
SPECIAL SECTION ON EMERGING APPROACHES TO CYBER SECURITY

Received April 2, 2020, accepted April 23, 2020, date of publication May 4, 2020, date of current version May 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992119

SCER Spoofing Attacks on the Galileo Open
Service and Machine Learning Techniques
for End-User Protection
FRANCISCO GALLARDO 1 AND ANTONIO PÉREZ YUSTE 2, (Senior Member, IEEE)
1DLR GfR mbH, Universidad Politécnica de Madrid, 28040 Madrid, Spain
2Department of Communications and Audio and Video Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Corresponding author: Francisco Gallardo (francisco.gallardo@dlr-gfr.de)

This work was possible due to the agreement between DLR GfR mbH and the Technical University of Madrid for the development of an
industrial PhD for researching SCER OS-NMA anti-spoofing protection techniques.

ABSTRACT Spoofing attacks pose a clear cybersecurity risk for all systems relying on Global Navigation
Satellite Systems (GNSS) for time synchronization or positioning. Secure Code Estimation and Replay
(SCER) spoofing attacks are the most challenging type of spoofing attacks, as these may be problematic even
for future GNSS protection systems, like Navigation Message Authentication (NMA) or Spreading Code
Authentication (SCA). This is one of the reasons that make the development of complementary protection
techniques, like the one proposed in this work, necessary. In the first part of the paper, the spoofing SCER
attacks are analyzed in detail for GPS and, particularly, for Galileo. The role of the Galileo Pseudorandom
Noise (PRN) intra-satellite non-orthogonality distortion term in hindering the attacks is discussed and a
detailed comparison between GPS and Galileo expected quality curves for the SCER attack is provided.
A complementary detection method for end-user receivers (assuming NMA is used) against SCER attacks
is proposed, based on the application of machine learning and a proposed set of features extracted from the
receiver search space, assuming the attacker was not able to null the satellite signal.

INDEX TERMS Cybersecurity, Galileo, GNSS authentication, GNSS security, machine learning, SCER.

I. INTRODUCTION
A cryptographic protection system for the Galileo Open Ser-
vice Navigation Message of the E1B signal is currently under
development, based on TESLA (Timed Efficient Stream
Loss-tolerant Authentication) protocol. It is expected to be
available by 2020 [1]. The TESLA protocol is a symmetric
cryptographic system that provides some level of asymmetry
by means of a delayed provision of keys [2].

The Galileo Open Service signature solution for E1B,
known as the Open Service Navigation Message Authenti-
cation (OS-NMA), is intended to protect GNSS users against
attacks based on generating false GNSS signals. This tech-
nique is called Spoofing. There are two main groups of
spoofing attacks, as detailed in [3]: Based on the source of
the GNSS signal:

1) Simplistic Attack: A GNSS simulator is used to gener-
ate the false GNSS signal used in the attack.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ana Lucila Sandoval Orozco.

2) Meaconing: Recording and rebroadcasting aGNSS sig-
nal while adding a time delay, with the intention of
diverting the real position of the victim.

And based on the used resources:
1) Intermediate Attack: This attack implies knowing the

victim’s receiver antenna’s position and velocity. This
is required to properly place the counterfeit signals with
respect to the real signals, at the victim’s search space.
In order to do so, the attacker will be receiving the real
signals from the actual satellites.

2) Sophisticated Attack: This attack is conceived to over-
come defenses based on the Angle Of Arrival (AOA)
of the received signals. It implies the use of sev-
eral Spoofers with a common oscillator. All of these
Spoofers will use the real satellite signals, as in the case
of the Intermediate attack.

Other types of attacks are described in [4], like the Selec-
tiveDelay attack, consisting in the isolation of each spacecraft
signal components (e.g. by the use of directive antennas
tracking each satellite) and the addition of extra delays to each
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signal components. For other definitions of Spoofing attacks,
please refer to [4].

Regardless of the used sources, the simplistic attack, which
relies on using a signal generator to create the fake signal,
does not imply any knowledge of the original Navigation
Message, so it should be prevented by any authentication
technique like NMA. Meaconing, on the other hand, since
it implies the rebroadcasting of a real signal, makes such
protection, in some cases, unsuccessful. Nonetheless, this
type of attacks could be detectable by the victim with a
trustable time source, if the time delay introduced by the
spoofer is big enough [3]. This imposes an upper limit to
the allowed delay added by the spoofer. In order to be able
to control the victim’s Position-Velocity and Time (PVT),
the spoofer will need to add different delays to each satel-
lite signal; this forces the attacker to estimate the symbols
transmitted by the satellite (particularly the unpredictable
symbols). Here, we are assuming that the spoofer does not
have enough resources to use isolated channels, including
antennas and RF equipment, per satellite. This particular
situation is evaluated in Section II-E.
The spoofer approach of estimating the unpredictable sym-

bols transmitted by the satellite and synthesizing a fake signal
based on the estimated symbols is known as Secure Code
Estimation and Replay (SCER).

Therefore, if we assume that breaking the cryptographic
security is impossible for an attacker, the only available solu-
tion would be the estimation of the real unpredictable symbol
while it is being transmitted by the satellite and adding this
information to the fake signal. Each GNSS can support their
users protection by including unpredictable symbols in the
Navigation Message, like those of the Galileo OS-NMA.
There is currently an active discussion in the space industry
on the NMA role in protecting users against SCER.

The paper is structured as follows:
1) In Section II, the SCER attack for both Galileo andGPS

is reviewed in detail, providing comparative results.
The Intra-satellite PRN non-orthogonality distortion
term is also defined.

2) In Section III, The Intra-satellite PRN non-
orthogonality distortion term’s impact on the SCER
on Galileo NMA is analyzed. A case study, centered
in Galileo OS-NMA SCER attacks simulations is
considered.

3) In Section IV, a Spoofing detection complementary
technique, applicable for NMA and SCA, but based on
the fact that NMA is used, is proposed.

4) In Section V, a number of different machine learning
algorithms are analyzed and their expected accuracies
are presented based on simulations.

5) In Section VI, the expected conclusions are
discussed.

Note that the suggested detection method in Section IV,
relies on the use of NMA and on the fact that the Spoofer
was not able to null the original signal. If the conditions
and type of attacks defined in Section II are not met, then it

is impossible to ensure that the Navigation Message was
not modified, making the use the detection method used
in Section IV risky.

II. SCER ATTACK
Two different types of SCER attacks are considered, from the
point of view of the delay [3]:

1) Zero-latency SCER attack: The delay of the spoofed
signal is considered to be 0 at the beginning of the
attack and then gradually increased, avoiding effects
easily noticeable in the tracking loops of the victim.

2) Non-zero-latency SCER attack: A significant delay is
present in the spoofer-generated signal. In order to
avoid being detected, due to the tracking jumps in
the victim’s receiver, at the beginning of the attack,
the spoofer may try to generate jamming signals that
could temporarily ‘‘blind’’ the victim’s receiver.

It is also true that it will be impossible to perform a zero-
latency SCER attack when the signal arrives to the victim
first. This particular point is also analyzed in [4], suggesting
the idea of transmitting any symbol value until the neces-
sary number of samples are processed by the matched filter,
getting at that instant a good estimate of the unpredictable
symbol. This issue will depend greatly on the geometry of
the satellites constellation and the arrangement of the victim
and the spoofer.

A. BAYESIAN ESTIMATORS
Following a similar approach to the one described in [5],
it seems reasonable to assume that the spoofer will use some
sort of Bayesian estimator to determine the value of the unpre-
dictable symbol transmitted by the satellites. These Bayesian
estimators are based on the output of a matched filter which
can be modeled, during a single symbol of the unpredictable
pattern, as:

Zl (n) =
2
n

kl+n−1∑
k=kl

Yksk (1)

where Yk is the sampled sequence of the signal received by
the spoofer and sk is the sampled sequence of the local replica
of the signal, generated by the spoofer. Note that n indicates
the number of samples of the unpredictable symbol used
for the estimation, while kl represents the first sample to be
used for the integration. Zl (n) is the output of the matched
filter after processing ‘‘n’’ samples. It is up to the Spoofer to
determine what sampling frequency should be used, as long
as it meets the needed sampling frequency recommended for
the different GNSS. For the results derived in Section V,
a sampling frequency of 50 MHz was used.

At this stage, it is assumed that the Spoofer performed a
good estimation of the signal delay

(
τ̂
)
and the Doppler fre-

quency
(
ˆfdop
)
by means of acquisition and tracking blocks.

An analysis of the random variable that can be found at
the output of the matched filter for Galileo, and GPS will be
analyzed later.
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As decribed in [5], the proposed Bayesian estimators
(MAP,ML,MMSE) are used to provide a real value to replace
the unpredictable binary symbol, instead of picking one out
from the two binary values of the unpredictable symbol.
As in [4], we will follow the approach of using the MAP
estimator, using the sign of the output of the matched filter,
as described in [5].

B. GPS SIGNAL
1) GPS SIGNAL MODEL WITH UNITARY POWER
IN INTERMEDIATE FREQUENCY
As considered in [5], the received GPS L1 C/A signal can be
modeled as follows in Intermediate Frequency (IF):

Y ′k = wkckcos (2π fIF tk + θk)+ Nk (2)

where ck is the NRZ (Non-Return to Zero) Spreading code,
wk is the estimate of the NRZ unpredictable symbol, θk is the
carrier phase and fIF is the Intermediate Frequency. Nk is the
AWGN (Additive White Gaussian Noise) at the input of the
receiver.

In order to allow later comparison with Galileo, we will
consider unitary power:

YKGPS−IF =
√
2wkckcos (2π fIF tk + θk)+ Nk (3)

Therefore, defining the matched filter as:

Zl (n)GPS−IF =

√
2
n

kl+n−1∑
k=kl

YkGPS−IF sk (4)

where sk is the sampled sequence of theGPS local copy signal
in the spoofer receiver.

This leads to:

E
[
Zl (n)GPS−IF

]
= WL (5)

Var
[
Zl (n)GPS−IF

]
=
σ 2

n
(6)

whereWL is the true value of the NMAunpredictable symbol.

2) GPS SIGNAL MODEL WITH UNITARY
POWER IN BASE BAND (BB)
We will also consider the GPS L1 C/A signal in Base
Band (BB). Then, the received GPS L1 C/A signal can be
modeled as follows:

Y ′k = wkck + Nk (7)

Therefore, defining the matched filter as:

Zl (n)GPS−BB =
1
n

kl+n−1∑
k=kl

YkGPS−BBsk (8)

Which leads to:

E
[
Zl (n)GPS−BB

]
= WL (9)

Var
[
Zl (n)GPS−BB

]
=
σ 2

n
(10)

Note that both results are the same in terms of expectation
and variance, regardless whether we consider theGPSL1C/A
signal in IF or BB.

As it is stated in [5], equation(1) (or in equations (4) or (8))
can be used to estimate the value of the unpredictable symbol.
Depending mainly on the received C/N0, we can obtain
a good estimation of the unpredictable code symbol under
analysis after 6 µs of integration.

The chipping period in GPS L1 is approximately
0.978 µsec. Leading to the evaluation of the signal during
less than 6 Chips [6].

If a Spoofer is trying to perform a SCER attack, using a sin-
gle antenna to receive all the signals, a linear combination of
different satellites signals will be present at the input. Those
signals will be modulated with different spreading codes,
which will be orthogonal among each other. This means that,
in order to estimate the symbol, it will be necessary to evalu-
ate the signal in an interval big enough, to start taking advan-
tage of the sequences orthogonality. A way to overcome this
delay (imposed by the sequences orthogonality not present
in the very short term) could be using directional antennas
in order to provide extra gain to the signal coming from the
satellite under evaluation (note that it will be necessary to use
several antennas in order to track different satellites), then the
differential delay needed for properly controlling the victim’s
position could be performed by means of having isolated
channels -one per satellite-, and applying differential delays
to each channel.

In this attack, we assume that the attacker is close to the
victim and a mobile environment is considered due to the
remarks in [7], regarding detecting the spoofing attack based
on the channel behavior. This will imply that the antennas
gain could not be extremely big. If this assumption does
not hold, then the spoofer could consider not regenerating
the signal but just using a channel per satellite, applying
a differential delay as needed. See Section II-E for further
considerations on this type of attack.

C. GALILEO SIGNAL
As per [8] and [2], theGalileo E1BSignal will include aNMA
based on TESLA, providing with unpredictable symbols,
forcing an attacker to follow the SCER schema.We can define
the E1 (excluding PRS (Public Regulated Service)) Galileo
signal as (based on [9], using the syntax from [5]):

GALk =
1
√
2

(
wke1Bk subB − e1Ck subC

)
(11)

subB =
(
αSCE1B,ak + βSCE1B,bk

)
(12)

subC =
(
αSCE1C,ak − βSCE1C,bk

)
(13)

where wk is the estimate of the NRZ unpredictable symbol,
the e1Bk term is the NRZ PRN sequence for E1B, e1C is the

NRZ PRN sequence for E1C, α =
√

10
11 and β =

√
1
11 .

The SCE1A|B,a|bk is defined as follows:

SCE1A|B,a|bk = sign (sin (2π tkRx)) (14)

where Ra = 1.023MHz and Rb = 6.138MHz.
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We can consider the generation of the full signal (both E1B
and E1C) for the local copy in the receiver, or just the E1B
part [10].

The received signal will also contain Additive White
Gaussian Noise (AWGN), therefore the spoofer will receive
Yk = GALk + Nk , where Nk ≈ N

(
0, σ 2

)
.

As for the GPS case, we will also make some general
considerations regarding the output of the matched filter in
IF and BB. We will consider, for now, that only the E1B
PRN is present in the local copy of the spoofer receiver
and that a large number of samples are taken for integration
(‘‘n’’ is large), although we will later consider these points in
detail, in Section II-D1 and Section II-D2 for BB.

1) GALILEO SIGNAL MODEL WITH UNITARY
POWER IN INTERMEDIATE FREQUENCY
The received Galileo signal can be modeled as follows,
in Intermediate Frequency (IF):

YkGAL−IF =
(
wke1Bk subB − e1Ck subC

)
cos (2π fIF tk + θk)+ Nk (15)

Therefore, defining the matched filter as:

Zl (n)GAL−IF =
2
n

kl+n−1∑
k=kl

YkGAL−IF sk (16)

Leading to:

E
[
Zl (n)GAL−IF

]
= WL (17)

Var
[
Zl (n)GAL−IF

]
=

2σ 2

n
(18)

Note that equations (17), (18), (21) and (22) are consider-
ing that the Spoofer is only using E1B PRN in the local copy
in the receiver used to estimate the unpredictable symbol. For
more details on this, please refer to Sections II-D1 or II-D2.

2) GALILEO SIGNAL MODEL WITH UNITARY
POWER IN BASE BAND (BB)
The received Galileo signal can be modeled as follows in BB:

YkGAL−BB =
1
√
2

(
wke1Bk subB − e1Ck subC

)
+ Nk (19)

Therefore, by defining the matched filter as:

Zl (n)GAL−BB =

√
2
n

kl+n−1∑
k=kl

YkGAL−BBsk (20)

Leads to:

E
[
Zl (n)GAL−BB

]
= WL (21)

Var
[
Zl (n)GAL−BB

]
=

2σ 2

n
(22)

Note that, here, we are considering that the Spoofer is only
using E1B PRN for generating the local copy in the receiver,
used to estimate the unpredictable symbol. For more details
on this, please refer to Sections II-D1 or II-D2.

Therefore, Galileo is providing the same results for both
BB and IF, and it is providing with higher variance than in
GPS, leading to a predicted reduction in the effective C/N0
of 3dB.

Based on these results (equations: (9), (10), (21) and (22)),
assuming both symbols transmitted by the satellite have the
same probability, then:

peGPS =
1
2
erfc

(√
C
N0
Tsn

)
(23)

peGAL =
1
2
erfc

(√
C
2N0

Tsn

)
(24)

Regardless whether we consider the signals in BB or IF.
Therefore, for the sake of simplicity, we will further evaluate
the output of the matched filter for Galileo in BB.

D. AUTHENTICATION TECHNIQUES AND
SCER FOR GALILEO
1) GALILEO SIGNAL WITH FULL LOCAL
COPY OF E1 WITH NMA
Let’s first consider the full local copy, assuming that the
spoofer already knows the delay and Doppler of the incoming
signal (by means of previous acquisition and tracking stages).
In such case, the spoofer is going to generate (25) as sk in (1).

Where:

sk =
(
e1Bk subB − e1Ck subC

)
(25)

Which leads to (26).

ZlEfull (n) =
1
n

kl+n−1∑
k=kl

[wk − ιk + 1]+

√
2
n

kl+n−1∑
k=kl

[Nksk ]

(26)

where (with the current Galileo SIS (Signal In Space) ICD
(Interface Control Document) [9]):

ιk = e1Ck e1Bk (1+ wk)
[
α2 − β2

]
(27)

Note that, as already mentioned, it is assumed that the
Spoofer is able to perfectly align the local replica of the signal
and the satellite signal. In this context, it has to be considered
that the average of the products of both Galileo subcarriers
with themselves is one, in order to get to the expression
in (26).

In this case, we can identify the term ιk which will
be present in our matched filter output. The term ιk ,
the intra-satellite PRNs non-orthogonality distortion term,
will affect the spoofer estimation, as it will be discussed later
in Section III-A.

This term could be eliminated by means of extending the
evaluated signal length in the matched filter (the spoofer
will have to wait until the inner product of both spreading
sequences is close to 0).
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The expectation of the output of the matched filter will be:

E
[
ZlEfull (n)

]
= WL + 1− E

[
9
11

[WL + 1] ξ (n)
]

(28)

where:

ξ (n) =
1
n

kl+n−1∑
k=kl

e1Ck e1Bk

And the variance will be:

Var
[
ZlEfull (n)

]
=

4σ 2

n

[
1−

9
11
ξ (n)

]
(29)

whereWL is the true value of the unpredictable symbol.
This means that the output of the matched filter will follow

a non-stationary Gaussian (note that the noise at the receiver
input is AWGN). As the number of samples (‘‘n’’) increases,
the Gaussian expectation will tend to be stationary, and ZlEfull
will follow:

ZlEfull
(n) ≈ N

(
WL + 1,

4σ 2

n

)
(30)

2) GALILEO WITH JUST E1B SPREADING CODE IN
THE LOCAL COPY OF E1 WITH NMA
We will now consider a local copy with only the E1B spread-
ing code. This option is interesting for the spoofer, compared
to the full local copy, as it is not so computationally expensive.

We assume, again, that the spoofer already knows the delay
and Doppler of the incoming signal and the estimations are
perfect. We will denote s′k to the local copy of the signal,
properly aligned to the incoming signal and without the E1C
PRN.

Then:

ZlEpartial (n) =

√
2
n

kl+n−1∑
k=kl

s′kYkGAL−BB (31)

where s′k =
(
e1Bk subB

)
ZlEpartial (n) =

1
n

kl+n−1∑
k=kl

[
wk − ιk ′

]
+

√
2
n

kl+n−1∑
k=kl

[Nksk ]

(32)

where (with the current Galileo SIS ICD [9]):

ιk
′
= e1Ck e1Bk

(
α2 − β2

)
(33)

Note that, as already mentioned, it is assumed that the
Spoofer was able to perfectly align the local replica of the
signal and the satellite signal. In this context, it has to be
considered that the average of the products of both Galileo
subcarriers with themselves is one, in order to get to the
expression in (32).

In this case, we can identify the term ιk
′, which will

be present in our matched filter output. By evaluating the
output of the matched filter over a long-enough period,
we can eliminate this term, called the intra-satellite PRN
non-orthogonality distortion term.

The expectation of the output of the matched filter will be:

E
[
ZlEpartial (n)

]
= WL − E

[
9
11
ξ (n)

]
(34)

where:

ξ (n) =
1
n

kl+n−1∑
k=kl

e1Ck e1Bk

And the variance will be:

Var
[
ZlEpartial (n)

]
=

2σ 2

n
(35)

whereWL is the real value of the unpredictable symbol.
As the number of samples (‘‘n′′) increases, the output of

the matched filter will follow a Gaussian with stationary
expectation.

ZlEpartial (n) ≈ N
(
WL ,

2σ 2

n

)
(36)

3) SCER ON GALILEO WITH SPREAD
CODE AUTHENTICATION (SCA)
The Spread Code Authentication (SCA) is a protection
method which is currently under discussion for its future
implementation in Global Navigation Satellite Systems
(GNSS). Currently, an implementation for GPS known as
‘‘Chips-Message Robust Authentication’’ (CHIMERA) is
under evaluation [11].

The techniques, based on including the unpredictable sig-
nature in the Spreading Codes, can be considered as an evolu-
tion of the techniques based solely on the use of unpredictable
symbols in the Navigation Message (like the NMA).

As detailed in [12], the SCER attack on SCA protection
approach relies on a similar method to the one presented
in Section II, namely: applying Bayesian estimators to the
output of a matched filter, then, after comparing against a
threshold, the polarity of the unpredictable chip is obtained.
The main difference between both cases is that, in the NMA,
the Spoofer can use longer integration times, while in the
SCA case, the integration has to be limited to the chip
length. Note that, in the NMA case, the result was the unpre-
dictable symbol polarity, while in the SCA the chip polarity
is obtained. This implies that the symbol must be previously
known by the attacker, either because the symbol is unpre-
dictable (e.g. NMA) and is firstly estimated (implying a larger
delay to start transmitting the false signal) or because the
symbol is predictable and well known in advance. Note that if
the spoofer is not able to include the proper polarity values in
the unpredictable chips, then, when the end user (the victim)
came to know, via the Navigation Message, the actual chip
authentication sequence, correlation losses will be present,
so making the SCA test fail. Moreover, the use of NMA in
combination with SCA can make the GNSS systems even
more secure since it ensures that the Navigation Message has
not been tampered. The Navigation Message will allow us to
determine the real values of the unpredictable chips, hence
this point is of high importance.

VOLUME 8, 2020 85519



F. Gallardo, A. P. Yuste: SCER Spoofing Attacks on the Galileo Open Service and Machine Learning Techniques

Every time the attacker needs to estimate a chip, (1) will be
used. Assuming the positions of the unpredictable chips are
known by the attacker and assuming the unpredictable chips
are included in the E1B spreading code, then the following
local copy would be used:

sk SCA = (wksubB) (37)

Note that the design decisions on the distribution of the
unpredictable chips (and whether this information is made
available to the users in advance or not) will also have an
impact in the SCER attack, as described in [12].

Although operations performed by the Spoofer in the
SCA case are very similar to those presented in Section II,
the expectation result will differ sightly, unlike in (34),
the distortion term will not depend on e1Bk but on the trans-
mitted symbol and the pilot spreading code.

E
[
ZlEpartialSCA

(n)
]
= e1Bk − E

[
9
11
ξSCA(n)

]
(38)

where:

ξSCA(n) =
1
n

kl+n−1∑
k=kl

e1Ckwk (39)

The variance will be the same as in the NMA case:

Var
[
ZlEpartialSCA

(n)
]
=

2σ 2

n
(40)

This implies that the spoofer will have to take the term
ξSCA(n) into account. For the Galileo E1B case, the chip
length is approximately 1 µs, therefore the maximum inte-
gration time available for the Spoofer will be 1 µs. Taking
the expectation and variance obtained into account, the
theoretical expression in (24) and the Galileo curves pre-
sented in Fig. 1 are still applicable. These curves provide
low detection probabilities, with integration times of 1 µs
(Pd < 0.6) for C/N0 between 35dBHz to 50dBHz, which
are good C/N0 for normal GNSS equipment.

FIGURE 1. Detection Probability theoretical performance for Galileo
E1 Signal compared to the theoretical GPS performance. As it can be
seen, the Galileo modulation plays against the spoofer.

This implies that the SCA technique will be a good pro-
tection method against SCER, combined with NMA, as the
SCER Spoofer detection probabilities will make the current
attack approach very complicated: it will require working

with very high C/N0. On top of that, even in case that the
attacker is able to work under such circumstances, the Galileo
modulation will impose a distortion term, present in (38).
Hence, if the spoofer is not able to estimate ξSCA(n), it will
have a negative impact on top of the already poor detection
probability.

On the other hand, retro compatibility problems are yet
to be fully understood for all types of GNSS users. Note
that Galileo OS-NMA is just using spare bits in the cur-
rent navigation message (therefore, it does not impact the
expected performance or how users are currently using the
Galileo signal). Nonetheless, SCA implies an initial reduction
in the Auto Correlation Function (ACF) peaks that users will
obtain in the search space. Suggestions on the use of the pilot
channel to track the signal, while SCA unpredictable chips
are being transmitted, are provided in [13]. GPS will require
a significant change in their modulation to provide with an
open service signal with a pilot channel. This implies that
receivers manufacturers will anyway need to upgrade their
receivers to track such new signals. Still, when applied to
Galileo, thismay imply changes on how receivers are tracking
the Galileo signals, which are already providing with the
pilot channels. Hence, a bidirectional discussion should be
put in place between the Galileo programme and receivers
manufacturers to fully understand the impact for end users of
applying SCA. Moreover, SCA will impose some computing
requirements to the end user’s receivers, as it is necessary to
store pre-correlation raw signal samples to be used at a later
stage, when authentication message with the details on the
used puncturing of the Spreading Code is received.

E. ONE SATELLITE - ONE ANTENNA - ONE CHANNEL CASE
We will also consider the scenario where the spoofer, instead
of trying to estimate the symbol transmitted by the satellite,
has enough resources to use a directive antenna per satellite
(we will assume that the spoofer is able to track each satellite
in the sky and the antenna directivity is such that the signals of
the rest of the satellites are completely eliminated in the out-
put of the antenna). The spoofer is assumed, then, to provide
an independent channel per satellite. Instead of estimating the
symbol, as described in the first part of the paper (Section I),
the spoofer could use an independent antenna and channel
to track each real satellite, leading to the application of a
different delay per channel (hence, per satellite too). This will
not require estimating each symbol.

If we assume that the Noise Figure of the spoofer
NF = 8dB (e.g. National Instrument USRP UBX Daughter
Board, configured gain of 19.50dB, see [14]), then:

SNRNoSpoofer
SNRWithSpoofer

=

Si
BK300
Si

BK (300+1592.87)

(41)

SNRNoSpoofer
SNRWithSpoofer

= 8dB (42)

Implying that the spoofer may introduce, at least, an 8 dB
sanction to the SNR of the generated signal, with respect to
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the case where the spoofer is estimating the symbol trans-
mitted by the satellite. Note that the Spoofer will need to
track each satellite and use a group of directive antennas
and isolated channels. Such setup for a spoofer following the
victim is not simple, although it represents a serious threat if
the attacker has enough resources to use such a complicated
setup.

Even if we assume that the spoofer has enough resources
to use this setup, techniques like those proposed in Section IV
can still protect critical infrastructure standoff victims.

III. CASE STUDY: THE INTRA-SATELLITE PRNs
NON-ORTHOGONALITY DISTORTION TERM
AND ITS ROLE IN HINDERING THE SCER
ATTACKS TO THE GALILEO NMA
Different simulations were performed in order to study the
influence the intra-satellite PRNs non-orthogonality distor-
tion term could have in the SCER attacks on Galileo NMA.
The NMA case was further evaluated, in order to better
characterize the impact of SCER on the Galileo NMA which
will be available by 2020, as per [1].

In terms of the PRN distortion in SCER for Galileo, the key
differentiator, with respect to the GPS L1 C/A case, is that
these PRN non-orthogonality distortion terms are caused by
the very same satellite the spoofer is trying to falsify, while
in the GPS case, the distortion will be caused only by other
satellites. The Spoofer cannot get rid of the ιk ′ distortion term
in Galileo even if only one single satellite is present at the
receiver input.

We can conclude here that the modulation of the Galileo
system is making the Spoofer estimation of the symbol
harder, which is good for the Galileo users. We will discuss
the intra-satellite non-orthogonality distortion term ιk and its
impact in the SCER attacks, and we will compare it to the
GPS case and its impact in the performance of the attack.
Future work will also compare this intra-satellite effect to
the effect due to the non-orthogonality between different
satellite PRNs, for short integration times. The present work
is only focused on the intra-satellite effect, as it is considered
more daunting for Spoofers. Note that, regardless whether a
very directive antenna is used (if possible) by the spoofer,
the intra-satellite non-orthogonality distortion term effect will
still be present, as it is introduced by the same satellite the
spoofer is trying to use for the SCER attack. On the other
hand, attenuating the signals coming from other satellites will
reduce the effect between satellites.

The attacker has two main options available in order to
overcome this problem appearing in the matched filter output
due to the Galileo CBOC modulation in E1:

1) Extending the integration of the matched filter long
enough, so the ιk parameter tends to 0.

2) Estimating the PRN non-orthogonality distortion term
(ιk) parameter. This case will not be further detailed,
but, taking into account different channel models and
studies [15], [16], the channel will only be challenging
for low elevation satellites in urban areas, particularly

for unpredictable symbols that may be transmitted
together [9]. Note that this may make the Spoofer
estimation of the intra-satellite PRN non-orthogonality
distortion term invalid, after some symbols were
transmitted.

A. EXTENDING THE INTEGRATION OF THE
MATCHED FILTER WITH NMA
In order to get rid of the distortion terms, the obvious
way forward will be to extend the integration time of the
matched filter. Clearly, if we extend the integration time to
the symbol period, we will be maximizing the C/N0 and we
will completely eliminate the distortion terms. Nonetheless,
the spoofer cannot wait until the end of the symbol period
is reached. Instead, and depending on the received C/N0,
the spoofer will extend the integration time until a valid
symbol estimation is available, based on an output, as clean
as possible, of the matched filter.

It can be seen, in Fig. 1, that the theoretical result
for Galileo is worse than the theoretical expression for
GPS (complementary of (23)), mainly due to the Galileo
modulation.

In Fig. 2 the results of the Galileo simulation are compared
to the Galileo theoretical curve (43). The results in Fig. 2
were obtained by analyzing Galileo E1 simulated signal
(1 second of data per C/N0), generated with the workbench
described in Section III-B. No quantization (signal genera-
tor was configured to work using directly float numbers),
sampling frequency of 50MHz, spoofer working with a local
copy with just E1B (as described in Section II-D2), no acqui-
sition or tracking errors were included and MAP was used as
the Bayesian estimator. One single satellite under analysis.
A known pattern of alternating ones and zeros was used for
error estimation.

Pd = 1−


erfc

(√
nTs

(
C
2N0

))
2

 (43)

In (43), Pd is the Spoofer probability of detection
of an unpredictable symbol. As it can be observed in
the Fig. 2, the simulation confirms the 3dB reduction. The
solid-line shows the theoretical Pd result for Galileo, derived
from (43). The dotted-line shows the Galileo simulation
results.

On the other hand, the non-orthogonality distortion term(
ιk
′
)
effect is obvious for high C/N0 and short integration

times (see Fig. 2, for high values of C/N0 and short integra-
tion times: the results differ from the theoretical response for
Galileo, the one in (43)). Nonetheless, the effect is smaller
compared to the impact of the 3 dB reduction, with respect
to GPS, due to the Galileo modulation. For more realis-
tic values of C/N0, like 53 dBHz and integration times
of 1 µs or 10 µs, the difference between the simulated
results probability of detection and the theoretical probability
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FIGURE 2. Impact of the Intra-satellite PRN non-orthogonality distortion term
(
ιk

′
)

effect in the Detection Probability of the Spoofer. The effect is visible
for low integration times with high SNR (lower right part of the figure). The simulation results divert from the Galileo theoretical results.

FIGURE 3. Python workbench for SCER testing on Galileo E1.

of detection is about 1%. For higher values of C/N0, like
67 dBHz and integration times of 1 µs, the difference is
close to 10%. Therefore, this effect may not play a major
role against SCER protection, although it could make the
SCER spoofer work slightly harder. In Fig. 2, a comparison of
the corrected theoretical Galileo Pd , (43), and the simulation
results can be found. It can be seen how, for low integration

times and high C/N0, the simulation results divert more from
the theoretical expected values (rightmost part of the figure,
integration times of one and two microseconds).

Note that the effects of the Intra-satellite PRN non-
orthogonality distortion terms are not modeled in the pro-
vided theoretical quality curves, as it only accounts for the
complementary error function (erfc).
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B. WORKBENCH FOR GALILEO SIGNAL SPOOFING
A complete workbench for testing the overall Galileo SCER
approach was generated in Python, following the Galileo SIS
ICD [9].

A signal generator was developed, capable of reading
RINEX 3.0 files with Galileo NavigationMessages or includ-
ing a known pattern of symbols that are considered unpre-
dictable, as if TESLA completely unpredictable chains were
used. This module is able to read the text files with the Galileo
PRNs, annexed to [8] and receives an input from the user with
the desired signal C/N0, the simulated satellite name (as of
now, only one satellite is simulated at once), the sampling
frequency, the Navigation message content to be modulated
(in hexadecimal format), and the length of the simulation.

The signal simulator generates a binary file with I/Q sam-
ples with the Galileo E1 signal, as requested by the user
(sampling rate, number of bits for quantization, delay,
Doppler, length of the resulting file, Galileo satellite PRN
and SNR are configurable). The spoofer module performs
the estimation of the symbol and allows the use of the three
Bayesian Estimators, described in Section II-A.

The receiver module will allow the benchmarking of differ-
ent spoofer detection methods, by means of adding modules
in the victim’s receiver.

At the time of this paper submission, only the Galileo
Signal generator, the spoofer and the acquisition step of the
receiver are fully developed. Nonetheless, for the analysis
performed for this article, the workbench capabilities are
sufficient, as it is not necessary to really generate the unpre-
dictable symbol in order to analyze the performance of the
different SCER spoofer estimators with the Galileo signal.
Indeed, a controlled combination of 1 and 0 symbols were
used, in order to have a reliable source to quickly determine
whether the spoofer was wrongly estimating the symbol.

IV. COMPLEMENTARY MACHINE LEARNING
TECHNIQUES FOR SCER PROTECTION
As described in Section II, the SCER attack is a risk for
GNSS users, even those relying on techniques like NMA.
Nonetheless, Galileo OS-NMA forces the attackers to use the
SCER schema and prevents them to follow other approaches
like modifying the navigation message. This implies that,
if the attacker wants to divert the victim’s PVT, it is manda-
tory to generate a fake signal (including the unpredictable
symbols estimated from the real signal), with a different
Doppler and/or delay.

Therefore, in the victim’s Search Space (a very detailed
analysis on the search space can be found in [15]), two
correlation peaks will be found: one due to the spoofer signal
and one from the original satellite signal, if the spoofer is
present and if the spoofer was not able to null the original
signal in the receiver input.

If the spoofer signal is superposed with the real signal and
the navigation message was not modified by the attacker,
then the effect on the victim will be negligible. If it is not

superposed, then, assuming enough resolution in the search
space is available, two separated peaks shall be present.

It is straightforward to conclude that a full branch of protec-
tion methods could rely on identifying abnormal search space
distributions. We will evaluate the use of machine learning
techniques to protect users against SCER attacks on Galileo
OS-NMA, based on the analysis of features extracted from
the search space.

Note that, if NMA techniques, analyzed in detail
in Section II, are not used by the victim, the technique dis-
cussed in this Section will not, by any means, guarantee the
navigation message was not modified. The detection method
proposed in this Section is a complementarymethod to NMA,
particularly designed against SCER on GNSS with NMA and
only applicable if the original signal was not nulled.

The Search Space implemented in the workbench, defined
in Section III-B and visible in Fig. 5, was calculated using
the Parallel Acquisition in Time Domain method. The current
method, as defined, is very heavy in terms of computing load.
Future work will be focused on implementing a demonstra-
tor and reducing the computing load. Note that the current
resolution implies the use of powerful FPGAs implementing
parallel correlators in order to generate the Search Space.
The Spoofer signal was generated using the SCER method
with MAP as Bayesian estimator, particularly using (1) with
a local copy of E1B only, therefore the output of the Spoofer
matched filter was following a random variable with expec-
tation defined in (34) and variance defined in (35).

A. THE SEARCH SPACE WITH SPOOFER PRESENCE
Each cell of the Search Space is calculated by performing the
following operation (based on syntax from [15]):

S (τ,FD) =

√
2
N

N−1∑
n=0

r [n] c [n− τD] e(−2jπFDn) (44)

where c [n− τD] is the local copy used by the victim and r [n]
is the signal received by the victim’s receiver (where τD is
the delay used by the receiver in each search space cell, FD is
the Doppler frequency used by the receiver in each search
space cell and N is the number of samples to be integrated to
calculate each cell of the search space).

If any spoofer is present and the original signal was not
nulled by the spoofer, then the received signal will follow:

r [n] = YSATGAL−BB + YSpof GAL−BB (45)

where YSATGAL−BB is the real Galileo signal, in baseband, with
AWGNnoise and YSpof GAL−BB is the Spoofed generated signal,
in baseband, with AWGN noise.

For the sake of simplicity, we will consider that the victim
is using a local copy with only the E1C PRN (the Galileo pilot
signal) for generating the search space.

Therefore, each search space cell in the victim’s receiver
will follow:

E [S (τD,FD)]=E

[
1
N

N−1∑
n=0

ΥsatΩsat8sat+ΥspfΩspf8spf

]
(46)
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where we have the terms coming from the real satellite signal:

Υsat = e1Csat e1C [n− τD] (47)

Ωsat = subCsat subC [n− τD] (48)

8sat = e(−2jπFDn)e(2jπFsatn) (49)

And those terms coming from the spoofed signal:

Υspf = e1Cspof e1C [n− τD] (50)

Ωspf = subCspof subC [n− τD] (51)

8spf = e(−2jπFDn)e(2jπFspof n) (52)

And the variance of each cell will be:

Var [Sreal (τ,FD)] = 2
σ 2
sat + σ

2
spoofer

N
(53)

where N is the number of samples used in the matched filter
of (44). Then, it is quite straightforward to conclude:

1) If Fsat = FD, τsat = τD and Fspof 6= FD, τspof 6= τD,
then:

E [S (τ,FD)] = 1 (54)

2) If Fsat 6= FD, τsat 6= τD and Fspof = FD, τspof = τD,
then:

E [S (τ,FD)] = 1 (55)

3) If Fsat 6= FD, τsat 6= τD and Fspof 6= FD, τspof 6= τD,
then:

E [S (τ,FD)] = 0 (56)

4) And if Fsat = FD = Fspof and τsat = τD = τspof then:

E [S (τ,FD)] = 2 (57)

Note that the case in (57) will not pose a risk to the user at
all, if the OS-NMA is used and the cryptographic protection
is not broken (e.g. SCER attack). As the OS-NMA crypto-
graphic protection is not broken and the Doppler and delay
are the same as the ones of the authentic satellite, the victim’s
computed solution shall not differ with respect to the real one.

B. FEATURES EXTRACTION
As in any other machine learning problem, the first step is
the feature extraction. We need to evaluate what information
we are going to feed into the classification algorithms. The
proposed features extraction is based on fitting the correlation
peaks in the search space as 2D Gaussians and detecting RFIs
during a time analysis window previous to the beginning of
the signal sequence used for computing the search space, refer
to Fig. 4 for details on this. As it is known [17], the ACF

FIGURE 4. Overall features extraction process.
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of the Galileo signal is not following a Gaussian waveform,
although, for the purpose of increasing the computing effi-
ciency and, at the same time, capturing the relevant features
of the autocorrelation peaks, it is deemed sufficient for the
purpose of detecting Spoofing signals. Further workwill eval-
uate other waveforms that can further improve the computing
efficiency, while retaining the necessary information for the
classification algorithms.

1) GAUSSIAN EXTRACTION
In order to properly characterize the location and shape of the
peaks in the search space, the algorithm will:

1) Adjust 2DGaussians around the maximum peaks in the
search space.

2) After successfully fitting a Gaussian in the search
space, the fitted Gaussian is substracted.

3) Repeat the process N times.
4) Estimate the residual noise.
In the upper part of Fig. 5, the search space with the real

satellite signal (Galileo E1) and the spoofer signal, generated
using symbols estimated by using SCERwith MAP Bayesian
estimator, can be seen. No channel attenuation was intro-
duced.

In the lower part of Fig. 5, the search space, after the
Gaussian extraction process, can be seen. This is the resulting
Search Space after applying the algorithm that can be seen
in Fig. 4. As it can be appreciated, only the residual noise
after the Gaussian subtraction remains in the search space.
The value of this residual noise is also estimated and fed
into the classification algorithms, so the Machine Learning
techniques can have the information related to the relation-
ship between the peak amplitude values and the noise in the
Search Space. The workbench described in III-B was used.
Note that the Fig. 5 is not showing one of the cases used
for the algorithm training nor the exact same configuration
of the workbench used for the testing of the machine learning
algorithms, but just as an example to show the concept.

2) RFIs DETECTION
As described in Section II, attackers may try to blind the
victim’s receiver before starting the attack. Due to this reason,
we will also look for RFIs during the time window previous
to the reception of data used to generate the search space in
the victim’s receiver.

The initial analysis proposed in this paper is based on
simply finding outliers, assuming that an Automatic Gain
Controller (AGC) is present, although future work will be
performed in order to use a more sophisticated RFI detection
schema. The RFI presence will be a feature to be considered
for the machine learning algorithms.

V. CASE STUDY. SIMULATION WITH
GALILEO E1 SIGNALS
In order to benchmark several machine learning algorithms,
the data extraction method described in Section IV-B was
implemented in the workbench from Section III-B. Different

FIGURE 5. Search Space with Spoofer. Pre (a) and Post (b) Gaussian
extraction.

machine learning algorithms were analyzed using the work-
bench, based on Python Scikit-learn [18] library. Particularly:
RBF SVM, Ada Boost, Decision Trees, Nearest Neighbors
and Random Forests.

A. DATASET GENERATION
The datasets were generated using several combinations of
Doppler shifts and time delays:

1) In the Spoofer case, for all the attacks, delay of 300
µsec and Dopplers of -5KHz and -2KHz were used.

2) For the real satellite the delays were of 200 µsec and
240 µsec. Dopplers: 5KHz and 10KHz.

These configurations were deemed sufficient for the used
search space resolution, as the detection results were correct.
The resolution in the victim’s search space should always
be high enough to properly allow the 2D Gaussian functions
fitting.
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FIGURE 6. Performed K-folds and reported accuracy. Based on [23].

Due to the reduced amount of peaks positions in the
dataset, overfitting may occur. In order to rule out this possi-
bility, the accuracy results were calculated, both feeding the
positions to the algorithms andwithout feeding themwith this
information. This means that, in the Fig. 7, the results were
obtained when the algorithm did not know where the peaks
were located in the Search Space.

The used dataset was generated by applying the proposed
feature extraction algorithm to datasets with Galileo signals
from C/N0 = 0dBHz to C/N0 = 50dBHz.
The integration time in the victim’s receiver was 16ms

and the local signal was only the E1C PRN. The dataset
was composed of 381 cases with Spoofer, and 1074 without
Spoofer. Note that the dataset was not balanced. This had a

clear impact on the false alarm probability and the missed
detection probability. It can also be seen in the F1 [19] scores
in Fig. 10. Depending on the systemfinal application inwhich
the Machine Learning complementary protection algorithm
will be deployed, it will be necessary to tailor the dataset
to reduce the false alarm probability or the missed detec-
tion probability. In order to reduce the probability of missed
detection of a particular class (e.g. Spoofer present in the
received signal), firstly, such class should be over-represented
in the input dataset and secondly, the algorithms should be
evaluated to find the fitting parameters that maximize the
accuracy and F1 scores for the class of interest. Confusion
Matrices [19] should also be considered when evaluating the
results. As it can be seen in other state-of-the-art techniques
that rely on the analysis of the Search Space [20], the use of
adaptive thresholds that depend on the location of the peak is
already proposed. Nonetheless, the innovative and beneficial
point of using Machine Learning techniques for the Search
Space analysis is that these techniques allow the redefinition
of the thresholds by just modifying the used training dataset.
This approach will allow a reconfiguration of an operational
deployment of the system bymeans of feeding the operational
system with a known dataset that may include new Spoofing
techniques that were not conceived at the moment of the
deployment of the system (as long as these new spoofing tech-
niques imply a detectable signature in the Search Space). This
also implies that, in order to not allow the Machine Learn-
ing techniques to fit into non-relevant features, the train-
ing dataset must be carefully designed and curated. If, for
instance, the training dataset does not contain the sufficient

FIGURE 7. Accuracy (correct classifications) with E1C and 16ms of integration. No position fed into the algorithms.
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FIGURE 8. Accuracy (correct classifications) with E1C and 16ms of integration. Position fed into the algorithms.

FIGURE 9. Accuracy (correct classifications) of SVM with RBF and Linear kernels, with E1C only 16 ms integration. No position fed.

distribution of spoofing signals over the Search Space, and
positions are fed into the Machine Learning algorithms, then
these algorithms may consider that the reduced number of
positions in the Search Space that were fed into them are
relevant for the detection, while it may not be the case. But,

on the other hand, if the considerations in [20] regarding the
relative position of the Spoofing signal with respect to the
time delay are relevant, that can also be modeled into the
system by accounting that situation into the training dataset.
In other words: the detection capabilities of the deployed
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FIGURE 10. F1 Score with E1C and 16ms of integration. No position fed into the algorithms.

system can be further improved by means of a simple recon-
figuration, without major modifications of the system. The
relevancy of the training dataset is not only limited to this
future evolution of the system and its detecting capabilities.
As the PFA (Probability of False Alarm) of the system is
also modeled by means of the over/under-representation of
the spoofing cases in the training dataset. The same applies
to the PMD (Probability of Missed Detection).

The result that should be considered for analyzing the PFA
(Probability of False Alarm) is not the accuracy, which con-
siders both classes (Spoofer present and spoofer not present),
but can be derived from the reported confusion matrices.
The caption of such matrices show all the ROC (Receiver
Operating Characteristics) values, namely: True Positives,
False Negatives (PMD), True Negatives and False Positives
(PFA). Please refer to tables: 1, 2, 3 and 4. On the other
hand, one of the best scores that can be used to derive
the quality of the models, per class, is the F1 score. This
score is typically used for evaluating data mining algorithms.
It has been reported for the classes Spoofer not present
and Spoofer present. The F1 score is based on the follow-
ing calculation, per class (‘‘Spoofer present’’/’’Spoofer not
present’’):

1) Calculate the Precision, which is number of True Pos-
itives (i.e. For the class ‘‘Spoofer present’’, this means
that the Spoofer was there and the model determined
that the Spoofer was there) divided by the number
of True Positives, plus the number of False Positives
(i.e. For the class ‘‘Spoofer present’’, this means that

the Spoofer was not there, but the system determined
that the Spoofer was there). For the class ‘‘Spoofer
present’’, we can consider this as the number of correct
predictions of Spoofer present, divided by the total
number of predictions of spoofer present. So it is a
ratio, where 1 means that there is no False Alarm
(for the class ‘‘Spoofer present’’, for the class ‘‘spoofer
not present’’ it would imply no Missed Detection) at
all.

2) Calculate the Recall, which is the number of True Pos-
itives (i.e. For the class ‘‘Spoofer present’’, this means
that the Spoofer was there and the model determined
that the Spoofer was there) divided by the number
of True Positives and the number of False Negatives
(i.e. For the class ‘‘Spoofer present’’ the Spoofer was
there and the model determined it was not there). For
the class ‘‘Spoofer Present’’, we can consider this as the
number of times the model detected the Spoofer when
it was there, divided by the number of times the Spoofer
was there (regardless whether the model detected it or
not). It is a ratio, where 1 means that there is no Missed
Detection (for the class ‘‘Spoofer Present’’, for the class
‘‘Spoofer not present’’ it would imply no False Alarm
(False Alarm)).

3) Then, compute F1, which is the harmonic average of
the Precision and Recall, and it is defined as per (58).

F1 = 2
PrecisionRecall

Precision+ Recall
(58)
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FIGURE 11. F1 Score with E1C and 16ms of integration. Position fed into the algorithms.

Both Recall and Precision give a rate of the number of
correctly predicted elements of a class against the number of
wrongly labeled elements (elements that, in reality, belong
to a class and were predicted to the other class (Precision),
or elements that don’t belong to the class and were predicted
as part of the class (Recall)). This means that F1 will be
a value between precision and recall, per class, providing
with a score which will be one for a perfect case and 0 for
a model performing terribly. The F1 scores can be found
in Fig. 10 and Fig. 11.

Note that modifying the number of spoofing signal cases
in the training dataset will modify the values for F1 for both
types of classes, too.

Other authors, as in [21] suggest the application of Neural
Networks for the analysis of features extracted from the
output of early and late correlators tracking the signal. In the
present work, we are analyzing the entire search space for
the generation of the features. This is an important detail,
as otherwise if the victim tracks the false signal and that
signal is far from the real peak in the Search Space, the attack
may go undetected. In [22], the use of Support Vector
Machines (SVM) on sensor fusion data is suggested for
UAVs. Such approach makes sense in a dynamic environment
like the one of a moving vehicle but, as claimed by the
authors, if the Spoofer has absolute knowledge of the victim’s
trajectory, the attack will go undetected if this protection
approach is followed. Note that this implies that critical
infrastructure standoff victims (e.g. standoff timing users)
are particularly in risk because of that, so for such receivers,
the analysis of the Search Space should be advised.

As it can be seen in Figs. 8 and 7, the results were generated
with two different setups in the victim receiver:

1) No Gaussian positions in the search space were fed into
the algorithms, only using a local copy of E1C PRN and
with a coherent integration time of 16ms.

2) Gaussian positions in the search space were fed into the
algorithms, only using a local copy of E1C PRN and
with a coherent integration time of 16ms.

Multipath was not simulated in the dataset, hence clear sky
conditions are assumed at the victim’s receiver antenna.

The calculated Search Space has a resolution of 392.16Hz
in the Doppler axis and 20 ns in the delay axis, which was
sufficient for the cases under analysis. Parallel Acquisition in
Time Domain was used in the victim’s receiver in order to
compute the search space.

The workbench was configured to work with comma
floating numbers. This allows disregarding effects related to
fixed-point precision.

The results can be found in the Figs. 8 and 7.
The algorithm configurations were as follows:
1) Nearest Neighbors: groups (K) = 5, uniform weights,

ball tree algorithm, leaf size = 20.
2) RBF SVM: Radial Kernel, Regularization parameter

(C) = 0.025.
3) Decision Tree: Max depth = 7, Minimum number of

samples per split = 3.
4) Random Forest: Max depth = 7, Minimum number of

samples per split = 3, Number of trees in the random
forest = 10.

5) AdaBoost: Number of estimators = 50.
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The accuracy results were obtained using K-folds tech-
nique (K = 5). From the overall amount of samples, 30% of
them were used for validation, deriving the accuracy results
reported in this paper. The other 70% were used to train the
models, using K-folds technique, dividing the dataset into
five groups (K = 5). See Fig. 6 for details on the performed
cross-validation.

The C/No lower limit for the used datasets can be seen
in the horizontal axis of Figs. 7 and 8. For instance, a point
in 20 dBHz means that all input data samples used for the
training and validation are extracted from signal records with
C/N0 of 20dBHz or higher. The used data samples reduction
can be seen on the right vertical axis in all these Figs. and the
black points in the figures.

The best results were obtained with algorithms based on
Decision Trees, namely: Decision Trees, ADA Boost and
Random Forest. These algorithms perform in a remarkable
manner, when signal C/N0 is above 30dBHz. As it can
be seen in Fig. 7, RBF SVM algorithm does not achieve
such great performance in that C/N0 range, providing low
(compared to the results provided by the Decision Trees
based algorithms) accuracy, around 75%. It is expected that
the multipath will affect the accuracy results in a negative
manner, although the solution could already be applicable
to critical applications where a standoff receiver is in full
open sky conditions and with no multipath. Further work will
evaluate the multipath impact in the accuracy results. As per
the impact of the algorithms not knowing the location of the
peaks in the search space, a small accuracy reduction can be
seen for the best performers: Decision Trees, Ada Boost and
Random Forest. The reduction is very small, but it is still
present. In the RBF SVM case, the algorithm seems to be
very stable, with respect to the inclusion of the position of
the peaks, as no difference is seen when allowing the algo-
rithm to know the location of the peaks. As per the Nearest
Neighbors case, the accuracy is reduced when the location of
the peaks is introduced, particularly for high C/N0. This can
be explained due to the fact that, for the Nearest Neighbors
case, an intense optimization was performed with the dataset
without including the location of the peaks. As it can be seen
in the Confusion Matrices (tables: 1, 2, 3 and 4), the impact
is lower, but it is still present. This seems to imply that the
results of these algorithms are more reliable and less prone
to over-fitting, considering the proposed features and the
simulated dataset.

The RBF SVM results do not improve as C/N0 increases.
It provides poor results, with respect to other algorithms.
These results are not improved by the inclusion of the posi-
tions of the detected Gaussians. The reason for that is that
the Radial Base Function kernel is not able to properly sep-
arate the data in the proposed features space. Indeed, results
with other kernels for SVM, e.g. Linear kernels, are better
and improve with C/N0, confirming the fact that RBF is
not properly separating the data. The results of the Linear
SVM are not reported in order to not clutter the results
graphs.

TABLE 1. Random Forest with E1C, 16 ms of integration time and no
Gaussian positions in the search space fed to the algorithm. Lower limit:
C/N0>=31dBHz. True Positives: 94.62%. False Negatives: 5.38%. True
Negatives: 96.15%. False Positives: 3.85%.

TABLE 2. Random Forest with E1C, 16 ms of integration time and no
Gaussian positions in the search space fed to the algorithm. Lower limit:
C/N0>=39dBHz. True Positives: 97.30%. False Negatives: 2.70%. True
Negatives: 100%. False Positives: 0%.

TABLE 3. Random Forest with E1C only, 16ms of integration time and
Gaussian positions in the search space fed to the algorithm. Lower limit:
C/N0>=35dBHz. True Positives: 96.43%. False Negatives: 3.57%. True
Negatives: 96.43%. False Positives: 3.57%.

TABLE 4. Random Forest with E1C only, 16ms of integration time and
Gaussian positions in the search space fed to the algorithm. Lower limit:
C/N0>=39dBHz. True Positives: 98.63%. False Negatives: 1.37%. True
Negatives: 100%. False Positives: 0%.

Just as a reference, in Fig. 9, the SVM with linear kernel
and RBF kernel are compared. In the linear case, as the
C/N0 improves the results also improve, eventually provid-
ing similar values to Decision Trees, when C/N0 is greater
than 30 dBHz. This demonstrates that while the RBF kernel is
not able to properly separate the provided dataset, the Linear
kernel is. The results in Fig. 9 were generated with E1C
only 16 ms of integration and without feeding the position
into the algorithm. In order to get more relevant accuracy
figures, the best algorithms in terms of performance will
be evaluated showing the F1 score against the lower C/N0
limit for both classes (Spoofer present/Spoofer not present).
Confusion Matrices are shown (tables 1, 2, 3 and 4) for the
best performer (as it can be derived from Figs. 10 and 11),
the Random Forest algorithm. In general, for Random Forest,
as reported in the Confusion Matrices in table 2 and table 4,
forC/N0 >= 39 dBHz some classification errors are reduced
to zero. This cannot be understood as a perfect result but
as a very low error rate that, due to the size of the dataset,
is not shown. The proposed technique should be only used
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to detect attacks (mainly for stand-off critical application
receivers). Once the attack is detected, other auxiliary navi-
gation systems shall be used (e.g. Inertial navigation systems,
alternative stable clocks, etc.)

VI. CONCLUSION
Spoofing attacks represent a very serious threat for GNSS
systems. To fight against that risk, some authentication
techniques, like NMA in Galileo, will be available. However,
this may not be enough to counteract the spoofing attacks
based on SCER. For this particular case, a complementary
approach based on the application of machine learning meth-
ods to the receiver search space has been introduced in this
paper.

Two main aspects have been studied: the Intra-satellite
PRN non-orthogonality distortion term due to Galileo modu-
lation and the use ofmachine learning techniques for end-user
protection.

Such Intra-satellite PRN non-orthogonality distortion term
was found and a quality curve that allows direct compar-
ison between GPS and Galileo for SCER Spoofer symbol
estimation, was provided (refer to Section II). A deep exami-
nation of the operations performed by a spoofer to produce a
SCER attack was provided, too.

Simulations in Section III confirmed the presence of
the Intra-satellite PRN non-orthogonality distortion term for
Galileo attacks on NMA, with low integration times and
high C/N0. Appreciable impact was only found for integra-
tion times of 1 µs and C/N0 greater than 67 dBHz. The
impact was around 10%, or more, in terms of Spoofer Pd .
This effect may be of particular relevance for attacks on sys-
tems using SCA while using high-gain antennas. The Galileo
quality curves proposed in Section II were also confirmed by
the simulations.

Theoretical calculations suggest that a different distortion
term, as seen in (38), appears in the SCER attack on Galileo
with SCA, hindering the estimation of the unpredictable chip.
Moreover, the Galileo theoretical quality curve, calculated
in Section II, is very challenging for the attack on SCA as the
integration time will need to be below 1µs. In the second part
of the paper, a new Machine Learning technique for SCER
spoofer detection was proposed. Based on the simulation
results, with classifiers based on Decision Trees and the pro-
posed features extraction method, the models obtained per-
formance ratios (correct classifications) greater than 98.48%,
for C/N0 between 40 dBHz and 50 dBHz. The False alarm
rates get a significant improvement for decision tree-based
algorithms for C/N0 >= 39 dBHz, as seen in tables 2 and 4.
Therefore, this seems to be a promising complementary solu-
tion for detecting spoofing attacks which, otherwise, may not
be detected (assuming NMA is used, as the Spoofer may
modify the navigation message without being detected by
the proposed method if NMA is not used). Note that it was
assumed that the attacker was not able to null the origi-
nal satellite signal. Hence, the proposed Machine Learning
technique could be applied for critical applications standoff

receivers in two cases: when using GNSS signals that do not
support NMA or when using NMA signals to protect against
SCER, and always after a successful check of the Navigation
Message authenticity.

Further work will evaluate other signal features, trying
to reduce the computational load of the extraction step.
Multipath simulation will be considered and more sophis-
ticated RFI detection methods will be evaluated, too. The
workbench will be updated to simulate SCA, and steps will be
performed to start implementing a demonstrator on FPGAs.
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