. One of the main
challenges in cloud-edge computing is service composition
[6], [7]. The service composition method has an important
role in decreasing the price and the risk of providing new
web service applications in large or small scale IoT environ-
ments [8], [9]. Also, service composition is specified as an
NP-hard problem (nondeterministic polynomial time); mak-
ing the problem of finding the optimal service composition
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an essential challenge in cloud-edge computing. In practice,
cloud applications and smart devices contain many compo-
nents and resources by many candidates to provide requested
services. Thus, when the number of resources and IoT devices
is growing, the set of available composed services is also
increased exponentially. So, selecting and recommending an
optimal candidate service composition in the state space is
impractical [10] to support the SLA in the composition of
services [6].

Many researchers have applied existing meta-heuristic and
machine learning algorithms to find the optimal service com-
position in recent years [11]–[13]. However, formal verifica-
tion of these methods has some challenging issues such as
a state-space explosion, maximizing reachability, and avoid-
ing deadlock conditions. Particle Swarm Optimization (PSO)
has some problems, such as getting stuck in local optima
and premature convergence. [14]. Combining the PSO and
the Artificial Neural Network (ANN) as a machine learning
approach helps to escape from local optima [15].

In this paper, a formal verification method is proposed
for a hybrid ANN-based PSO (ANN-PSO) algorithm to
improve the reachability rate and execution time of a service
composition model in cloud-edge computing. In addition,
a Labeled Transition System (LTS) as a model checking-
based formal verification method is illustrated to measure
the correctness of the proposed model. To evaluate the
reachability condition of the service composition approach
that particular states of the service composition procedure
can reachable, the behavioral model of the ANN-PSO con-
structed as an LTS. Also, the Process Analysis Toolkit (PAT)
model checker is applied to verify the proposed composition
approach. The key contributions of this paper are presented
as follows.
• Presenting a hybrid ANN-PSO algorithm for a service
composition model in cloud-edge computing

• Applying a formal verification method to prove the cor-
rectness of a hybrid ANN-PSO algorithm

• Providing a behavioral modeling method based on LTS
to achieve the optimal QoS factors for the proposed
ANN-PSO algorithm

• Guaranteeing important critical specification rules
informs of Linear Temporal Logic (LTL) for the ANN-
PSO algorithm in the PAT model checker

The remainder of this research is structured as follows: related
works are discussed for different service composition mech-
anisms in Section 2. The service composition model and a
hybrid algorithm are presented in Section 3. Section 4 illus-
trates the formal verification method and experimental results
according to the LTL properties. The conclusions and future
work presented in Section 5.

II. RELATED WORK
This section gives a brief review of some related works. Dif-
ferent methods have presented for QoS aggregation in service
composition. For example, a comprehensive literature review
presented by Souri, et al. [16] in formal verification of web

service composition methods. In this literature, a state-of-the-
art analysis was applied according to verification approaches,
existing meta-heuristic algorithms, evaluated QoS factors,
and verification and simulation tools.

Li and Yao [17] proposed a process calculus-based service
composition approach using the cloud entropy genetic algo-
rithm. The modeling diagrams designed using Unified Mod-
eling Language (UML) to illustrate the service composition
prototype platform in a cloud-manufacturing environment.

Liao, et al. [18] have proposed a service composition
model based on an accurate sub-swarm PSO method. The
accuracy of the standard PSO algorithm is improved through
the proposed method to find the optimal result of the service
composition. The disadvantages of this method are premature
convergence and low diversity of the PSO algorithm. Also,
Ghobaei-Arani, et al. [19] have proposed a moth-flame opti-
mization algorithm to evaluate the correctness and efficiency
of the service composition according to the QoS factors in
cloud computing. Moreover, the accuracy of the proposed
algorithm is extracted from a formal verification method
analyzed with the NuSMV model checker. The analytical
results have proven the efficiency of the proposed composi-
tion algorithm.

A new approach based on the genetic algorithm for web
service composition in the cloud environment has been
proposed by Wang et al. [20]. First, an initial population
is generated, then the proposed algorithm tries iteratively
to find a solution until the convergence criterion is sat-
isfied. This method ensured that the user experience is
maximized, and the SLA violation minimized. Moreover,
Wang, et al. [21] have proposed a trust-based web service
selection and composition method according to a conceptual
collaborative reputation approach in a social network. The
authors have suggested a conditional reputation stage accord-
ing to the collaborative relationships between recommenders
based on the reputation of neighbors. The simulation results
have shown that this method improved three categories of
web service prototypes.

Wang, et al. [22] have presented a reliability-aware web
service composition method for incorporating essential com-
ponents of cyber-physical systems with social networks.
The proposed approach uses skyline method for decreasing
the state space of the QoS factors to guarantee reliability.
It also tries to find the best solution with lower computa-
tion time using a mixed-integer programming method. The
experimental results have shown that the proposed approach
performs better than four existing approaches. Moreover,
Wang, et al. [23] have also presented a new approach to eval-
uate the QoS. Fuzzy synthetic decisions used to assess cloud
service providers. Moreover, fuzzy logic control is applied to
make QoS assessment. The experimental comparisons have
determined that the proposed method achieved a perfect val-
uation of QoS for service composition in cloud computing.

Vaithiyanathan et al. [24] have presented a new frame-
work for automatic orchestration of services based on
user preferences. This framework can address automated
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orchestration using multiple agents. In the proposed frame-
work, automation of the process and the system response
time are the important issues. The simulation results show
that the proposed system minimizes human intervention.
In another study, mixed integer programming has been
used by Alrifai et al. [25] for choosing the best composited
model based on global QoS factors. Simulation results have
shown that the proposed method reduces the computational
complexity, but when different tasks have different QoS
range values, the decomposition algorithm is not accurate.
Jula et al. [26] have proposed a new framework to improve
the service time of composite services based on the enhanced
imperialist reasonable method [27] for choosing appropriate
service providers. Experimental results have shown that the
service time improved with this approach.

A greedy approach for web service composition has pro-
posed by Yu et al. [26]. First, the greedy method selects
the cloud. Then, the proposed method continues to find the
perfect cloud until the specified clouds support all the ser-
vice requirements. ACO (Ant Colony Optimization) algo-
rithm has been proposed to select cloud combinations that
use the minimum amount of clouds. The main advantage
of this approach is finding the optimal cloud composition
that has the minimum number of clouds to fulfill the users’
needs. Slow convergence is considered as theweakness of this
method. Moreover, the genetic algorithm has been adopted
by Canfora, et al. [28] to find optimal service selection and
composition model.

III. HYBRID ANN-PSO ALGORITHM
This section presents the proposed ANN-PSO algorithm for
service composition model. First, we illustrate the main con-
cepts of the service composition model based on QoS met-
rics. Then, the proposed ANN-PSO algorithm is presented to
apply the service selection and composition procedure.

A. SERVICE COMPOSITION MODEL
First of all, we present existing QoS metrics based on the
normalizationmethod to recognize the final candidate service
composition according to the aggregation of QoS metrics.
In this paper, three representative QoS metrics are chosen,
including availability, response time, and prices. For comput-
ing total QoS metrics for each candidate composited service,
we normalize the QoS metrics. The formulas illustrating the
processes of normalizing and calculating the three metrics are
given in Equations 1-3.

Where QAttmax is the maximum value of each QoS metric in
all candidate services, QAttmin is the minimum value of each
QoS metric in all candidate services, QAtti,j is shown as the
initial value of the candidate service j attributeAtt in the task i,
n represents the total number of tasks in service composition,
and qAtti,j is the normalized value of each QoS metric for the
candidate service j of the task i [29].

Availability = q(ava)i,j =
lnQ(ava)

max − lnQ(ava)
i,j

lnQ(ava)
max − lnQ(ava)

min

(1)

Response time = q(rt)i,j =
Q(rt)
i,j − Q

(rt)
min

Q(rt)
max − Q

(rt)
min

(2)

Price = q(pr)i,j =
Q(pr)
i,j − Q

(pr)
min

Q(pr)
max − Q

(pr)
min

(3)

The total QoS value for a candidate service composition is
defined as the sum of the normalized QoS metrics of the
candidate services selected for each task, as shown in Equa-
tions 4 and 5. Also, the fitness function of final candidate
service is illustrated according to Equation 5.

V Att
i,j =

{
1− qAtti,j , for negative attributes

qAtti,j , for positive attributes
(4)

QoS =
∑

V (Av)W +
∑

V (Rt)W +
∑

V (Pr)W (5)

whereW shows the specifiedweight of different QoSmetrics.
V is the QoS metric for each selected candidate service in the
task i.

For showing a conceptual description of the service com-
position model in cloud-edge computing, Figure 1 presents
a three-layered service composition model. First, a set of
requested services is forwarded by users. Then, this request
is sent to cloud and edge candidate service repositories to
service discovery procedures based on existing QoS factors.
Also, all smart devices in the IoT layers such as healthcare
applications, agriculture-based smart devices, transportation
and vehicle applications, smart home-care, and smart city
applications communicate with existing fog nodes in the edge
layer. When the set of requested services is received by the
service coordinator flow, the service discovery procedure
starts. In a flow service stream, suitable atomic services
are selected from the available candidate service list with
appropriate QoS factors to guarantee the SLA conditions.
For each requested service, the proposed model estimates the
total QoS metric for each candidate composited services, and
selected atomic services composed with existing composi-
tion pattern in sequential, loop, parallel, and branch forms
according to [11]. Finally, the model chooses the maximum
QoS as a final optimal service composition solution between
the set of candidate composited services for recommending
to users.

After describing a brief perspective of the service compo-
sition model, we present the hybrid ANN-PSO algorithm.

B. ANN-PSO ALGORITHM
The proposed hybrid algorithm uses ANN to select the opti-
mum position for each particle and avoid rapid convergence
in the PSO algorithm. Traditionally, premature convergence
has been one of the main problems of the PSO algorithm [30],
[31]. The ANN algorithm is proposed as a potential means
solve the mentioned issue by combining it with PSO as a
hybrid algorithm. In the hybrid algorithm, after each iteration
of the PSO algorithm, by selecting half of the population
of particles that had weaker performance, the particles will
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FIGURE 1. The proposed service composition model in cloud-edge computing.

fly again in high accurate solution space using ANN algo-
rithm with trained procedure. Therefore, the probability of
premature convergence and getting stuck at local optimum
points decreased.

Initially, P individuals for forming the population are ran-
domly produced. These individuals can be regarded as neu-
rons in ANN, and particles in terms of PSO [32]. In the PSO,
the possible explanations, called particles, are navigated with
a multi-layer space [33]. To show each particle i, a location
path Xi is considered. Then, a group of particles transfers
with a multi-dimensional state space, with the speed of each
particle denoted by a vectorVi. It changes the particle position
to find a better one. pBest and gBest are the optimal visited
locations for the particle i and the best of all particle location
values, respectively. The preliminary speeds of particles are
likelihoods limited to a range of [0, 1]. Algorithm 1 describes
the hybrid algorithm for service composition model. It gen-
erates the initial population randomly for particles, and also
the velocity of each particle generated randomly. In this
step, the particles are allowed to move freely in the problem
space, and each of them shows a new solution for candidate
service composition. In the problem space, the particles will
be allowed to fly and choose a point in the position [34]. The
prediction of the best solution space on the particles at the
end of each iteration is applied using the ANN algorithm.
So, the ANN-PSO algorithm does a better general search in
solution space. This process continues until all solution space
is searched thoroughly. In other words, if the number of iter-
ations is equal to the maximum iteration number, the imple-
mentation of the algorithm will be terminated. Otherwise,
it goes to related steps, and the process repeated. With the
end of the implementation of the algorithm, the best particle
will be considered as a final response in the last generation.

Algorithm 1 ANN-PSO Algorithm for Finding the Optimal
Solution
Input: a set of requests for each task /∗ QoS metrics for

each requested service/∗

Output: An optimal composted service model;
1: Normalizing set of QoS metrics for requested

services/∗ Producing existing requests/∗

2: Initializing the position of particles and velocity V i
/∗ Initializing vector input, number of hidden

layers, and transfer function./∗

3: Generating positions of particles randomly
in PSO;

4: Training initial position of particles using ANN;
5: Calculating the fitness of each particle.
6: Set overall best fitness as pBest
7: Checking convergence of prediction
8: Updating position Xi and velocity V i
9: Evaluating Fitness of new particle
10: Checking gBest for next particle
11: Checking maximum iteration
12: Selecting gBest as the final solution
13: End

C. FORMAL VERIFICATION OF ANN-PSO
FOR SERVICE COMPOSITION
In this subsection, behavioral modeling based on LTS to
present the proposed ANN-PSO algorithm is presented for
the service compositionmodel. Also, the proposed behavioral
model is implemented based on the PAT model checker for
evaluating the correctness of the ANN-PSO algorithm and
satisfying critical specification rules of the generated state
space of the behavioral model. First, a behavioral model
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FIGURE 2. The behavioral model of the ANN-PSO algorithm for service composition mode.

is proposed based on a finite state machine [32]. Second,
this behavioral model is translated to the LTS structure [35]
for transforming to the PAT model checker. To understand
mapping the proposed ANN-PSO algorithm to select optimal
service composition with a high level of QoS metrics, we use
behavioral modeling based on the LTS in the next section.
The following definition shows the LTS structure.
Definition 1: An LTS T is a 4-tuple structure T = (Q, q,

E , L) [36]:

• Q shows a set of finite states.
• q demonstrates the initial state: q ∈ Q.
• E shows a set of potential actions.
• L is a complete transition relation between finite states
and actions: L ⊆ Q× E × Q. The relation q1

e
−→ q2

(q1, q2 ∈ Q, and e ∈ E) is applied to the state that
(q1, e, q2) ∈ L.

Definition 2: A service composition model SC is a 4-tuple
structure SC = (S, R, QOS, C) [36]:

• S shows a set of candidate atomic services.
• R demonstrates a set of the requested service form user
• QOS shows a set of existing QoS factors for each
requested atomic service.

• C is a path of candidate composited services where:C ⊆
S × QOS × S.

To illustrate the LTS model of the ANN-PSO algorithm,
Figure 2 shows a behavioral model as follows.

In the first phase, a requested list of services is forwarded
to cloud-edge service repositories. All required services are
checked based on mapped QoS factors for each atomic ser-
vice. Then all QoS factors are normalized to evaluate the total
QoS metric. In the second phase, the existing parameters of
ANN and PSO algorithms are initialized, respectively [37].

For the ANN algorithm, existing weights, number of hidden
layers initialized randomly. Also, the position of particles,
the number of velocities, and the maximum number of itera-
tion values specified for the PSO algorithm respectively [38].

In the third phase, the first population of particles should be
generated that the ANN algorithm applied to find an optimal
position for each particle. In the training level of ANN,
existing neurons inputted to network with activating existing
weights and layers. Finally, the output layer is recognized
by checking the error rate to finalize the training procedure.
When the error value passed, then the position of particles
updated.

In the fourth phase, the fitness function of existing particles
as a candidate solution calculated.When total fitness function
computed, pBest and gBest factors will be updated. In the
final phase, if composition count is lower than the maximum
iteration value, then the previous phases are applied. Other-
wise, the final optimal service composition with a maximum
QoS metric recommended to the user.

According to the above behavioral model for the ANN-
PSO algorithm, we define important critical specification
roles to evaluate the correctness of the proposed algorithm as
given in Table 1. For example, LTL1 shows the initialization
of existing ANN and PSO parameters when QoS factors are
normalized. Also, LTL2 illustrates a critical condition for
terminating ANN procedure when the iteration counter value
is lower than the specified error value. The LTL3 and LTL4
show deadlock-free and divergence-free conditions, respec-
tively. Besides, the LTL5 shows the reachability condition
for achieving QoS checking factors between existing QoS
metrics in terms of response time, availability, and price. The
LTL6 checks the reachability condition for applying the train-
ing procedure using the ANN algorithm. The LTL7 illustrates
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FIGURE 3. Evaluation of the availability of the service composition model.

FIGURE 4. Evaluation of the response time for the service composition model.

the reachability condition for checking the finalization of
choosing the best solution for a service composition model.
Finally, the LTL8 shows the reachability condition for the
PSO procedure.

IV. EXPERIMENTAL RESULTS
In this section, the experimental results are presented to
evaluate the proposed ANN-PSO efficiency. For analyzing
the proposed ANN-PSO algorithm in the service composition
model, first, we have provided a simulation analysis with

C# language in the Visual Studio environment as an Inte-
grated Development Environment (IDE). Second, the verifi-
cation results of the proposed algorithm is presented to prove
the correctness of the behavioral model in the PAT model
checker.

A. SIMULATION RESULTS
We applied the QWS (The Quality of Service for Web Ser-
vices Data set) data set [39] that contains 2500 web services.
To show the feasibility of our method, some basic algorithms
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FIGURE 5. Evaluation of the price factor for existing algorithms.

FIGURE 6. Evaluation of the total fitness for the service composition model.

such as the Genetic Algorithm (GA) [40], PSO [41] and
GAPSO algorithm are compared. Also, for showing the eval-
uation of availability, response time, and price, the number of
applied services is 10, 30, 50, 70, and 100 on the QWS dataset
with 100 iterations.

Figure 3 depicts the availability factor for the existing
ANN-PSO algorithm. We observed that the ANN-PSO algo-
rithm had outperformed results to achieve availability when
the number of services increased.

Figure 4 depicts the response time factor for existing algo-
rithms. Based on this figure, the ANN-PSO algorithm has
minimum values in the service composition model. Also,
Figure 5 shows the optimality of the ANN-PSO algorithm
to recognize the price factor. When the number of requests
increases, the price factor decreases significantly.

Finally, Figure 6 shows the overallfitness of the service
composition model in 100 iterations. According to Figure 6,
the total fitness of the proposed algorithm is higher than the
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TABLE 1. The specification roles for satisfying the correctness of the ANN-PSO algorithm.

FIGURE 7. The verification results of existing specification roles in the PAT model checker.

other algorithms, which indicates that this algorithm provides
the more appropriate distribution of requests with maximum
QoS metric for requested services.

B. VERIFICATION RESULTS
To show the correctness of the proposed algorithm, verifica-
tion results have presented as follows. We examined some

important specifications rules according to subsection 3.3.
Also, reachability conditions are evaluated for satisfying four
important sections, including QoS checking with maximum
metrics, training with the ANN algorithm, checking themaxi-
mum rate of iteration to terminate service composition proce-
dure, and the PSO algorithm. Figure 7 shows a snapshot of the
PAT verifier environment for evaluating existing specification
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FIGURE 8. The counterexample of LTL2 specification roles in PAT model
checker.

rules. We observe that LTL 1, 3, 4, 5, 6, 7, and 8 were sat-
isfied using stringent conditions. It means that the proposed
algorithm met all critical deadlock-free, divergence-free, and
reachability conditions exactly.

Also, LTL 2, as a critical avidness condition does not
satisfy because of occurring a safety point in the proposed
path. Figure 8 shows a counter example to evaluate invalid
conditions in this specification role. When the training pro-
cedure occurred using the ANN algorithm, if the current
error value is lower than the maximum error rate, the training
procedure should be replicated, and the existing layers in the
network should be updated. However, LTL2 shows the wrong
situation for this procedure.

V. CONCLUSION AND FUTURE WORK
In this paper, a combined machine learning and a meta-
heuristic algorithm called ANN-PSO algorithm presented
to evaluate the optimal QoS-based service composition for
cloud-edge computing in the IoT environment. The ANN-
PSO algorithm has two stages in assessing the service selec-
tion and composition process. The first stage applies the
global search process to predict the optimal position for exist-
ing particles for avoiding premature convergence. The second
stage provides optimal service composition based on the PSO
factors to guarantee the requested QoS factors. In simulation
results, the proposed algorithm has outperformed results to
minimize response time and price than other algorithms such
as PSO, GA, and PSOGA algorithms. Also, our hybrid algo-
rithm gets the maximum percentage for evaluating fitness
function and availability factors to show the feasibility and
optimality of the proposed service composition model in the
IoT environment. To support the correctness of the proposed
ANN-PSO composition model, an LTS-based verification
approach has been presented. For specifying the reachability
of the service composition model, the behavioral model of

the ANN-PSO is constructed in the LTS. The verification
results showed that the ANN-PSO algorithm has the high-
est reachability rate to prove the correctness of the service
composition approach using the PAT model checker. Also,
all critical specification rules have been satisfied in the state
space of the ANN-PSO behavioral model.

In the future work, we will try to apply prediction meth-
ods such as deep learning methods for avoiding state space
explosion problem in model checking method in the service
composition model.
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