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ABSTRACT This study presents a load modeling technique using unsymmetrical fault data. Typically,
three-phase balanced fault data are prerequisite for load modeling; however, the existing technique utilizes
only positive sequence data. Obtaining symmetrical data from a real power system is very difficult as
three-phase faults are very rare. In this study, I aimed to improve existing methods designed for estimating
load parameters from three-phase symmetrical fault data via load modeling of unsymmetrical faults. The
proposed method corrects the existing algorithm using positive sequence data along with three-phase data,
namely phases-A, -B, and -C. The equation for each phase of the load model is obtained and subsequently
used for load parameter estimation. The load model parameters are estimated using the data obtained from
phases-A, -B, and -C, unlike in existing load models that use only positive sequence data. Unsymmetrical
faults occur more frequently in a system than symmetrical faults, and numerous opportunities for load model
parameter estimation are available. Applying this algorithm to the three-phase data collected using phasor
measurement unit-like data acquisition devices is expected to considerably increase both the parameter
estimation accuracy and frequency during load modeling parameter estimation in the future.

INDEX TERMS Load modeling, measurement-based approach, parameter estimation, three-phase data,

unbalanced disturbances, asymmetrical fault.

I. INTRODUCTION

Load models are used for power system analysis, and they
significantly influence the results of system assessment. Load
modeling involves the estimation of parameters such as the
ZIP ratio of a load model and the slip of an induction motor
model [1]. If the load model is inaccurate, the power sys-
tem planning and operation would be based on incorrect
simulation. This could change the load shedding amounts in
special protection systems, rendering the stability and extent
of blackouts in the power system variable [2].

For these reasons, obtaining accurate parameters of load
models is essential. Currently, measurement-based load
modeling, which uses measurement units such as fault
recorders or phasor measurement unit (PMU), is actively
researched to improve accuracy.

To estimate parameters based on measurement in load
modeling, previous studies proposed a method of adding a
transfer function to the load model to reflect the time delay

The associate editor coordinating the review of this manuscript and

approving it for publication was Ramazan Bayindir

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

in the load model estimation [3], [4]. In this method, the esti-
mation accuracy of the load model parameters is relatively
increased by reflecting both continuous and discontinuous
changes; however, this method is generally difficult to imple-
ment in simulation because the load model itself is a new type
of load model.

To reduce error in a measurement-based load model,
a composite model comprising the conventional ZIP model
and a dynamic model can be employed. Some researchers
have used this composite model to increase the accuracy and
speed of parameter estimation by selecting highly sensitive
parameters. This significantly affects the load model, among
many other estimated parameters [5]-[15]. Although the esti-
mation speed generally increases, the accuracy of estimation
is limited.

To increase the accuracy of the measurement data,
researchers have installed a PMU in the microgrid of a uni-
versity to estimate the load model parameters [10], [16]-[26].
The static and dynamic load models were combined to con-
struct a composite load model, and an event-oriented online
load model was constructed using parameter sensitivity
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analysis. However, parameter estimation was still difficult
because events very rarely occurred and voltage variation was
very small in the microgrid built in the university.

While research efforts to improve the composite
load model parameter sensitivity analysis have continued
[27]-[37], such efforts have not improved the accuracy,
although the efficiency of estimating the load model param-
eters increased. Improving accuracy is difficult when data
acquisition is difficult because a huge amount of data is
needed to increase accuracy.

Therefore, to address this problem, methods to estimate
load model parameters using unsymmetrical faults have been
studied, focusing on transforming the equations of the active
power and reactive power to the dq plane using Park’s trans-
formation [38]-[43]. Although using unsymmetrical fault
data improved parameter estimation, it yielded minimal
improvement in the accuracy of parameter estimation.

In [44]-[46], three separate fifth-order dynamic models
were introduced to define the ZIP load model in unsym-
metrical faults, and a method of adding a general induction
motor model to estimate parameters in unsymmetrical faults
was proposed. However, the above models are difficult to
implement in simulation because a new type of model was
used in these studies.

Obtaining the parameters of a load model is difficult as a
typical load model uses only positive sequence data. Thus,
a typical load model only needs data at a symmetrical fault,
but not at an unsymmetrical fault. However, obtaining data
on three-phase symmetrical faults is difficult as most faults
in a power system are unsymmetrical faults. A symmetrical
fault occurs at most once or twice annually in one substation.
To acquire fault data, a device for measuring and storing fault
currents such as a fault recorder or a PMU should be installed
in the substation. However, if a three-phase fault does not
occur where such a device is installed, the load model
parameters cannot be estimated using existing techniques.
Therefore, most fault data measured in measurement-based
load modeling are discarded, and the load model parameter
estimation fails.

This study proposes a load modeling technique that can
increase the accuracy of using unbalanced fault data with
modified load model equations. Unbalanced faults, such as
a ground fault in a single line, occur approximately 100 to
200 times a year. If the load model parameters can be esti-
mated using unbalanced failure data, then, the accuracy of
estimation can be improved. Instead of using data obtained
from the commonly used load voltage level (base kV: 22.9 kV
in the KEPCO system), the transmission-grade voltage level
(base kV in the KEPCO system: 154 kV) was used for
load modeling because the system data used in KEPCO is
abbreviated data with an installed load of 154 kV. In addition,
the loads of Phases-A, -B, and -C are symmetric at the trans-
mission voltage level such that the voltage and current are
also symmetric, and the ZIP load and induction motor model
parameters have the same values in each phase. The load
model parameters were estimated using the data of Phases-A,
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-B, and -C, unlike existing load modeling methods in which
only the positive sequence data are used. Unsymmetrical
faults occur more frequently than symmetrical faults in a
system; therefore, numerous opportunities for load model
parameter estimation are available.

The rest of this manuscript is structured as follows.
Section II presents equations for load modeling. The equa-
tions were then verified through a case study, as presented
in Section III. Section IV summarizes the main conclusions
from the study.

Il. EQUATION OF LOAD MODEL

A. MODIFIED ZIP LOAD MODEL

The modified ZIP load model considers each individual phase
load equation, unlike the conventional ZIP load model that
uses only a positive equation. Equations (1)—(6) can be for-
mulated as the measurement units could obtain both positive
sequence data and phase information of each phase.

Va \ Va \! Va \°
Prip.a =Pz — ) +ba| — | taa | o—
zip, A zip,A0 | dA (VAO ) A (VAO CA Vao

Puip, B =Puip,B0 Y as

Vc 2
Pzip.c =Puip.coyac | o— ) +bc

2

1 0

(e Y e (V_)}
Cco Co Co

3)

Va )’ va\! Va \0

omstmu (2 o () v (2]
A0 A0 A0

“

Vs \ Vi \! Vi \0

car-aonl (2 (32) (2
BO BO BO

(%)

. V¢ 2 Vc ! Ve 0

o= (35 e (G e 55

(6)

where aa, bp, and cc are the ZIP load model parameters of
Phase-A, that is, constant impedance, constant current, and
constant power, respectively, and ap+ ba+ ca = 1.0. Pag is
the initial value of the active power for Phase-A and Vg is
the initial value of the voltage for Phase-A. Phases-B and -C
have similar parameters.

Now, the load model parameters are assumed to have
the same values for each phase. This is hypothesized based
on the assumption that the load obtained at the transmis-
sion level achieves three-phase symmetry and that the load
parameters in each phase will also have the same value.
Accordingly, the following equations are obtained.

aps = ap —=dac = a (7)
by =bg=bc=>b 8)
cAa=cgp=cc=c )
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Equations (1)—(6) can be modified to the equations shown

below.
Va )2 Va ! Va\?
Pzip.A = Pzip.a0 12 (—) +b (— +cl—
A0 A0 Vao
(10)
Vi \2 Vi \! Vi \°
Pip8 = PuipBo ja <—> +b <—> +cl—
BO BO Vgo
(11)
Vc 2 Vc ! Vc 0
Puip,c = Puip,co ja <—> +b <—> +cl—
0 o o
(12)
Va )2 Va )l Va\?
Qzip,A = Qzip,A0 2 (—) +b (—) +cl—
A0 A0 A0
(13)
Vi \2 Vi \! Vi \°
Ozip.B = Ozip,B0 | & (—) +b (—) +c|l—
BO BO BO
(14)
Vc 2 Vc 1 Vc 0
QOzip.c = Orip,co 2 (—) +b (—) +cl—
0 o 0

In this case, the number of equations exceeds the number
of parameters being estimated as there are two more effective
power equations and two more ineffective power equations,
unlike in the existing parameter estimation method that exclu-
sively uses positive sequence data; thus, parameter estimation
is much easier. Even if unsymmetrical data is used, parameter
estimation can still be performed because each phase has
different equations.

B. MODIFIED INDUCTION MOTOR MODEL

The induction motor model is modified exactly like the zip
load model. There are six parameters in the induction motor
model: Rs, Rr, Xs, Xr, Xm, and H. Rs and Xs represent the sta-
tor resistance and leakage reactance, respectively, whereas Rr
and Xr represent the rotor resistance and leakage reactance,
respectively. Xm is the magnetizing reactance, and H is the
inertia constant. Expanding the current—flux equation in the
d- and g-axes [47], I obtain the following equations:

st = Xsigs + Xm(ids + idr) (16)
Qqs = Xsiqs + Xm(iqs + iqr) 17
Qd}’ = Xridr +Xm(idx + idr) (18)
ﬂqr = Xriqr + Xm(iqs + iqr) (19)
dE, 1 I
ar = T [Ed + Xy — X )lqs] — (w0 — DEy (20)
dE 1
= 77 [Ba+ Ko = XDigs] = (@ = DEss - 21)
dw 1
— = — (T, T, 22
o = 3H (T — To) (22)
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where
7 X + X
R,
X5 = X5 + X
X =X, + Xr Xom
X, + X

T, = (Aw’* + Bw + C)Ty

If the active and reactive powers of the induction motor are
expressed as d-axis and g-axis voltage and current, I obtain

Py = vasids + Vgsigs (23)
Om = Vqsids - Vdsiqs 24)

Here, Phases-A, -B, and -C can be substituted into each
formula to obtain,

Pypa = Vds,Alds,A + Vqs,Aiqs,A (25)

Pu.p = Vds Bidgs,B + Vqs,Biqx,B (26)

Pm,C = Vds,Cids,C + Vqs,Ciqs,C (27)

Qm,A = Vqs,Aids,A - Vds,Aiqs,A (28)

Qm,B =V S,BidS,B - Vds,Bi s,B (29)
q. q.

Om,c = Vqs,Cids,C - Vds,Ciqs,C (30)

Assuming that the parameters of the induction motor
model are the same in each phase, then, there is no
change in the number of parameters for the load model;
however, the probability of success of the parameter estima-
tion increases because the number of equations increases.

C. COMPOSITE LOAD MODEL
The active and reactive power equations for the composite
load model can be formulated by combining the zip load and
induction motor models.
P:Pzip+Pm (3D
0= inp + Om (32)
Substituting P and Q in the conditions for phases-A, -B,
and -C in each equation, I obtain,

Py = Pyipa+ Ppua (33)
Pp = P;ipp+ Pm (34)
Pc = Pip.c +Puc (35)
04 = Qzipa+ Oma (36)
O = Qzip.p + Om,B 37
Oc = QOzip,c +Om,c (38)

The objective function for parameter estimation using the
least squares method is given as follows:

FP,A (t) = PA,measured - PA,3alculated (39)
fP,B (t) = PB,measured - PB,3alcu]ated (40)
fP,C (t) = PC,measured - PC,3alculated (4])

minimize Y " (|fo.a 0] + [fo5 O + [fo.c O]) (@2
error = Z (|fp.a (t)|2 + |fp.B (t)|2 + |fp.c (t)|2) (43)
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FIGURE 1. Flowchart of parameter estimation of load model.

These equations utilize the complete voltage and power of
each phase, and hence yield a least-squared error that is less
than that obtained using existing methods that utilize only
positive sequence data. In addition, the load model param-
eters can be estimated from unsymmetrical fault data.

A flowchart of the process of parameter estimation using
the above equations is shown in Fig. 1. The parameters esti-
mated in this study are those of the ZIP load model and the
induction motor model. ZIP parameters include a, b, and ¢
in the active power section and a, b, and c in the reactive
power section, which are specified in equations (10)—(15).
The parameters of the induction motor model are Rs, Rr, Xs,
Xr, Xm, and H.

A comparison of the existing and proposed load modeling
methods shows that although the existing load model yields
three-phase data, it only uses positive sequence data extracted
from the three-phase data for load modeling. In addition,
in terms of the type of fault, the existing method only per-
forms parameter estimation for three-phase faults, instead
of performing parameter estimation for all types of faults.
Accordingly, only the load model parameter for positive
sequence data is estimated.

In contrast, in the proposed load modeling method,
three-phase data is used for parameter estimation, and all
types of faults can be used for parameter estimation; thus,
the load model parameter for each phase is estimated.
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FIGURE 2. One-line diagram of power system with composite load
structure.

TABLE 1. Cases corresponding to the fault types and ZIP ratios of the
composite load model.

[P ratio | 0.35/0.50/ 0.10/0.25/ 0.70/0.30/
Fault typ 0.15 0.65 0.00
Single-line-

to-ground
(SLG)
Double-
line-to-
ground
(DLG)
Three-
phase-to-
ground
(TPG)

Case A Case D Case G

Case B Case E Case H

Case C Case F Case |

lIl. CASE STUDY
A. TEST SYSTEM DATA CASE
To test the performance of parameter estimation of the pro-
posed composite load model, I used a single-machine infinite
bus and composite loads. The base power is 154 kV, and the
powers of the loads are 100 MW and 50 MVAr per phase.
Three types of faults and three sets of ZIP loads and induction
motor parameters are analyzed for the case study. In this
analysis, the ratio and parameters of the induction motor are
fixed, but the ZIP load ratio is varied. Changes in the graph
may not be noticeable even if the value changes because the
sensitivity of each parameter of the induction motor model
is not very large [5]. Fig. 2 shows the system used for the
case study. A fault occurs on a line based on the fault type
presented in Table 1. Each phase of the voltage and power
were measured for the load modeling. There are three loads,
which are represented as an exponential load model, with a
constant impedance, constant current, and constant power.
The results for each test case are shown in Fig. 3, whereas
Table 2 lists the result of the parameter estimation.
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FIGURE 3. Results of measured and calculated powers for SLG (Case A).

TABLE 2. Results of parameter estimation of ZIP ratios with cases
corresponding to the fault types.

[P ratio | 0.35/0.50/ 0.10/0.25/ 0.70/0.30/

Fault typ 0.15 0.65 0.00

SLG 0.349/0.500/ | 0.101/0.251/ | 0.700/0.300/
0.151 0.648 0.000

DLG 0.350/0.500/ | 0.100/0.250/ | 0.700/0.300/
0.150 0.650 0.000

TPG 0.350/0.500/ | 0.100/0.250/ | 0.700/0.300/
0.150 0.650 0.000

Fig. 3 shows the active power graphs of the measured and
calculated parameters from phase-C-to-ground fault, where
the zip ratio is 0.35:0.50:0.15. A single-phase fault (Phase-C)
generates single-phase voltage and power dip; hence, the oth-
ers do not vary much. Parameter estimation using these data
successfully determined the load parameters with an estima-
tion error of less than 0.01%. Fig. 4 shows the same graphs
for Phases-B and -C-to-ground fault (DLG). A double-phase
fault produces a voltage drop in these phases. The estimation

120

Active power (MW)

401 Measured Pa ]

Calculated Pa
Measured Pb
Calculated Pb []
Measured Pc
Calculated Pc

L T
0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

20

FIGURE 4. Results of measured and calculated powers for DLG (Case B).
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0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

FIGURE 5. Results of measured and calculated powers for TPG (Case C).
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Active power (MW)

401 Measured Pa ||
Calculated Pa
Measured Pb
20 Calculated Pb 7
Measured Pc
Calculated Pc

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

FIGURE 6. Results of measured and calculated powers for SLG (Case D).

error was also below 0.01%. From Figs. 3 and 4, it can be
inferred that parameter estimation was performed properly
in SLG and DLG, which are associated with unbalanced
faults. Fig. 5 shows plots of a three-phase-to-ground fault,
and hence, all phase voltages and voltage drop during the
fault. In this case, the estimation error was also below 0.01%.
Fig. 5 shows that the proposed algorithm can estimate the
parameters regardless of the type of failure. These results
imply that the algorithm and load model presented in this
paper can be employed to determine load parameters regard-
less of the fault type.

Figs. 6-11 show the plots for the cases listed in Table 1.
The estimation error of the load parameters, that is, the dif-
ference between the specified and estimated values, is small
as the difference between Ppeasured and Peatculated 1S small.
The low error can be attributed to the simple and ideal nature
of the system where the data was collected. These results
suggest that parameter estimation can be performed not only
for three-phase faults but also for single-line- and double-
line-to-ground faults. In addition, parameter estimation was
successfully performed for various load conditions.
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FIGURE 7. Results of measured and calculated powers for DLG (Case E).
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FIGURE 8. Results of measured and calculated powers for TPG (Case F).
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FIGURE 9. Results of measured and calculated powers for SLG (Case G).

The analysis results demonstrate that for the nine cases
shown in Figs. 3—11, all the parameters were successfully
estimated. It should be noted that parameter estimation can
be realized even for unbalanced faults such as SLG and DLG.
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FIGURE 10. Results of measured and calculated powers for DLG (Case H).
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FIGURE 11. Results of measured and calculated powers for TPG (Case I).

In the past, parameter estimation was possible only with TPG
data. However, if unbalanced fault data are obtained from
measurement devices such as PMUs, immediate parameter
estimation may be possible.

B. ACTUAL SYSTEM DATA CASE

I verified the performance of the proposed algorithm using
actual data acquired from the system in Busan in 2013 and
data on unbalanced faults. Fig. 12 shows the voltage wave-
form at the time of the fault; it can be observed that the voltage
drop due to this fault is not so large (approximately 0.03 pu)
as it is an SLG-type fault. Existing models did not accurately
estimate the parameters from this unbalanced fault. However,
the parameters can be estimated using an improved algorithm,
and the errors are considerably reduced.

Fig. 13 shows the result of recalculation using measured
active power data and parameter estimation. Here, Pcal(old)
and Pcal(modi) are results obtained using existing and
improved algorithms, respectively. Here, the existing(old)
method represents parameter estimation using symmetrical
fault data, which is a method of estimating load model
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FIGURE 12. Voltage magnitude of actual measurement on September 9,
2013, in Busan.
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FIGURE 13. Empirically measured power (Pmeasured) versus parameter
estimation using existing(old) method (Pcal(old)) and modified method
(Pcal(modi)).

parameters using only positive sequence data from measured
data. As shown in the results, the existing algorithm did
not accurately estimate the data, whereas results from the
modified algorithm are in good agreement with the actual
data.

Fig. 14 shows the result of calculating the reactive power
using empirical data and parameter estimation; it can be
observed that the accuracy of the estimation improved.

The parameter estimation accuracy improved even when
empirical data were used. Further, parameter estimation using
existing algorithms yielded inaccurate results owing to unbal-
anced fault data; however, parameters were estimated accu-
rately when the improved algorithm was used. In the future,
if unbalanced fault data is continuously monitored, it will be
possible to improve the algorithm and ensure the reliability
of parameters for the load model.
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FIGURE 14. Empirical reactive power (Qmeasured) versus parameter
estimation using existing(old) method (Qcal(old)) and modified method
(Qcal(modi)).

IV. CONCLUSION

A load modeling method using unsymmetrical fault data from
each phase load model is reported in this article. The proposed
method reduced the estimation error for load model param-
eters and can also be employed for unbalanced fault data.
This is because the proposed load model uses three-phase
data, unlike existing load models that use only positive
sequence data. The algorithm was verified using not only
the test system data but also empirical data; I confirmed
that parameter estimation is possible using unbalanced fault
data, and the estimation accuracy of the parameter improved.
In the future, this algorithm will be applied to three-phase
data acquired using PMU-like data acquisition devices to
significantly increase both the parameter estimation accuracy
and frequency during load modeling parameter estimation.
In addition, if the measurement data for unbalanced faults are
monitored, the algorithm can be improved, and the reliability
of the load model parameters can be improved.
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