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ABSTRACT In this paper, a new spectral scaling memoryless Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm is developed for solving large scale unconstrained optimization problems, where the scaling
parameter is chosen so as to minimize all the eigenvalues of search direction matrices. The search directions
in this algorithm are proved to satisfy the approximate Dai-Liao conjugate condition. With this advantage
of the search directions, a scaling memoryless BFGS update formula is constructed and an algorithm is
developed by incorporating acceleration strategy of line search and restart criterion. Under mild assumptions,
global convergence of the algorithm is proved. Numerical tests demonstrate that the developed algorithm is
more robust and efficient in solving large scale benchmark test problems than the similar ones in the literature.

INDEX TERMS Computational efficiency, convergence of numerical methods, optimization methods,
algorithm design and analysis.

I. INTRODUCTION
Optimization models have found wider applications in the
fields of engineering and management sciences [1], [2]. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is one
of the most efficient quasi-Newton algorithms for solving
medium scale unconstrained optimization models [3]. Owing
to its good local and global convergence and self-correcting
quality [4]–[6], it is particularly suitable for solving the
small-sized and medium-sized unconstrained optimization
problems [7], [8]. Specifically, a mathematical model of
unconstrained optimization problems can be written as

min f (x), x ∈ Rn, (1)

where f : Rn → R is continuously differentiable. The
BFGS method produces an iterate format for solving (1) by
generating a sequence {xk}, specified by

xk+1 = xk + αkdk , k = 0, 1, . . . , (2)
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where

dk = −Hkgk , Hk = B−1k ,

Bk+1 = Bk −
BksksTk Bk
sTk Bksk

+
ykyTk
yTk sk

, B0 = I ,

sk = xk+1 − xk ,
yk = ∇f (xk+1)−∇f (xk ) , gk+1 − gk ,

(3)

and αk is a step size computed by a line search. It has been
shown that Bk ∈ Rn×n in formula (3) is an approximation of
the Hessian matrix ∇2 f (xk ) for k ≥ 1. Most importantly,
if yTk sk > 0, then for all k , Bk ∈ Rn×n in formula (3)
is symmetric and positive definite. Therefore, dk in (3) is
a descent direction of the objective function f , as well as
being close to the Newton direction. In general, the condition
yTk sk > 0 is guaranteed by the Wolfe-Powell line search.

However, some numerical experiences [7]–[9] have
showed that the BFGS algorithm may be not efficient enough
due to a poor approximation to the Hessian matrix at the
initial point, or due to the ill-conditioning of the approximate
Hessian matrices in the iterate process. To overcome the
drawbacks of the BFGS algorithm, some modified versions
have been proposed in the literature to improve its numerical
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efficiency and robustness [10]–[14]. In order to obtain a more
effective algorithm, two aspects are generally studied. The
first focuses on innovation of line search rules. In addition to
the classical Wolfe line search and Armijo search rules, many
effective line search rules have been proposed to find suitable
step lengths in recent years [15], [16]. Another is focused on
determination of efficient search directions. Exactly due to
meticulous choices of step lengths and search directions, this
type of algorithms are often more efficient than the heuristic
algorithms [17]–[20]. Particularly, as shown in the existing
results [7], [9], [13], [14], [21], the scaling factor in the update
formula of BFGS plays an important role in approximating
the Hessian matrix and improving efficiency of algorithms.
In this paper, we mainly investigate how to determine search
directions by this scaling strategy.

Note that the scaling strategy in the BFGS update formula
has been regarded as one of the main approaches to avoid an
ill-conditional Bk [9] in (3). It includes two ways: one is to
multiply the approximate Hessian matrix by an appropriate
scalar before it is updated in the BFGS method. Another is
by properly scaling one or two terms in the BFGS update
formula. Specifically, if the third term in the second equality
in (3) is multiplied by a scaling parameter γk , then it is called
one-parameter scaling BFGS update formula:

Bk+1 = Bk −
BksksTk Bk
sTk Bksk

+ γk
ykyTk
yTk sk

. (4)

In this case, the inverse of Bk+1, Hk+1, reads

Hk+1 = Hk −
HkyksTk + sky

T
k Hk

yTk sk

+

(
1
γk
+
yTk Hkyk
yTk sk

)
sksTk
yTk sk

. (5)

Clearly, if γk = 1, then (4) is exactly the standard BFGS
update formula. One of our goals in this paper is to find a bet-
ter scaling parameter such that the corresponding algorithm
is more efficient and robust.

For many large-scale practical optimization models
[22], [23], the (scaling) BFGS algorithms like (3) and (4) are
often powerless because they are associated with solution of
a large-scale system of linear equations Bkdk = −gk , as well
as computation and storage of matrices Bk with large sizes.
Therefore, another goal in this paper is to modify the scaling
BFGS algorithms such that only gradient information in the
optimization problem (1) is employed to compute the search
directions and the step sizes without needs of computing and
storing matrices [15]. In summary, this paper intends to study
a single-parameter scaling memoryless BFGS algorithm for
solving large scale unconstrained optimization problems.

The rest of this paper is organized as follows. In next
section, we review the literature related to this study.
Section III is devoted to development of a scalingmemoryless
BGFS algorithm based on acceleration scheme and restart
criterion. In Section IV, global convergence of the algorithm
is established. Numerical tests and discussion are conducted
in Section V to show advantages of our algorithm. Along with

suggestions for future research, some conclusions are drawn
in the last section.

II. LITERATURE REVIEW
The BFGS algorithm was first proposed in 1970 by Broyden,
Fletcher, Goldfarb and Shanno [24]. Owing to its fast con-
vergence speed, a great number of its variants have been
studied. Biggs [13] proposed a modified BFGS algorithm
by introducing a scaling parameter such that an improved
estimate of the second directional derivative is obtained.
Yuan [14] presented another modified BFGS algorithm such
that the updated approximate Hessian matrix satisfies the
most recent quasi-Newton condition: the gradient value of the
local quadratic model matches that of the objective function
at the previous iterate. Cheng and Li [7] proposed a spectral
scaling BFGS method by scaling the quasi-Newton equation,
which has a self correcting property such that its numer-
ical behavior is improved. However, global convergence
was proved in [7] only for uniformly convex optimization
problems.

To make the BFGS methods applicable to large scale
optimization models, many memoryless BFGS updating
formulas have been proposed. For more details, one can
see [3], [25]–[32] and the references therein. For example,
Livieris et al. [25] presented a new hybrid conjugate gradi-
ent method based on convex hybridization of the conjugate
parameters of DY and HS+ by adapting the quasi-Newton
philosophy. The computation of the hybrization parameter
is obtained by minimizing the distance between the hybrid
conjugate gradient direction and the self-scaling memoryless
BFGS direction. Babaie-Kafaki and Ghanbari [26] proposed
a nonlinear conjugate gradient method by minimizing the
distance between the search direction matrix of the Dai-Liao
method and the scaled memoryless BFGS update matrix in
the Frobenius norm. Andrei [27] presented an accelerated
scaled memoryless BFGS preconditioned conjugate gradi-
ent algorithm for solving unconstrained optimization prob-
lems by using the Powell’s nonnegative restriction of the
conjugate gradient. The basic idea was combination of the
scaled memoryless BFGS method with the preconditioning
technique in the frame of the conjugate gradient method.
Andrei [28] and Yao and Ning [29] proposed two conjugate
gradient methods, where the search direction was given by
a symmetrical Perry matrix and was associated with a pos-
itive parameter determined by minimizing the distance of
this matrix and the self-scaling memoryless BFGS matrix in
the Frobenius norm. Apostolopoulou et al. [30] presented a
curvilinear algorithmic model for training neural networks
which was based on modifications of the memoryless BFGS
method by incorporating a curvilinear search. In summary,
the above-mentioned algorithms have global convergence and
satisfactory numerical efficiency, but stability of the algo-
rithms cannot be guaranteed. In this paper, we will develop
a more stable algorithm by clustering all the eigenvalues of
the approximate Hessian matrices to obtain a better scaling
parameter in the memoryless BFGS update formula.
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It is noted that Babaie-Kafaki [3], [31] started with con-
trolling the condition number of the BFGS update matrix to
developmore efficient algorithms. Actually, it was shown that
the algorithms in [3], [31] are more stable compared with the
similar ones. Very recently, Babaie-Kafaki and Ghanbari [32]
further suggested a linear combination of the search direc-
tion by the memoryless BFGS technique with that by the
Hestenes-Stiefel method. As a result, a one-parameter exten-
sion of the Hestenes-Stiefel method was proposed in [32].
However, unlike the analysis of the condition number of
matrices in [3], [31], [32], we will use a measure function in
this paper to conduct clustering analysis of all the eigenvalues
of the approximate Hessian matrix, not only the maximum
and minimum eigenvalues.

In summary, as a new scaling and memoryless BFGS algo-
rithm, our algorithm has advantages of lower storage, lower
computational cost and more stable numerical performance.
Especially, we will prove that the used scaling parameter
in our method can minimize all the eigenvalues of search
direction matrices. Then, such an advantage of this parameter
will be incorporated in developing an efficient algorithm
for solving large scale optimization problems. We will also
prove that our algorithm is globally convergent and show by
numerical tests that it is more efficient and stable than the
similar ones available in the literature.

III. DEVELOPMENT OF ALGORITHM
In this section, our aim is to develop a single-parameter
scaling memoryless BFGS algorithm to solve large scale
optimization problems.

In order to analyze properties of the BFGS methods, Byrd
and Nocedal [33] introduced a measure function:

ϕ(A) = tr(A)− ln(det(A)), (6)

where A is a symmetric positive definite search direction
matrix in the quasi-Newton method, tr denotes the trace
of this matrix, and det represents its determinant. From the
definition of ϕ, we know that for a given matrix A, ϕ(A) is
involved with all the eigenvalues of A, not only the smallest or
the largest ones. In this paper, we are concerned with how to
choose the parameter γk in (4) such that ϕ(Bk+1) is minimized
for any k . We first answer whether Bk+1 in (4) is positive
definite or not in the case that Bk is positive definite.
Proposition 1: Suppose that the stepsize αk is computed by

the Wolfe line search (16). If Bk is symmetric positive definite
and γk > 0, then Bk+1 in (4) is symmetric positive definite.

Proof: Similar to the proof of Proposition 2.1 in [8]. �
By Proposition 1, in order to minimize all the eigenvalues

of Bk+1, we can choose a parameter γk > 0 such that

γk = arg min
γk>0

ϕ(Bk+1). (7)

We can prove the following result.
Proposition 2: Denote

γk =
yTk sk
‖yk‖2

. (8)

Then, γk in (8) solves Problem (7).
Proof: Notice that

tr(Bk+1) = tr(Bk )−
‖Bksk‖2

sTk Bksk
+ γk
‖yk‖2

yTk sk
, (9)

and

det(Bk+1) = γk
yTk sk
sTk Bksk

det(Bk ). (10)

Consequently,

ϕ(Bk+1) = tr(Bk+1)− ln (det(Bk+1))

= tr(Bk )−
‖Bksk‖2

sTk Bksk
+ γk
‖yk‖2

yTk sk

− ln

(
γk

yTk sk
sTk Bksk

det(Bk )

)

= tr(Bk )−
‖Bksk‖2

sTk Bksk
+ γk
‖yk‖2

yTk sk

− ln γk − ln

(
yTk sk
sTk Bksk

)
− ln(det(Bk )). (11)

Therefore,

dϕ
dγk
=
‖yk‖2

yTk sk
−

1
γk
. (12)

The first-order optimality condition of Problem (7) yields

dϕ
dγk
= 0, γk > 0.

From
dϕ
dγk
= 0, it follows that

‖yk‖2

yTk sk
−

1
γk
= 0,

i.e.

γk =
yTk sk
‖yk‖2

.

Clearly, γk > 0. The proof has been completed. �
Remark 1: Cheng and Li [7] also obtained the same

scaling parameter as in (8) by minimizing ‖sk − γkyk‖2.
Proposition 2 shows that such a γk also minimizes ϕ(Bk+1).
Thus, its condition number is also minimized.
Clearly, a smaller condition number of search direction

matrices can theoretically ensure stability of algorithms.
With the advantages of γk stated in Remark 1, we modify

the scaling BFGS update formula (4) as:

Bk+1 = I −
sksTk
sTk sk
+ γk

ykyTk
yTk sk

. (13)

Compared with (4), (13), (4) is more applicable to solve large
scale optimization problems since it no longer needs to solve
a large scale system of linear equations to compute a search
direction.
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Specifically, let γk be defined by (8). We set Hk = I in (5)
and rewrite the inverse matrix of Bk+1 as

Hk+1 = I −
yksTk + sky

T
k

yTk sk
+

(
1
γk
+
yTk yk
yTk sk

)
sksTk
yTk sk

. (14)

Consequently, at the iterate point xk+1, we obtain a search
direction:

dk+1 = −gk+1 +

(
yTk gk+1
yTk sk

− 2
‖yk‖2

yTk sk

sTk gk+1
yTk sk

)
sk

+
sTk gk+1
yTk sk

yk . (15)

Since theWolfe line search can ensure thatHk+1 is positive
definite, it is used to develop an algorithm together with the
search direction being computed by (15). Specifically, at the
k-th iteration, we choose a step size αk such that it satisfies
the following conditions:{

f (xk + αkdk ) ≤ f (xk )+ ραkg(xk )T dk
g(xk + αkdk )T dk ≥ σg(xk )T dk .

(16)

Furthermore, if the second inequality in (16) is replaced by

| g(xk + αkdk )T dk |≤ σ | g(xk )T dk |, (17)

then the step size αk satisfies the strong Wolfe condi-
tions [34].

With the above preparation, we are in a position to state the
overall framework of our algorithm.

Algorithm 1 (Single-Parameter Scaling Memoryless BFGS
Algorithm(SM-BFGS))

Step 0 (Initialization). Choose an initial point x0 ∈ Rn and
an initial positive definite matrix H0. Choose the constants
σ , ρ with 0 < σ < ρ < 1 and ε > 0. Compute g0 = ∇f (x0),
d0 = −g0. Set k := 0.
Step 1 (Termination). Test a criterion for stopping the

iterations. If ‖gk‖ < ε, then the algorithm stops; Otherwise,
go to Step 2.
Step 2 (Line Search). Detemine a step size αk > 0,

satisfying the Wolfe line search conditions (16), or the strong
Wolfe condition (17).
Step 3 Compute āk = αkgTk dk and b̄k = −αky

T
k dk .

Step 4 (Acceleration). If b̄k > 0, then set ξ := −āk/b̄k
and update xk+1 := xk + ξαkdk ; Otherwise, update xk+1 :=
xk +αkdk . Compute fk+1 = f (xk ) and gk+1 = ∇f (xk+1). Set
sk := xk+1 − xk , yk := gk+1 − gk .
Step 5 (Search Direction). Compute the scaling parameter

γk , Hk , and dk+1 by (8), (14) and (15), respectively.
Step 6 (Powell restart criterion). If |gTk+1gk | >

0.2‖gk+1‖2, then set dk+1 := −gk+1.
Step 7 (Update). Set k := k + 1, and return to Step 1.

Remark 2: Among the existing memoryless scaling meth-
ods, the scaling parameters, are obtained by the secant equa-
tion or by directly minimizing the condition number of the

inverse Hessian matrix [3], [31], [35], [36]. In Algorithm 1,
the scaling parameter is computed by (8), whose intrinsic
features are given by Byrd and Nocedal’s measure function.
Since such a measure can achieve better eigenvalue cluster-
ing than the other methods, Algorithm 1 can be more stable
than the similar ones.
Remark 3: Steps 3 and 4 are the same accelerating scheme

as in [37].
In the end of this section, we further prove that the search

direction sequence { dk+1 } generated by Algorithm 1 has the
following properties.
Proposition 3: Suppose that the line search satisfies the

Wolfe line search conditions (16). Then, dk+1 given by (15)
is descent for any k.

Proof: Since the step length αk satisfies the Wolfe line
search conditions, it follows that yTk sk > 0. From (15),
we have

gTk+1dk+1 = −‖gk+1‖
2
+ 2

yTk gk+1 · s
T
k gk+1

yTk sk

− 2
‖yk‖2

yTk sk

(sTk gk+1)
2

yTk sk
.

Since for any u, v ∈ Rn, uT v ≤ 1
2 (‖u‖

2
+ ‖v‖2), if we set

u =
1
√
2
(yTk sk )gk+1, v =

√
2
(
sTk gk+1

)
yk ,

then

yTk gk+1 · s
T
k gk+1

yTk sk

=
yTk gk+1 · y

T
k sk · s

T
k gk+1

(yTk sk )
2

=

(
1
√
2

(
yTk sk

)
gk+1

)T (√
2(sTk gk+1)yk

)
(
yTk sk

)2
≤

1
2

(
1
2

(
yTk sk

)2
‖gk+1‖2 + 2(sTk gk+1)

2
‖yk‖2

)
(yTk sk )

2

=
1
4
‖gk+1‖2 +

(sTk gk+1)
2

(yTk sk )
2
‖yk‖2.

Therefore,

gTk+1dk+1 ≤ −‖gk+1‖
2
− 2
‖yk‖2

yTk sk

(sTk gk+1)
2

yTk sk

+ 2

(
1
4
‖gk+1‖2 +

(sTk gk+1)
2(

yTk sk
)2 ‖yk‖2

)

≤ −
1
2
‖gk+1‖2.

We have proved that dk+1 is a sufficiently descent direction.
�
Proposition 4: Suppose that the line search satisfies the

Wolfe line search condition (16). Then, dk+1 given by (15)
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satisfies an approximate Dai-Liao conjugate condition:

yTk dk+1 = −tk (s
T
k gk+1). (18)

Proof: Actually,

yTk dk+1 = −y
T
k gk+1 − 2

‖yk‖2

yTk sk

sTk gk+1
yTk sk

· yTk sk

+
yTk gk+1
yTk sk

yTk sk +
sTk gk+1
yTk sk

yTk yk

= −
‖yk‖2

yTk sk
sTk gk+1 = −tk (s

T
k gk+1),

where tk =
‖yk‖2

yTk sk
> 0. We have proved the result. �

The properties of Algorithm 1 in Propositions 3 and 4 are
useful to its convergence analysis in next section.

IV. CONVERGENCE ANALYSIS
In this section, we will prove global convergence of
Algorithm 1.

Since global convergence of the spectral scaling BFGS
method was only proved for uniformly convex optimization
problems in [7], we first simply prove that the scaling BFGS
algorithm corresponding to the scaling parameter γk in (8)
is globally convergent for any general smooth non-convex
objective function, rather than a uniformly convex one. For
readability, we state this spectral scaling BFGS algorithm as
follows.

Algorithm 2 (Spectral Scaling BFGS Algorithm)
Step 0(Initialization). Choose an initial point x0 ∈ Rn and

an initial positive definite matrix H0. Choose the constants σ ,
ρ with 0 < σ < ρ < 1 and stop tolerance ε > 0. Compute
g0 = ∇f (x0). d0 = −g0. Set k := 0.
Step 1 (Termination). Test a criterion for stopping the

iterations. If ‖gk‖ < ε, then the algorithm stops. Otherwise,
go to Step 2.
Step 2 (Line search). Compute a step size αk > 0 such that

the Wolfe line search conditions (16) is satisfied.
Step 3. Compute the scaling parameter γk using (8).
Step 4 (Update). Updating the inverse approximate Hes-

sian Hk by (5).
Step 5 (Search direction). Compute the search direction by

dk+1 = −Hk+1gk+1.
Step 6 (Update). Set k := k + 1. Go to Step 1.

As done in [7], we also need the following assumption.
Assumption 1: Assume that the level set S = {x : f (x) ≤

f (x0)} is bounded, i.e., there exists a positive constant B such
that for all x ∈ S, ‖x‖ < B.
Under Assumption 1, it follows from the first Wolfe con-

dition (16) that the sequences {f (xk )} is not increasing. Thus,

lim
k→∞

f (xk )

exists. Before statement of convergence result, we first prove
the following results.

Lemma 1: Suppose that the inverse approximate Hessian
matrix is computed by (5). Then, the search direction dk+1 =
−Hkgk+1 in Step 5 of Algorithm 2 is descent.

Proof: Left-multiplying gTk+1 on both sides of dk+1 =
−Hkgk+1 yields

gTk+1dk+1 = −g
T
k+1Hkgk+1.

By Proposition 1, Bk is positive definite. Since Hk is the
inverse of Bk , Hk is positive definite. It is seen that dk is a
descent direction. �
Lemma 2: Suppose that the scaled Bk+1 is determined

by (4), where γk is computed by (8). Then,

tr(Bk+1) ≤ tr(B0)+ (k + 1), (19)

and
k∑
i=0

‖Bisi‖2

sTi Bisi
< tr(B0)+ (k + 1). (20)

Proof: From (9), we have

tr(Bk+1) = tr(Bk )−
‖Bksk‖2

sTk Bksk
+ γk
‖yk‖2

yTk sk

= tr(B0)−
k∑
i=0

‖Bisi‖2

sTi Bisi
+

k∑
i=0

γi
‖yi‖2

yTi si

= tr(B0)−
k∑
i=0

‖Bisi‖2

sTi Bisi
+

k∑
i=0

yTi si
‖yi‖2

‖yi‖2

yTi si

= tr(B0)−
k∑
i=0

‖Bisi‖2

sTi Bisi
+ (k + 1).

Since Bk+1 is positive definite and tr(Bk+1) > 0, we have

k∑
i=0

‖Bisi‖2

sTi Bisi
< tr(B0)+ (k + 1),

which ends the proof of the desired result. �
Remark 4: If B0 = I , then tr(Bk+1) ≤ n+ (k + 1) and

k∑
i=0

‖Bisi‖2

sTi Bisi
< n+ (k + 1).

Remark 5: Note that the inequality (19) reveals that the
largest eigenvalue of Bk+1 is strictly less than tr(B0)+(k+1).
Therefore, the spectral scaling BFGS method with γk in (8)
has a good self-correcting property subject to the trace.
In other words, it can be more efficient than the other BFGS
algorithms available in the literature by correcting the largest
eigenvalue.
Lemma 3: If γk ≥ m, for k = 1, 2, . . ., where m > 0 is

a constant, then there is a constant c > 0 such that for all k
sufficiently large,

k∏
i=0

αi ≥ ck . (21)

Proof: Similar to the proof of Lemma 3.3 in [8].
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Remark 6: If B0 = I , then

k∏
i=0

αi ≥
mk+1(1− σ )k+1(
1
n
(n+ k + 1)

)n .
With the results in Lemmas 1, 2 and 3, we can prove global

convergence of Algorithm 2.
Theorem 1: Let {xk} be any sequence generated by

Algorithm 2. Under Assumption 1, it holds that

lim inf
k→∞

‖gk‖ = 0. (22)

Proof: Assume that for all k , ‖gk‖ > γ > 0. Note that
f is bounded from below and Bksk = αkBkdk = −αkgk .
Thus, αk =

‖Bk sk‖
‖gk‖

. From the first inequality in the Wolfe

conditions (16), it follows that

∞∑
k=0

(
−sTk gk

)
<∞.

The following proof is similar to that of Theorem 3.1 in [38].
For completeness, we present this proof in detail.

∞ >

∞∑
k=0

(
−sTk gk

)
=

∞∑
k=0

1
αk
sTk Bksk =

∞∑
k=0

‖gk‖
‖Bksk‖

sTk Bksk

=

∞∑
k=0

sTk Bksk
‖Bksk‖2

‖gk‖‖Bksk‖

≥ γ 2
∞∑
k=0

αk
sTk Bksk
‖Bksk‖2

.

By geometric arithmeticmean inequality, for any ζ > 0, there
exists an integer k0 > 0 such that for any positive integer q,
it holds that

q

 k0+q∏
k=k0+1

αk
sTk Bksk
‖Bksk‖2

1/q

≤

k0+q∑
k=k0+1

αk
sTk Bksk
‖Bksk‖2

≤ ζ.

Thus,  k0+q∏
k=k0+1

αk

1/q

≤
ζ

q

 k0+q∏
k=k0+1

‖Bksk‖2

sTk Bksk

1/q

≤
ζ

q2

k0+q∑
k=k0+1

‖Bksk‖2

sTk Bksk

≤
ζ

q2

k0+q∑
k=0

‖Bksk‖2

sTk Bksk

≤
ζ

q2
(tr(B0)+ (k0 + q+ 1)), (23)

where the last inequality follows from Lemma 2. As q→∞,
the last part of (23) converges to zero. Therefore, k0+q∏

k=k0+1

αk

1/q

≤ 0,

which contradicts the result in Lemma 3. The proof of
global convergence for a general non-convex problem is
completed. �

We now come back to establish the global convergence of
Algorithm 1, the core algorithm developed in this paper.

We first make the following mild assumption.
Assumption 2: In some neighborhood N of �, f is contin-

uously differentiable and its gradient is Lipschitz continuous,
namely, there exists a constant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ �. (24)

Under Assumptions 1 and 2, there exist constants B > 0
and 0 ≥ 0 such that

‖sk‖ ≤ B, ‖g(x)‖ ≤ 0, ∀ x ∈ �.

Lemma 4: Under Assumptions 1 and 2, if the line search
satisfies the Wolfe conditions (16), then for all k > 0,
the following inequality holds:

αk ≥
(1− σ )|gTk dk |

L‖dk‖2
. (25)

Proof: From the Wolfe conditions (16), it follows that

(σ − 1)gTk dk ≤ (gk+1 − gk )T dk ≤ αkL‖dk‖2.

Since dk is a descent direction and σ < 1, the inequality (25)
has been proved. �
Lemma 5: Let {dk} be any sequence generated by

Algorithm 1. Under Assumptions 1 and 2, it holds that
∞∑
k=0

(gTk dk )
2

‖dk‖2
< +∞. (26)

Proof: From the Wolfe condition (16) and Lemma 4,
we get

f (xk )− f (xk+1) ≥ −ραkgTk dk ≥ ρ
(1− σ )(gTk dk )

2

L‖dk‖2
.

Therefore, from Assumption 2, we get the Zoutendijk condi-
tion (26) [39]. �
Lemma 6: Let {dk} be any sequence generated by

Algorithm 1. Under Assumptions 1 and 2, if∑
k≥0

1
‖dk‖2

= ∞, (27)

then

lim inf
k→∞

‖gk‖ = 0. (28)

Proof: Similar to the proof of Lemma 3.1 in [40], we can
prove Lemma 6. �
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Theorem 2: Let {xk} be any sequence generated by
Algorithm 1. Under Assumptions 1 and 2, if there exists τ > 0
such that yTk sk > τ , then

lim inf
k→∞

‖gk‖ = 0. (29)

Proof: By Assumptions 1 and 2, we have

‖yk‖ = ‖gk+1 − gk‖ ≤ L‖sk‖ ≤ BL. (30)

Suppose that gk 6= 0 for all k ≥ 1. Otherwise, a stationary
point is obtained. From Assumptions 1 and 2, it follows that

‖dk+1‖ ≤ ‖gk+1‖ +
|yTk gk+1|

|yTk sk |
‖sk‖

+ 2
‖yk‖2

|yTk sk |

|sTk gk+1|

|yTk sk
|‖sk‖ +

‖sTk gk+1|

|yTk sk |
‖yk‖

≤ ‖gk+1‖ +
‖yk‖‖gk+1‖

τ
‖sk‖

+ 2
‖yk‖2

τ

‖sk‖2‖gk+1‖
τ

+
‖sk‖‖gk+1‖‖yk‖

τ

≤ 0 + 2
L0B2

τ
+ 2

L20B4

τ 2
= M . (31)

Consequently, the condition (27) is true. By Lemma 6,
we know that (29) is true and the global convergence is
proved. �

V. NUMERICAL TESTS AND DISCUSSION
In this section, we report the numerical performance of
Algorithm 1 (SM-BFGS), in comparison with similar algo-
rithms available in the literature.

We test all these algorithms by using them to solve
750 large-scale test problems from [41], where the dimension
of each benchmark problem changes from 1000 to 10000with
a step length 1000. To further validate global convergence of
the algorithms, the same initial point, as given in the literature,
is used. To show the advantages of our search directions in
Algorithm 1, the step length in all the tested algorithms are
determined by the Wolfe line search for a fair comparison,
where we take ρ = 0.0001 and σ = 0.8. Each algorithm
stops if the condition ‖gk‖ ≤ 10−6 is satisfied or if the num-
ber of iterations exceeds 104. It is noted that in Algorithm 1,
a strategy of the line search acceleration is used to improve
its numerical performance.

All the numerical results are presented by a frequently-used
approach to comparison of algorithm’s performance [42].
Specifically, let f Ai and f Bi be the optimal value found
by Algorithms A and B for the i-th test problem
(i = 1, 2, . . . , p), respectively. For the i-th test problem,
we say the performance of Algorithm A is better than that
of Algorithm B if:

|f Ai − f
B
i | < 10−3,

and the number of iterations, or the number of function-
gradient evaluations, or the CPU time of Algorithm A is less
than that of Algorithm B.

FIGURE 1. Comparison of similar BFGS-type algorithms.

To intuitively display numerical performance of all the
tested algorithms, we use the Dolan and Moré performance
profile graphs to analyze their numerical results, including
the number of iterations, the total number of evaluating the
objective function and its gradient, and the consumed CPU
time when each algorithm stops. Specifically, in these perfor-
mance profile graphs (see, for example, Figures 1 and 2), the
horizontal axis represents the performance analysis factor τ ,
which can reflect efficiency of each algorithm in solving all
the 750 test problems. The vertical axis is the probability P
of each algorithm (measured by the proportion of the test
problems) that a certain performance ratio is within a factor
τ ∈ R of the best possible ratio.

All codes of the computer procedures are written in Fortran
90, and are implemented in Windows system with 2.4 GHz
CPU processor, 4 GB RAM memory.
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FIGURE 2. Comparison of similar conjugate gradient algorithms.

In the first round of tests, since Algorithm 1 can be
regarded as an extended BFGS algorithm, we compare
our algorithm with the standard BFGS, B-BFGS in [13]
and Y-BFGS in [14] with the memoryless technique. For
readability, we present the scaling parameters in [13], [14]
as follows.

γ Bk =
6

yTk sk
(f (xk )− f (xk+1)+ sTk gk+1)− 2,

γ Yk =
2

yTk sk
(f (xk )− f (xk+1)+ sTk gk+1). (32)

In all the four algorithms, the initial matrix H0 = I for
solving any test problem. In Figure 1, we show the efficiency
comparison among SM-BFGS and the other three types of
BFGS algorithms.

TABLE 1. Pairwise comparison between Algorithm 1 and another
algorithm.

From the numerical results in Figure 1, it is clear that:
(1) In terms of the number of iteration shown in Figure 1(a),

our algorithm SM-BFGS can solve about 71% of the test
problems with the least number of iterations. In contrast,
BFGS, B-BFGS andY-BFGS only solve about 56%, 60% and
55% of these problems, respectively.

(2) In terms of the number of function-gradient evaluations
shown in Figure 1(b), SM-BFGS performs the best in solving
about 63% of the test problems, and for the other three
algorithms, the proportions of the test problems with the least
number of evaluating functions and gradients are 53%, 52%
and 58%, respectively.

(3) With respect to the consumed CPU time shown
in Figure 1(c), our algorithm spends the shortest CPU time
in solving about 75% of the problems, while the other three
algorithms have a shorter running time on about 64% of these
problems.

In one word, our algorithm (SM-BFGS) can solve the test
problems as many as possible within less number of iteration,
less number of function-gradient evaluations and less CPU
time. Therefore, it is concluded that SM-BFGS outperforms
the similar three types of BFGS algorithms.

In the second round of tests, since Algorithm 1 can be
regarded as a modified conjugate gradient algorithm, we
compare Algorithm 1 (SM-BFGS) with the similar conjugate
gradient algorithms available in the literature. Particularly,
recall that in Proposition 4, we have proved that the direc-
tions in our algorithm also satisfy the approximate Dai-Liao
conjugate condition (18). In the following, SM-BFGS is com-
pared with other three Dai-Liao types of conjugate gradient
algorithms, which were recently published in [26], [43], [44],
respectively. For simplicity, we denote them DL1+ [43],
DL3+ [44] and DL4+ [26], respectively. Efficiency
comparison of the four algorithms is presented in Figure 2.

From the numerical results in Figure 2, it is easy to see that:
(1) With regard to the number of iterations shown

in Figure 2(a), Algorithm 1 (SM-BFGS) can solve about 90%
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TABLE 2. Advantages of OM-BFGS compared with other six algorithms.

of the test problems with the least number of iterations, while
DL1+, DL3+ and DL4+ solve only about 18%, 20% and
10% of these problems, respectively.

(2) With regard to the number of function-gradient evalua-
tion shown in Figure 2(b), the algorithms SM-BFGS, DL1+,
DL3+, and DL4+ respectively solve about 37%, 47%, 21%,
and 47% of the test problems with the least number of evalu-
ating the objective function and its gradient.

(3) In terms of performance profile of the consumed CPU
time shown in Figures 2(c), SM-BFGS solves about 83%
of the test problems with the least CPU time, while DL1+,
DL3+ and DL4+ can solve about 60%, 62% and 40% of
these problems with the least CPU time, respectively.

In summary, Figures 2(a) and 2(c) indicate that
Algorithm 1 (SM-BFGS) can solves the test problems as
many as possible with less number of iterations and less CPU
time than the other three algorithm.

In order to further justify the advantages of Algorithm 1,
we make pairwise comparison between Algorithm 1 and any
one of the other six algorithms. The pairwise comparison
results are presented in Table 1, where we denote NI, NE and
CT the number of iteration, the number of evaluating the
objective function and its gradient and the consumed CPU

time after termination, respectively.More intuitively, Figure 3
displays the differences of numerical performance in Table 1
between Algorithm 1 and another algorithm. In Figure 3,
each figure contains three groups of bars, which represent
the three types of numerical performances: the number of
iterations, the number of function-gradient evaluations and
the consumedCPU time. Each group consists of the three bars
with different colors: the blue bar represents the number of the
test problems solved by Algorithm 1 with better numerical
performance, the red bar represents the number of these
problems solved by another algorithm with better numerical
performance, and the orange bar represents the number of
the test problems when the numerical performance of the
compared algorithms is the same.

Figure 3 clearly demonstrates that in the pairwise
comparison, Algorithm 1 (SM-BFGS) is better than any one
of the other six algorithms. For example, between SM-BFGS
and DL4+, it can be seen that:
(1) In terms of the number of iterations, SM-BFGS

achieves less number of iterations for the 617 problems,
DL4+ is better than SM-BFGS for the 14 problems, and for
the rest of 48 problems, SM-BFGS and DL4+ have the same
number of iterations.

85672 VOLUME 8, 2020



J. Lv et al.: Efficient Single-Parameter SM-BFGS Algorithm

FIGURE 3. Comparison results between SM-BFGS and other six
algorithms.

(2) In terms of the number of evaluating the objective func-
tion and its gradient, SM-BFGS wins for the 456 problems,
DL4+ performs better for the 195 problems, and for the
rest of 28 problems, SM-BFGS and DL4+ have the same
numerical performance.

(3)With regard to the consumedCPU time, SM-BFGS runs
faster than DL4+ for the 436 problems, DL4+ is faster only
for the 61 problems, and for the rest of 182 problems, they
perform the same.

On the whole, the second round of tests also shows
Algorithm 1 is more stable and more efficient in solving the
large scale benchmark test problems.

In the last round of tests, we report the numerical results
in Table 2 as all the seven algorithms are used to solve
the benchmark test problems with dimension of over 10000
(DIM).

The underlined results in Table 2 are the best ones among
the seven algorithms. From the viewpoint of less number
of iterations, less number of evaluating the objective func-
tion and its gradient, or less consumed CPU time after
termination, our algorithm (SM-BFGS) also outperforms all
the other six ones as they are used to solve large scale
optimization problems with dimension of over 10000.

VI. CONCLUSION AND FUTURE RESEARCH
In this paper, we have proposed a new scaling memory-
less BFGS algorithm for solving large scale unconstrained
optimization problems. We have proved that the used scal-
ing parameter can minimize all the eigenvalues of search

direction matrices and the corresponding search direc-
tions satisfy the approximate Dai-Liao conjugate condition.
In addition, a strategy of the line search acceleration
is employed to improve numerical performance of this
algorithm. Under mild assumptions, we have proved that the
developed algorithm is globally convergent.

By numerical tests, we have demonstrated that our algo-
rithm outperforms the similar ones available in the literature
for solving large scale optimization problems, either as an
extension of the BFGS-type algorithms or as a modified
conjugate gradient algorithm.

In future research, it is valuable to study new two-
parameter scalingmemoryless BFGS algorithms such that the
used scaling parameters can minimize all the eigenvalues of
search direction matrices.

It is also interesting to further validate the proposedmethod
in this paper by applying it in solving more practical opti-
mization models from the fields of medical, engineering and
management. For example, as done in [23], the developed
algorithm may be useful to deeply mine the transcriptomic
profile of the sub-genomes in hybrid fish lineage.

Since a nonlinear system of equations is closely related
with an optimization model, it is significant to extend the
developed algorithm into solving large scale nonlinear system
of equations from engineering fields. Actually, it has been
shown [20], [22] that recovering sparse signals and restoring
blurred images can be formulated as a system of equations,
and efficient optimization algorithms can be modified to
solve these practical engineering problems.
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