
Received March 24, 2020, accepted April 23, 2020, date of publication May 4, 2020, date of current version May 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992246

Channel Estimation for Large-Scale
Multiple-Antenna Systems Using 1-Bit ADCs
and Oversampling
ZHICHAO SHAO , (Student Member, IEEE), LUKAS T. N. LANDAU , (Member, IEEE),
AND RODRIGO C. DE LAMARE , (Senior Member, IEEE)
Centre for Telecommunications Studies, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil

Corresponding author: Zhichao Shao (zhichao.shao@cetuc.puc-rio.br)

This work was supported by CNPq, CAPES, FAPERJ, and FAPESP.

ABSTRACT Large-scale multiple-antenna systems with large bandwidth are fundamental for future wireless
communications, where the base station employs a large antenna array. In this scenario, one problem faced is
the large energy consumption as the number of receive antennas scales up. Recently, low-resolution analog-
to-digital converters (ADCs) have attracted much attention. Specifically, 1-bit ADCs are suitable for such
systems due to their low cost and low energy consumption. This paper considers uplink large-scale multiple-
antenna systems with 1-bit ADCs on each receive antenna. We investigate the benefits of using oversampling
for channel estimation in terms of the mean square error and symbol error rate performance. In particular,
low-resolution aware channel estimators are developed based on the Bussgang decomposition for 1-bit
oversampled systems and analytical bounds on the mean square error are also investigated. Numerical results
are provided to illustrate the performance of the proposed channel estimation algorithms and the derived
theoretical bounds.

INDEX TERMS Large-scale multiple-antenna systems, 1-bit quantization, oversampling, channel estima-
tion, Cramér-Rao bound.

I. INTRODUCTION
Multi-user (MU) multiple-input multiple-output (MIMO)
is currently being used in many wireless communication
systems like long-term evolution (LTE), which allows for a
small number of antennas at the base station [1]. However,
in the last decade the number of wireless devices likemobiles,
laptops and sensors, has experienced an explosive growth and
currentMU-MIMO systems cannot serve such a large number
of users due to the limited bandwidth and increased multi-
user interference (MUI).With large antenna arrays at the base
station (BS), large-scale (ormassive)MIMOcan significantly
increase the spectral efficiency, mitigate the propagation loss
caused by channel fading, reduce the MUI and have many
other advantages as compared to current systems [2], [3].
As such, large-scale MIMO is a key technique for future
wireless communication systems, in which one favorable
application is the large-scale millimeter-wave (mmWave)
communication system [4]. However, many different
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configurations and deployments need to be reconsidered. For
example, by using current high-resolution (8-12 bits) analog-
to-digital converters (ADCs) for each element of the antenna
arrays at the BS, the hardware cost and the energy con-
sumption may become prohibitively high since the dissipated
power is exponentially scaled by the number of bits [5].

The high cost and energy consumption associated with
high-resolution ADCs has motivated the use of low-cost
and low-resolution ADCs for large-scale MIMO systems.
As one extreme case, 1-bit ADCs can largely reduce the
hardware cost and energy consumption of the receiver. Many
recent works have studied this area. For instance, the works
in [6]–[15] have studied massive MU-MIMO systems with
coarsely quantized signals operating over frequency-flat,
narrowband channels. The works in [6], [7] have investi-
gated the uplink channel capacity by MU-MIMO systems
with 1-bit ADCs at the BS and [8]–[10] have analyzed
different precoding techniques for the downlink. Regard-
ing channel estimation, the studies in [11]–[13] have pro-
posed the Bussgang linear minimum mean squared error
(BLMMSE), expectation-maximization (EM) based iterative
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hard thresholding (IHT) and recursive least squares (RLS)
adaptive channel estimators, respectively. In the context of
the signal detection used in uplink 1-bit massive MU-MIMO
systems, the work in [14] proposes the iterative detec-
tion and decoding (IDD) technique together with regu-
lar LDPC codes and [15] presents a low-complexity near
maximum-likelihood-detection (near-MLD) algorithm called
1-bit sphere decoding.

Moreover, some prior works have investigated 1-bit ADCs
used in wideband communication systems. The works in
[16]–[19] have studied massive MU-MIMO systems with
coarsely quantized signals that deploy orthogonal frequency-
division multiplexing (OFDM) for wideband communica-
tions. Their results show that it is satisfactory to use 1-bit
ADCs in wideband massive MU-MIMO-OFDM systems.
Furthermore, the studies in [20]–[22] have discussed some
key transceiver design challenges, including channel esti-
mation, signal detection, achievable rates and precoding
techniques, in millimeter-Wave (mmWave) massive MIMO
systems, which are promising candidates for 5G cellular
systems.

The previous works have considered quantized systems
with sampling at the Nyquist rate. However, utilizing over-
sampling at the receiver can partially compensate for the
information loss brought by the coarse quantization [23]. The
work in [24] has proposed faster than symbol rate (FTSR)
sampling in an uplink massive MIMO system with coarsely
quantized signals in terms of the symbol error rate (SER).
It shows that the FTSR sampling provides about 5dB signal-
to-noise ratio (SNR) advantage in terms of SER and achiev-
able rate with a linear zero forcing receiver. The work in
[25] has analyzed the achievable rate for 1-bit oversampled
systems over band-limited channels. To reduce the compu-
tational cost caused by the large number of samples due to
oversampling, a sliding window based linear detection has
been proposed in [26]. In addition to the conventional system
models based on matched filtering and correlated noise sam-
ples, alternative receiver assumptions exist in literature such
as in [27], where the authors consider a wideband receiver
whose bandwidth scales proportionally with the oversam-
pling factor and has the drawback of additional received noise
and interference from neighboring frequency bands.

From the channel estimation point of view, the works in
[11], [12] have proposed different channel estimation tech-
niques for systems operating at the Nyquist rate. However,
only few works have considered channel estimation in over-
sampled systems. The study in [28] considers time-of-arrival
estimation for systems with 1-bit quantization and oversam-
pling and proposes corresponding performance bounds. The
study in [29] has proposed carrier phase estimation and given
lower bounds on complex channel parameter estimation for
1-bit oversampled systems based on [30]. In the study in
[24] the BLMMSE channel estimator is applied to the MIMO
channel with 1-bit quantization and oversampling using the
simplifying assumption of uncorrelated noise samples which

then yields performance degradation especially at low SNR
and high oversampling factors.

In this work, low-resolution aware (LRA) channel estima-
tors are developed for 1-bit oversampled large-scale MIMO
systems in the uplink based on the Bussgang decomposi-
tion. Although the received signals are quantized to 1 bit,
the computations after the 1-bit ADCs of all algorithms com-
pared are performed at a higher resolution (8 bits or higher).
The application of oversampling at the receiver can lead
to significantly better performance. Unlike prior works we
explicitly consider the correlation of the filtered noise, which
is a main property of oversampled systems, and employ the
Bussgang decomposition [31] to reformulate the nonlinear
system into a statistically equivalent linear system. Based on
this linear model, low-resolution aware least-squares (LS),
linear minimummean square error (LMMSE) and least-mean
square (LMS) channel estimation algorithms are proposed for
1-bit oversampled systems and evaluate their computational
costs. Moreover, an adaptive technique is devised to estimate
the statistical quantities resulting from the Bussgang decom-
position, which are required by channel estimators. We also
examine the fundamental estimation limits by deriving a
Bayesian framework and bounds on channel estimation for
both non-oversampled and oversampled systems. In addition
to the Bayesian Cramér-Rao bounds (CRBs), general CRBs is
proposed for biased estimators due to the correlation between
the signal and its quantization error. In summary, ourwork has
the following contributions:
• The LRA-LS, LRA-LMMSE and LRA-LMS channel
estimation algorithms are presented for the 1-bit large-
scale MIMO systems in the uplink with oversampling.

• We obtain analytical expressions associated with the
Bayesian CRBs for the oversampled systems and
observe that the proposed bounds are very close to the
results obtained from simulations at low SNR.

• An adaptive technique is proposed to estimate the auto-
correlation of the channel vector, which is an essential
part for the Bussgang decomposition in 1-bit systems.

Some preliminary results have been shown in [32] and
[33]. However, as compared to [32], [33], this paper extends
and refines the analysis of the correlation property of fil-
tered noise and proposes a more practical adaptive channel
estimator with lower computational cost. In the section of
numerical results, the performance of the proposed LRA-
LMMSE estimator is compared with its simplified version
in [24]. Furthermore, a comparison of the performance of
systems using ADCs with more bits is also shown in this
paper.

The rest of this paper is organized as follows: Section II
illustrates the system model and gives some statistical prop-
erties of 1-bit quantization. Section III derives the proposed
oversampling based channel estimators and analyzes the
computational complexity of the estimators. Section IV gives
the upper bounds of the Bayesian CRBs and the general CRBs
for 1-bit non-oversampled and oversampled MIMO systems.
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FIGURE 1. System model of 1-bit multi-user multiple-antenna system with oversampling at the receiver.

Section V compares the normalized mean square error (MSE)
and SER performance of the proposed and existing channel
estimators. Section VI concludes the paper.
Notation: The following notation is used throughout the

paper. Matrices are in bold capital letters and vectors in bold
lowercase. In denotes the n × n identity matrix and 0n is
the n × 1 all-zero column vector. Additionally, diag(A) is a
diagonal matrix only containing the diagonal elements of A.
The transpose, conjugate transpose and pseudoinverse of A
are represented by AT , AH and A+, respectively. a∗ denotes
the complex conjugate of a and [a]k represents the kth ele-
ment of vector a. (·)R and (·)I get the real and imaginary
part from the corresponding vector or matrix, respectively.
⊗ is the Kronecker product. Finally, vec(A) is the vectorized
form of A obtained by stacking its columns and det(A) is
the determinant function. x ∼ CN (a,B) indicates that x is a
complex Gaussian vector with mean a and covariance matrix
B. The expectation and covariance is denoted as E{·} and
Cov{·}, respectively.

II. SYSTEM MODEL AND PROBLEM STATEMENT
In this paper, we consider a single-cell multi-user large-scale
MIMO system with Nt single-antenna terminals and a BS
with Nr receive antennas, where each receive antenna is
equipped with two 1-bit ADCs (one for the in-phase compo-
nent and the other for the quadrature-phase component) and
Nr � Nt . The system model is depicted in Fig. 1. In the
uplink, by assuming perfect synchronization the received
oversampled signal y ∈ CMNrN×1 can be expressed as

y = Hx+ n, (1)

where x ∈ CNNt×1 contains independent identically dis-
tributed (i.i.d.) transmitted symbols from Nt terminals, each
with block length N . The vector x is arranged as

x = [x1,1 · · · xN ,1 x1,2 · · · xN ,Nt ]
T , (2)

where xi,j corresponds to the transmitted symbol of termi-
nal j at time instant i. Each symbol has unit power so that
E[|xi,j|2] = 1. The vector n represents the filtered oversam-
pled noise expressed by

n = (INr ⊗G)w (3)

with w ∼ CN (03MNrN , σ
2
n I3MNrN ). Note that the noise sam-

ples are described such that each entry of n has the same
statistical properties. Since in digital domain the receive filter
has a length of 2MN + 1 samples, 3MN unfiltered noise
samples in the noise vector w need to be considered for
the description of an interval of MN samples of the filtered
noise n. The matrix G ∈ RMN×3MN is a Toeplitz matrix that
contains the coefficients of the matched filter m(t) (operated
in analog domain) at different time instants and is shown
in (4), as shown at the bottom of the next page, where T is
the symbol period andM denotes the oversampling rate. The
equivalent channel matrix H is described as

H = [INr ⊗ Z(IN ⊗ u)](H′ ⊗ IN ), (5)

where H′ ∈ CNr×Nt is the channel matrix for non-
oversampled systems and u is an oversampling vector with
length M, which has the form

u = [0 · · · 0 1]T . (6)

The matrix Z ∈ RMN×MN is a Toeplitz matrix that contains
the coefficients of z(t) at different time instants, where z(t)
is the convolution of the pulse shaping filter p(t) and the
matched filter m(t) given by (7), as shown at the bottom of
the next page.

In particular, M = 1 refers to the non-oversampling case.
Let Q(·) represent the 1-bit quantization function,

the resulting quantized signal yQ is given by

yQ = Q(y) = Q(yR)+ jQ(yI ). (8)

The real and imaginary parts of y are quantized element-
wised to {± 1

√
2
} based on the sign. The factor 1

√
2
is to make

the power of each quantized signal to be one.
Since quantization strongly changes the properties of sig-

nals, some statistical properties of quantization for Gaussian
input signals will be shown. For 1-bit quantization and Gaus-
sian inputs, the cross-correlation between the unquantized
signal s with covariance matrix Cs and its 1-bit quantized
signal sQ is described by [31]

CsQs =

√
2
π
KCs,where K = diag(Cs)−

1
2 . (9)
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Furthermore, the covariance matrix of the 1-bit quantized
signal sQ can be obtained through the arcsin law [34]

CsQ =
2
π

(
sin−1(KCR

sK)+ jsin−1(KCI
sK)

)
. (10)

The problem we are interested in solving in this work is to
cost-effectively estimate the channel parameters in H′.

III. CHANNEL ESTIMATION FOR UPLINK 1-BIT
OVERSAMPLED MIMO
In a standard uplink implementation, the channel state infor-
mation (CSI) is estimated at the BS and then used to detect
the data symbols transmitted from the Nt users. Each trans-
mission block is divided into two sub-blocks: one for pilots
and another for the data symbols. Pilots are either located
at the beginning of each block or spread according to a
desired pattern [35]. During the training phase, each terminal
simultaneously transmits τ pilot symbols to the BS, which
yields

yp = Hxp + np. (11)

Vectorizing (11) we get

yp = (xTp ⊗ INr )vec(H)+ np

= [xTp ⊗ INr ⊗ Z(Iτ ⊗ u)]vec(H′ ⊗ Iτ )+ np
= 8ph′ + np, (12)

where h′ = vec(H′) and the equivalent pilot matrix

8p = [xTp ⊗ INr ⊗ Z(Iτ ⊗ u)]

[INt ⊗ (e1 ⊗ INr ⊗ e1 + · · · + eτ ⊗ INr ⊗ eτ )]. (13)

The vector xp ∈ CτNt×1 contains the transmitted pilots and
en ∈ Rτ×1 represents a column vector with a one in the
nth element and zeros elsewhere. After processing by 1-bit
ADCs, the quantized signal can be expressed as

yQp = Q(8ph′ + np) = 8̃ph′ + ñp, (14)

where 8̃p = Ap8p ∈ CMτNr×NtNr and ñp = Apnp +
nq ∈ CMτNr×1. The vector nq is the statistically equivalent

quantization noise1 with covariance matrix Cnq = CyQp
−

ApCypA
H
p . The matrix Ap ∈ RMτNr×MτNr is the Bussgang-

based linear operator chosen independently from yp and is
given by

Ap = CH
ypyQp

C−1yp =

√
2
π
K, (15)

where CypyQp
denotes the cross-correlation matrix between

the received signal yp and its quantized signal yQp

CypyQp
=

√
2
π
KCyp , with K = diag(Cyp )

−
1
2 . (16)

The formulas of (15) and (16) involve the auto-correlation
matrix Cyp :

Cyp = 8pRh′8
H
p + Cnp , (17)

where Rh′ = E{h′h′H }.

A. NOISE COVARIANCE MATRIX Cnp

With (3) the auto-correlation matrix Cnp in (17) is calculated
as

Cnp = σ
2
n (INr ⊗GGH ). (18)

For non-oversampled system (M = 1), (18) is reduced to

Cnp = σ
2
n IτNr . (19)

However, for oversampled system (M ≥ 2) (18) cannot
be further simplified due to the correlation of oversampled
samples. The off-diagonal elements will appear in the matrix
of GGH . One example is shown in Fig. 2, where m(t) is
assumed to be a normalized root-raised cosine (RRC) filter
with different roll-off factors, M = 2 and τ = 10. It
can be seen that the lower the roll-off factors the more off-
diagonal elements appear in GGH , which means that for
systems with low roll-off factors it is important to consider
Cnp as a full matrix rather than a simplified diagonal matrix as
assumed in [24].

1In this paper, we assume the quantization noise nq is Gaussian distributed
with zero mean and covariance Cnq .

G =


m(−NT ) m(−NT + 1

M T ) . . . m(NT ) 0 . . . 0
0 m(−NT ) . . . m(NT − 1

M T ) m(NT ) . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . m(−NT ) m(−NT + 1
M T ) . . . m(NT )

 (4)

Z =



z(0) z(
T
M

) . . . z(NT −
1
M
T )

z(−
T
M

) z(0) . . . z(NT −
2
M
T )

...
...

. . .
...

z(−NT +
1
M
T ) z(−NT +

2
M
T ) . . . z(0)


. (7)
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FIGURE 2. Matrix representation of GGH .

B. STANDARD LS CHANNEL ESTIMATOR
The work in [36] has proposed the standard LS estimator for
1-bit non-oversampled systems. Similar to this, this estimator
is extended to oversampled systems, which can be computed
according to

ĥ′Standard LS = argmin
h̄′
||yQp −8ph̄′||2

= (8H
p 8p)−18H

p yQp . (20)

The advantage of this estimator is that no a priori informa-
tion is needed at the receiver. However, the issue with this
estimator, when applied with 1-bit quantization, is that the
channel estimate ĥ′ scales with the amplitude associated with
the quantizer, which then corresponds to a biased estimation.

C. LRA-LS CHANNEL ESTIMATOR
Based on the Bussgang decomposition, the LS estimate is
proposed for the linear equivalent system model in (14).
The LRA-LS channel estimator is obtained by solving the
following optimization problem:

ĥ′LRA-LS = argmin
h̄′
||yQp − 8̃ph̄′||2

= (8̃H
p 8̃p)−18̃H

p yQp . (21)

Compared to the standard LS channel estimator, the proposed
estimator has taken Rh′ into consideration in order to obtain
the linear operator Ap.

D. LRA-LMMSE CHANNEL ESTIMATOR
The LMMSE channel estimator has the advantage of supe-
rior MSE performance to that of the LS channel estimator.
Based on the statistically equivalent linear model in (14),
the oversampling based LRA-LMMSE channel estimator is
proposed. The optimal filter is given by

WLMMSE = argmin
W

E{||h′ −WyQp ||
2
}

= Rh′8̃
HC−1yQp

, (22)

where

CyQp
=

2
π

(
sin−1(KCR

ypK)+ jsin−1(KCI
ypK)

)
. (23)

The resulting LRA-LMMSE channel estimator is then

ĥ′LRA-LMMSE = Rh′8̃
HC−1yQp

yQp . (24)

FIGURE 3. Illustration of the sliding window at each receive antenna
when lwin = 3 and M = 2, where lwin is the window length representing
the number of symbols sampled at the Nyquist (symbol) rate.

Proof: See Appendix A.
Note that when M = 1, (24) reduces to the same as that of
the BLMMSE channel estimator in [11].

E. LRA-LMS CHANNEL ESTIMATOR
LMS is the most widely used adaptive algorithm and has been
adopted in various applications like system identification and
channel equalization. In addition, LMS has robust perfor-
mance and a low cost of implementation. Based on the linear
equivalent model in (14), an LRA-LMS channel estimator for
1-bit oversampled systems is devised.

Since for large-scale MIMO with Nr � Nt , in order to
reduce the computational complexity the multiplications and
divisions involving large matrices, whose dimensions contain
Nr elements, need to be avoided. For this reason, we concen-
trate on the channel fromNt users to only one receive antenna
nr and the received quantized signal is modelled as

ynrQp
= 8̃nr

p h′nr + ñnrp , (25)

where ynrQp
= [ynrQp

(1), ynrQp
(2), . . . , ynrQp

(Mτ )]T and h′nr ∈

CNt×1 is the nr th row of H′. Different from 8̃p in (14),
8̃
nr
p ∈ CMτ×Nt is an equivalent pilot matrix to the nr th

receive antenna. The sliding window based technique [26]
(shown in Fig. 3) is applied, which combines the adjacent
symbol-rate-sampled symbols together to estimate the instan-
taneous channel parameters, since in oversampled systems
the interference from adjacent symbol-rate-sampled symbols
should be considered. The first window contains the first
Mlwin oversampled samples and the second contains the next
Mlwin samples until the last window. Note that only one
symbol-rate-sampled symbol (orM oversampled samples) is
shifted for the subsequent window.

Based on (25), the received signal at the nth window can
be expressed as

ynrQp
(n) = 8̃nr

p (n)h′nr + ñnrp (n), (26)

where ynrQp
(n) = [ynrQp

(M (n − 1) + 1), . . . , ynrQp
(M (n − 1) +

Mlwin)]T and 8̃nr
p (n) = Anr

p (n)8nr
p (n) ∈ CMlwin×Nt contains

the transmit pilot sequences in the nth window.
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The optimization problem that leads to the proposed LRA-
LMS channel estimation algorithm can be stated as

ĥ′
nr
LRA-LMS(n) = argmin

h̄′
nr (n)

τ−lwin+1∑
n=1

||ynrQp
(n)− 8̃nr

p (n)h̄′
nr (n)||2,

(27)

where h̄′
nr (n) is the instantaneous estimate of h′nr in the nth

window.
Taking the partial derivative of the objective function

in (27) with respect to h̄′
nr (n)H , we obtain

∂
∑τ−lwin+1

n=1 ||ynrQp
(n)− 8̃nr

p (n)h̄′
nr (n)||2

∂h̄′
nr (n)H

=

τ−lwin+1∑
n=1

−8̃nr
p (n)H (ynrQp

(n)− 8̃nr
p (n)h̄′

nr (n))

=

τ−lwin+1∑
n=1

−8̃nr
p (n)Henr (n). (28)

The recursion of the proposed LRA-LMS algorithm is

h̄′
nr (n+ 1) = h̄′

nr (n)+ µ8̃nr
p (n)Henr (n),

n = 1, . . . , τ − lwin + 1, (29)

where the constant step size µ fulfills

0 < µ <
2
γmax

. (30)

γmax is the largest eigenvalue of C8̃nr
p (n), which is

E{8̃nr
p (n)8̃nr

p (n)H }. Proof: See Appendix B.
The proposed adaptive channel estimator is summarized

in Algorithm 1, where xp(n) ∈ ClwinNt×1 contains the pilot
symbols in the nth window. Both e′n ∈ Rlwin×1 and e′′n ∈
RNr×1 represent all-zero column vectors except that the nth
elements are ones. Fig. 4 shows the convergence performance
of the proposed LRA-LMS channel estimator for each receive
antenna. The proposed estimator achieves its steady state
after τ = 40.

FIGURE 4. Convergence of the LRA-LMS channel estimator with Nt = 8
and Nr = 64 at SNR = 20dB.

Algorithm 1 Proposed LRA-LMS Channel Estimator
1: Parameters:

µ: forgetting factor
2: Initialization:

h′nr (1) = 0Nt×1
3: Iteration:

4: for nr = 1 : Nr do
5: for n = 1 : τ − lwin + 1 do
6:

8nr
p (n) = [xTp (n)⊗ Z(Ilwin ⊗ u)]

[INt ⊗ (e′1 ⊗ e′1 + · · · + e′lwin ⊗ e′lwin )];

7: Cnr
yp (n) = 8

nr
p (n)8nr

p (n)H + σ 2
nGGH ;

8: Anr
p (n) =

√
2
π
diag(Cnr

yp (n))
−

1
2 ;

9: 8̃
nr
p (n) = Anr

p (n)8nr
p (n);

10: enr (n) = ynrQp
(n)− 8̃nr

p (n)h′nr (n);

11: h′nr (n+ 1) = h′nr (n)+ µ8̃nr
p (n)Henr (n);

12: end for
13: end for

F. COMPLEXITY ANALYSIS
The computational complexities of the proposed channel
estimators are compared in this subsection. For the sake
of simplification and a fair comparison among the estima-
tors, we assume Rh′ is an identity matrix. Table 1 shows
the total required complex additions/subtractions and mul-
tiplications/divisions for obtaining the channel estimate ĥ′.
More intuitively, Fig. 5 shows the total number of complex
operations, which is a sum of complex additions and multi-
plications, as a function of the number of receive antennas
Nr . Compared to other channel estimators, the LRA-LMS
channel estimator consumes the lowest computational cost
since there are no matrix inversions or large matrix multipli-
cations in the algorithm. The comparisons in terms of MSE
performance are shown in the simulations section.

FIGURE 5. Computational complexity comparison between different
channel estimators in an oversampled system M = 3 with τ = 20,
lwin = 3 and Nt = 8.
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TABLE 1. Computational complexity of different channel estimators.

G. ESTIMATION OF Rh′

In practical environments, there is no prior information about
Rh′ at the receiver. In this subsection, an adaptive technique
is proposed to recursively estimate Rh′ as

R̂h′ (n+1) = λR̂h′ (n)+(1− λ)ĥ′(n)ĥ′(n)H , n = 1, . . . , τ,

(31)

where λ is the forgetting factor and ĥ′(n) is the channel
estimate at the Nyquist time instant n. Consider the system
model

yQ(n) = Q(Hx(n)+ n(n))

= Q((x′Tp (n)⊗ INr ⊗ Z′u)h′ + n(n)), (32)

where yQ(n) and n(n) are column vectors with sizeMNr × 1.
Different from xp(n) in Algorithm 1, x′p(n) ∈ CNt×1 contains
pilot symbols fromNt terminals at time instant n.Z′ ∈ RM×M

is a simplified version of Z with N = 1. The instantaneous
estimate of h′ is calculated as

ĥ′(n) = (x′Tp (n)⊗ INr ⊗ Z′u)+yQ(n), (33)

where the initial guess of R̂h′ (1) is an identity matrix by
assuming channel parameters are uncorrelated and each has
unit power.

IV. CRAMÉR-RAO BOUNDS
Unlike the works in [29], [30], which have proposed the
CRBs for the unbiased estimators, the existing CRBs are
extended suitable for the biased estimators. Two different
types of CRBs are proposed depending on whether the prior
information Rh′ is known at the receiver, namely Bayesian
CRB with known Rh′ and general CRB with estimated Rh′ .

A. BAYESIAN CRAMÉR-RAO BOUNDS
Bayesian bounds on the fundamental limits of estimation
are derived for non-oversampled and oversampled systems.
Without loss of generality, we extend (12) considering the
whole system and not just the pilots, and rewrite the complex-
valued model in the following real-valued form[

yR

yI

]
=

[
8R

−8I

8I 8R

][
h′R

h′I

]
+

[
nR

nI

]
. (34)

Let h̃′ = [h′R;h′I ] be the unknown parameter vector, since
the real and imaginary parts are independent, the Bayesian
information matrix (BIM) [37] for the quantized signal is
defined as

JyQ (h̃′) = JyRQ (h̃′)+ JyIQ (h̃′), (35)

where

[JyR/IQ
(h̃′)]ij,EyR/IQ ,h̃′

{
∂ ln p(yR/IQ , h̃′)

∂[h̃′]i

∂ ln p(yR/IQ , h̃′)

∂[h̃′]j

}
(36)

with [h̃′]i and [h̃′]j being the elements of h̃′. The expression
in (36) can be divided into two parts:

[JyR/IQ
(h̃′)]ij = [JD

yR/IQ
(h̃′)]ij + [JP

yR/IQ
(h̃′)]ij, (37)

where

[JD
yR/IQ

(h̃′)]ij , EyR/IQ |h̃
′

{
∂ ln p(yR/IQ | h̃′)

∂[h̃′]i

∂ ln p(yR/IQ | h̃′)

∂[h̃′]j

}
(38)

[JP
yR/IQ

(h̃′)]ij , Eh̃′

{
∂ ln p(h̃′)

∂[h̃′]i

∂ ln p(h̃′)

∂[h̃′]j

}
. (39)

To transform the real-valued JyQ (h̃′) back to the com-
plex domain JyQ (h′), JyQ (h̃′) is defined with the following
structure:

JyQ (h̃′) =

[
JRRyQ (h̃′) JRIyQ (h̃′)
JIRyQ (h̃′) JIIyQ (h̃′)

]
(40)

and apply the chain rule to get:

JyQ (h′) =
1
4
(JRRyQ (h̃′)+ JIIyQ (h̃′))+

j
4
(JRIyQ (h̃′)− JIRyQ (h̃′)),

(41)

where JRRyQ (h̃′), JRIyQ (h̃′), JIRyQ (h̃′) and JIIyQ (h̃′) have the same
dimensions NrNt × NrNt . The variance of the estimator
ĥ′(yQ) is lower bounded by

Var{ĥ′i(yQ)} ≥ [J−1yQ (h′)]ii. (42)
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1) BIM FOR NON-OVERSAMPLED SYSTEMS
For non-oversampled systems, i.e, M = 1, the covariance
matrix of the equivalent noise vector n is Cn = σ

2
n INNr . With

the independence of the real and imaginary parts, the log-
likelihood function can be expressed as

ln p(yQ | h̃′)=
NNr∑
k=1

[ln p([yRQ]k | h̃′)+ln p([yIQ]k | h̃′)] (43)

with

p([yRQ]k = ±
1
√
2
| h̃′) = Q

(
∓
[8Rh′R −8Ih′I ]k

σn/
√
2

)
(44)

p([yIQ]k = ±
1
√
2
| h̃′) = Q

(
∓
[8Ih′R +8Rh′I ]k

σn/
√
2

)
(45)

where Q(x) = 1
√
2π

∫
∞

x exp(− u2
2 )du. Inserting (43) into (38),

we obtain

[JDyQ (h̃′)]ij = −E

{
∂2 ln p(yQ | h̃′)

∂[h̃′]i∂[h̃′]j

}
= [JDyRQ

(h̃′)]ij + [JDyIQ
(h̃′)]ij. (46)

With the derivative of the Q(x) function, the real part in (38)
[JD

yRQ
(h̃′)]ijis given by

[JDyRQ
(h̃′)]ij

=

NNr∑
k=1

−E

{
∂2 ln p([yRQ]k | h̃′)

∂[h̃′]i∂[h̃′]j

}
=

1
πσ 2

n

×

NNr∑
k=1

exp(−
[8Rh′R−8Ih′I ]2k

σ 2n /2
) ∂[8

Rh′R−8Ih′I ]k
∂[h̃′]i

∂[8Rh′R−8Ih′I ]k
∂[h̃′]j

Q
(
[8Rh′R−8Ih′I ]k

σn/
√
2

)
Q
(
−

[8Rh′R−8Ih′I ]k
σn/
√
2

) .

(47)

The derivation for the imaginary part [JD
yIQ

(h̃′)]ij is analogous.

By assuming that h̃′ is Gaussian distributed with zero mean
and covariance matrix Ch̃′ =

1
2 I2 ⊗ Ch′ , ln p(h̃′) yields

ln p(h̃′) = −
1
2
NrNt ln[(2π )2NrNt det(Ch̃′ )]−

1
2
h̃′
T
C−1
h̃′

h̃′.

(48)

Substituting (48) into (39), we obtain

JPyQ (h̃′) = 2JP
yR/IQ

(h̃′) = 2C−1
h̃′
. (49)

Finally, the resulting BIM is the summation of (46)
and (49) as described by

JyQ (h̃′) = JDyQ (h̃′)+ JPyQ (h̃′). (50)

2) BIM FOR OVERSAMPLED SYSTEMS
WhenM ≥ 2 the equivalent noise vector n consists of colored
Gaussian noise samples. Computing p(yR/IQ | h̃′) requires the
orthant probabilities, which are not available or too difficult
to compute. The authors in [28], [30] have introduced a
lower bounding technique on the Fisher information for real-
valued system. To employ this lower bounding technique in
the complex-valued system, the work of [29] has come out.
The lower bound of JD

yR/IQ
(h̃′) is calculated based on the first

and second order moments as

JD
yR/IQ

(h̃′) ≥

(
∂µyR/IQ

∂h̃′

)T
C−1
yR/IQ

(
∂µyR/IQ

∂h̃′

)
= J̃D

yR/IQ
(h̃′). (51)

Since the lower-bounding technique is identical for the real
and the imaginary parts, only the derivation of J̃D

yRQ
(h̃′) is

presented. The mean value of the kth received symbol is

[µyRQ
]k =

1
√
2
p([yQ]k = +1 | h̃′)−

1
√
2
p([yQ]k = −1 | h̃′)

=
1
√
2

[
1− 2Q

(
[8Rh′R −8Ih′I ]k
√
[Cn]kk/2

)]
. (52)

The partial derivative of (52) with respect to [h̃′]i is

∂[µyRQ
]k

∂[h̃′]i
=

2exp
(
−

[8Rh′R−8Ih′I ]2k
[Cn]kk

)
∂[8Rh′R−8Ih′I ]k

∂[h̃′]i
√
2π [Cn]kk

. (53)

The diagonal elements of the covariance matrix are given by

[CyRQ
]kk =

1
2
− [µyRQ

]2k , (54)

while the off-diagonal elements are calculated as

[CyRQ
]kn = p(zk > 0, zn > 0)+ p(zk ≤ 0, zn ≤ 0)

−
1
2
− [µyRQ

]k [µyRQ
]n, (55)

where [zk , zn]T is a bi-variate Gaussian random vector[
zk
zn

]
∼ N

([
[8Rh′R −8Ih′I ]k
[8Rh′R −8Ih′I ]n

]
,
1
2

[
[Cn]kk [Cn]kn
[Cn]nk [Cn]nn

])
.

The lower bound for the imaginary part is derived in the same
way. With the calculations above the lower bound of the BIM
is obtained as

JyQ (h̃′) ≥ J̃DyQ (h̃′)+ JPyQ (h̃′), (56)

where the equality holds forM = 1, as shown in [30] for the
real valued CRB and in [29] for the complex valued CRB.
Based on (42), the inverse of this BIM lower bound will
result in an upper bound of the actual Bayesian CRB for
oversampled systems.
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B. GENERAL CRAMÉR-RAO BOUNDS
When Rh′ is unknown and needs to be estimated at the
receiver, the Bayesian CRBs will not be applicable. The
general CRBs are derived for the proposed channel estimators
with estimated Rh′ .
Lemma 1: The proposed LRA channel estimators with

combination of estimated R̂h′ are biased channel estimators.
Proof: See Appendix C.

Since the proposed LRA channel estimators are biased,
while calculating the CRBs, they should apply as

Cov{ĥ′
R
bias} ≥

∂E{ĥ′
R
bias}

∂h′R

(
JD

RR

yQ (h′R)
−1 ∂E{ĥ′

R
bias}

∂h′R

)T
(57)

Cov{ĥ′
I
bias} ≥

∂E{ĥ′
I
bias}

∂h′I

(
JD

II

yQ (h′I )−1
∂E{ĥ′

I
bias}

∂h′I

)T
, (58)

where JD
RR

yQ (h′R) and JD
II

yQ (h′I ) are defined by

[JD
RR

yQ (h′R)]ij , E

{
∂ ln p(yQ | h′

R)

∂[h′R]i

∂ ln p(yQ | h′
R)

∂[h′R]j

}
(59)

[JD
II

yQ (h′I )]ij , E

{
∂ ln p(yQ | h′

I )

∂[h′I ]i

∂ ln p(yQ | h′
I )

∂[h′I ]j

}
, (60)

which are the upper left and lower right part of the JDyQ (h̃′)
(similar as (40)), respectively.

V. NUMERICAL RESULTS
The simulation results presented here consider an uplink
single-cell 1-bit large-scale MIMO system with Nt = 8
and Nr = 64. The modulation scheme is quadrature phase-
shift keying (QPSK). The m(t) and p(t) filters are normal-
ized RRC filters with a roll-off factor of 0.8. The channel
is assumed to experience block fading and the pilots are
column-wise orthogonal with length 20. The SNR is defined
as 10 log( Nt

σ 2n
). The normalized MSE and SER performance

plots are obtained by taking the average of 300 channel
matrices, noise and symbol vectors.

For the LRA-LMS channel estimator, the window length
lwin is chosen as three to ensure low computational com-
plexity. The step size µ is optimized according to the
oversampling factor and SNR. In the simulation, µ varies
between 0.05 and 0.3. While recovering the transmitted
symbols from the received quantized signal, the sliding-
window based LMMSE detector [26] with window length
equal to three (lwin = 3) and the estimate of the channel
obtained by the proposed algorithms is applied in the sys-
tem for obtaining both high accuracy and low computational
cost.

The performance of the channel estimators is evaluated
based on the channel model simulated in [38]. The channel
for user nt is assumed Rayleigh distributed

h′nt = R
1
2
r,nth

′
w,nt , (61)

where Rr,nt denotes the receive correlation matrix with the
following form

Rr,nt =


1 ρnt . . . ρ

(Nr−1)
nt

ρ∗nt 1 . . . ρ
(Nr−2)
nt

...
...

. . .
...

ρ
∗(Nr−1)
nt ρ

∗(Nr−2)
nt . . . 1

 . (62)

ρnt is the correlation index of neighboring antennas. (|ρnt | =
0 represents an uncorrelated scenario and |ρnt | = 1 implies
a fully correlated scenario.) The elements of h′w,nt are i.i.d.
complex Gaussian random variables with zero mean and unit
variance. All users are assumed to experience the same value
of |ρnt | = |ρ| but different phases uniformly distributed over
2π . The overall channel model is summarized as

H′ = [h′1,h′2, · · · ,h′nt ] (63)

and Rh′ is calculated as

Rh′ =


Rr,1 0 . . . 0
0 Rr,2 . . . 0
...

...
. . .

...

0 0 . . . Rr,nt

 . (64)

A. Rh′ IS KNOWN AT THE RECEIVER
In this subsection, we evaluate the performance of the
proposed LRA channel estimators with known Rh′ at the
receiver. Fig. 6a and Fig. 6b compare the normalized MSE
of the various channel estimators as a function of SNR in
uncorrelated (|ρ| = 0) and correlated channel (|ρ| = 0.75),
respectively. There is a 2dB performance gain of the oversam-
pled systems as compared to the non-oversampled systems
for the LRA-LMMSE channel estimator at low SNR, whereas
a much larger gain at high SNR. In both channels the LRA-
LMMSE achieves the best MSE performance at the cost of
high computational cost.

In contrast, the LRA-LMS estimates the channel matrix
H′ row by row. This approach can largely reduce the com-
putational cost (shown in Fig. 5). Note that this separation
into several rows may overlook the correlation of receive
antennas. More specifically, the proposed LRA-LMS treats
Rr,nt as an identity matrix. As an amendment, the resulting
estimated channel matrix ĥ′LRA-LMS needs to be multiplied

with the square root of the receive correlation matrix R
1
2
rnt ,

which can be derived fromRh′ in (64). From the results, it can
be seen that in both channels the LRA-LMS approaches the
performance of the LRA-LMMSE at low SNR (≤ 5 dB),
whereas at high SNR this performance gap becomes large.

The Bayesian CRBs illustrated in Section IV-A are also
depicted in Fig. 6. Note that for the oversampled systems
(M ≥ 2) the upper bounds of Bayesian CRBs are higher
than the actual Bayesian CRBs, since they are derived from
the lower bounds of Bayesian information. The black lines
represent the standard LMMSE performance for the systems
with unquantized signals, which can be treated as lower
bounds for the systems with 1-bit quantized signals.
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FIGURE 6. Normalized MSE comparisons of different channel estimators
with known Rh′ .

FIGURE 7. SER comparisons of different oversampling factors for the
LRA-LMMSE channel estimator with known Rh′ .

The LMMSE detector with sliding-window based SER
performance of the system with the LRA-LMMSE esti-
mated and perfect channel matrix are illustrated in Fig. 7,
where the oversampled systems obviously outperform the

FIGURE 8. Normalized MSE comparisons between LRA-LMMSE and
simplified LMMSE [24].

non-oversampled systems. As described in III-A, Fig. 8
shows the MSE comparisons between LRA-LMMSE and
simplified LMMSE [24] channel estimator in the systemwith
τ = 10 and roll-off factor 0.1. We emphasize again that
in our work, the correlation of filtered noise is taken into
account, and hence Cnp is not a diagonal matrix in over-
sampled systems. It can be seen that at low SNR (≤ 10 dB)
the performance of simplified LMMSE [24] is worse than
the proposed LRA-LMMSE, although they converge together
at high SNR (> 10 dB). Another observation is that at low
SNR the simplified LMMSE estimator withM = 3 performs
worse than that withM = 2, which shows that the assumption
in [24] is inaccurate.

B. Rh′ IS UNKNOWN AT THE RECEIVER
Practically, Rh′ is not known at the receiver. Fig. 9 shows the
MSE performance of the LRA channel estimators by using
the proposed adaptive recursion to estimate Rh′ , where λ is
set to 0.99. It can be seen that the performance remains almost
the same as Fig. 6a, which shows that the proposed estimation
of Rh′ works well under uncorrelated channel.

While analyzing the general CRBs proposed in (57)
and (58), instead of directly calculating the gradient of the

expected value with respect to the channel vector ∂E{ĥ
′
R/I
bias}

∂h′R/I
,

this gradient is numerically evaluated, since there is an adap-
tive estimation technique inside the channel estimator, which
makes the calculation more difficult. As one example, Fig. 10
shows the normalized MSE performance of the LRA-LS
channel estimator with estimated R̂h′ in (31) for estimating
the first Nr elements2 of h′R and its corresponding numer-
ically calculated general CRBs under uncorrelated channels
(|ρ| = 0). More specifically, each element of the gradient

vector ∂E{ĥ
′
R/I
bias}

∂h′R/I
is calculated with the following steps:

2For the sake of simplicity, only first Nr elements are considered, since
for the large-scale MIMO there are NtNr elements in h′R, which will cost
much time for calculating the general CRBs.

85252 VOLUME 8, 2020



Z. Shao et al.: Channel Estimation for Large-Scale Multiple-Antenna Systems

FIGURE 9. Normalized MSE comparisons of different channel estimators
with adaptively estimated R̂h′ .

FIGURE 10. Normalized MSE comparisons of different oversampling
factors for the LRA-LS channel estimator with estimated R̂h′ .

• increasing a small value δ (e.g. 0.1) in the corresponding
element of h′R/I

• estimating the channel ĥ′
R/I
bias with different transmit sym-

bols and noises (e.g. 1000 different realizations)
• calculating the mean value of all estimates E{ĥ′

R/I
bias},

which will be divided by δ.

These steps are repeated until all the elements in ∂E{ĥ′
R/I
bias}

∂h′R/I
are

obtained.

C. 1-BIT OR B-Bit ADC?
In this subsection, the channel estimation performance of the
1-bit oversampled system is compared with the b-bit non-
oversampled systems. In Fig. 11 the LRA-LMMSE channel
estimator for a system with 2 or 3 bits is based on the work in
[6]. It can be seen that a systemwith 2 or 3 bits has betterMSE
performance than the 1-bit system especially at high SNR.
However, the advantages of 1-bit ADCs is that they do not
require automatic gain control (AGC) and linear amplifiers,
and hence the corresponding radio frequency chains can be
implemented with very low cost and power consumption

FIGURE 11. Normalized MSE comparisons of LRA-LMMSE channel
estimator with known Rh′ under uncorrelated channel (|ρ| = 0).

FIGURE 12. Receiver power consumption as a function of the
quantization bits b.

(a few milliwatts) [7], [11], [39]. As one example, Fig. 12
shows the total receiver power consumption as a function
of the quantization bits b. The calculation of receiver power
consumption is based on the work in [40]

Ptotal = PBB + PLO + Nr (PLNA + PH + 2PM)

+2Nr (cPAGC + PADC), (65)

where PBB, PLO, PLNA, PH, PM and PAGC denote the power
consumption in the baseband processor, local oscillator (LO),
low noise amplifier (LNA), π2 hybrid and LO buffer, Mixer
and AGC, respectively. c is chosen as 0 for the 1-bit system
and 1 for b-bit systems. The power consumption of different
hardware components is given as PBB = 200 mW, PLO =
22.5 mW, PLNA = 5.4 mW, PH = 3 mW, PAGC = 2 mW
and PM = 0.3 mW. The PADC is calculated as

PADC = FOMw ×Mfn × 2b, (66)

where FOMw is 200 fJ/conversion-step at 50MHz bandwidth
and fn is 100 MHz. From the results, it can be seen that
the 1-bit system consumes much less power than the 2-bit
and 3-bit systems in both non-oversampled and oversam-
pled systems. Indeed, the 1-bit oversampled systems have
largely improved the estimation performance and allows the
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estimator to approach the performance of the 2-bit system at
low SNR.

VI. CONCLUSION
In this work, oversampling based low-resolution aware chan-
nel estimators have been proposed for uplink single-cell
large-scale MIMO systems with 1-bit ADCs employed at the
receiver. The Bussgang decomposition is used to derive linear
channel estimators based on different criteria. With oversam-
pling in such systems, it is observed that we can achieve
obvious advantage compared to the non-oversampled system
in terms of the normalizedMSE.Moreover, the LMS adaptive
technique used for channel estimation can largely reduce
the computational cost and has almost the same accuracy as
the LRA-LMMSE channel estimator at low SNR, which is
important to ensure low computational complexity and for
hardware implementation. In addition, we have also derived
Bayesian and general CRBs on MSE, which give theoretical
limits on the performance of the channel estimators. Further-
more, we have proposed an adaptive technique to estimate
the auto-correlation of channel vector, which is important for
practical use. In general, the 1-bit ADCs have the advantage
of energy saving. Our proposed oversampling based channel
estimation, especially the LRA-LMS estimator, increases the
accuracy of estimation while maintaining low computational
cost, which is important for future low cost and low latency
wireless systems.

APPENDIX A
PROOF OF (23)
Recall the optimization problem

WLMMSE = argmin
W

E{||h′ −WyQp ||
2
}. (67)

Taking the partial derivative with respect to WH , we obtain

∂E{||h′ −WyQp ||
2
}

∂WH = −E{h′yHQp
} +WE{yQpy

H
Qp
}. (68)

Inserting (14) into (68), the LMMSE filter is

WLMMSE = E{h′yHQp
}E{yQpy

H
Qp
}
−1

= (E{h′h′H }8̃H
p + E{h

′ñHp })C
−1
yQp

. (69)

Since h′ is uncorrelated with np and nq [11], we have

E{h′ñHp } = E{h′(Apnp + nq)H } = 0. (70)

The resulting LRA-LMMSE channel estimator is

ĥ′LRA-LMMSE = Rh′8̃
H
p C
−1
yQp

yQp . (71)

APPENDIX B
PROOF OF (29)
Defining ε(n) = h̄′

nr (n) − h′nr and inserting it into (29),
we obtain

ε(n+ 1) = ε(n)+ µ8̃nr
p (n)H (ynrQp

(n)− 8̃nr
p (n)h̄′

nr (n))

= ε(n)+ µ8̃nr
p (n)HynrQp

(n)

−µ8̃nr
p (n)H 8̃nr

p (n)(ε(n)+ h′nr )

= (I− µ8̃nr
p (n)H 8̃nr

p (n))ε(n)

+µ8̃nr
p (n)H (ynrQp

(n)− 8̃nr
p (n)h′nr ). (72)

Taking the expected value from ε(n+ 1), we have

E{ε(n+ 1)} = (I− µE{8̃nr
p (n)H 8̃nr

p (n)})E{ε(n)}. (73)

With the eigenvalue decomposition E{8̃nr
p (n)H 8̃nr

p (n)} =
Q0QH , (73) can be written as

QHE{ε(n+ 1)} = QH (I− µQ0QH )E{ε(n)}

= (I− µ0)QHE{ε(n)}, (74)

where Q is an unitary matrix and 0 is a diagonal
matrix, whose diagonal entries are the eigenvalues of
E{8̃nr

p (n)H 8̃nr
p (n)}. With u(n) = QHE{ε(n)}, (74) is then

u(n+ 1) = (I− µ0)u(n). (75)

Decoupling the matrix form into individual elements we get

unt (n+ 1) = (1− µγnt )unt (n)

= (1− µγnt )
τ−lwin+1unt (1), nt = 1, . . . ,Nt .

(76)

In order for the LRA-LMS to converge, we must have

|1− µγnt | < 1. (77)

The stability condition is then given by

0 < µ <
2
γmax

, (78)

where γmax is the largest eigenvalue of E{8̃
nr
p (n)H 8̃nr

p (n)}.

APPENDIX C
PROOF OF LEMMA 1
The biasness of the adaptive estimator R̂h′ is firstly examined.
The expected value of ĥ′(n) in (33) is

E{ĥ′(n)} = E{(x′Tp (n)⊗ INr ⊗ Z′u)+yQ(n)}. (79)

From the Bussgang theorem (32) can be decomposed as

yQ(n) = Q
(
(x′Tp (n)⊗ INr ⊗ Z′u)h′ + n(n)

)
= A′p(n)((x′

T
p (n)⊗ INr ⊗ Z′u)h′ + n(n))+ nq(n),

(80)

where A′p(n) is the linear operator and nq(n) is the statisti-
cally equivalent quantizer noise. Substituting (80) into (79)
and with 8′(n) = (xT (n)⊗ INr ⊗ Z′u), we obtain

E{ĥ′(n)} = E{8′(n)+(A′p(n)(8′(n)h′ + n(n))+ nq(n))}

= E{8′(n)+A′p(n)8′(n)h′}

+E{8′(n)+A′p(n)n(n)} + E{8′(n)+nq(n)}. (81)

Since 8′(n) and n(n) are uncorrelated and E{n(n)} = 0,
we have

E{8′(n)+A′p(n)n(n)} = 0. (82)
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Similarly,

E{8′(n)+nq(n)} = 0. (83)

Equation (81) can be further simplified as

E{ĥ′(n)} = E{8′(n)+A′p(n)8′(n)}h′. (84)

The matrix A′p(n) depends on Rh′ such that the expectation
in (84) can be different from the identity matrix especially for
channels without normalization, which verifies that (33) has
an unknown bias [37].With the analysis above, it is concluded
that the adaptive estimator R̂h′ is also biased, which shows
that the estimation procedures together with the proposed
LRA channel estimators are biased.
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