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ABSTRACT This paper proposes a fast and highly accurate prediction method for the reaching motions
performed by a worker in cooperative work with a robot, called fast prediction of reaching motion
(F-PREMO). Cooperative work is permitted by a 2011 ISO revision under the condition that risk assessment
has been performed. To increase production effectivity, it is essential to predict the worker’s movement and
control the robot based on the prediction. This paper focuses on the movement of a worker’s hand, called the
reaching motion, which is relevant to many types of assembling tasks. The most common existing methods
require attaching markers to the workers or installing three-dimensional (3D) sensors in front of the workers
since these methods require the real-time estimation of skeleton models of the workers. These requirements
lead to difficulties in introducing prediction methods at production sites. To solve this problem, we propose
a prediction method for the reaching motion that neither requires the attachment of markers nor limits the
placement of the 3D sensor. The proposed method first computes a feature vector of the reaching motion and
then performs the prediction using random forest with the computed feature vector as input. Experimental
results show that the proposed method can predict the reaching motion from the initial 50% of the movement
of the worker with more than 80% accuracy in less than 5.2 [ms].

INDEX TERMS Collaborative work, reaching motion, assembly, bin-picking.

I. INTRODUCTION
There is an increasing need for cooperative work between
humans and robots in fields such as object transportation
[1], [2], nursing care [3], [4], and product assembly [5],
[6]. Particularly in the industrial field, many collaborative
industrial robots have been developed and operated without
any separation between the workers and industrial robots,
primarily due to the following reasons:

1) The safety fences can be removed after a risk assess-
ment has been performed, as defined in ISO10218-
1:2011 and ISO10218-2:2011 (revised in 2011);

2) Cooperative work has great potential for improving
production efficiency by decreasing production time,
shortening the production line, and decreasing the num-
ber of workers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Wang .

For these two reasons, a number of robots have been devel-
oped for cooperativework, includingCR-35iA [7], duAro [8],
NEXTAGE [9], YuMi [10], LBRiiWa [11], and Baxter [12].
For example, the FANUC corporation developed an industrial
robot for cooperative work, called CR-35iA. This robot has
the following three safety functions [13]:

1) Contact stop function, which is activated on the physi-
cal impact between the robot and worker;

2) Push to escape function, under which the robot may be
shoved in any direction by a human operator; and

3) Shock absorption function, which is achieved by cov-
ering the robot’s surface with cushioned materials.

ABB has also produced a collaborative industrial robot called
YuMi [10]. YuMi can execute emergency stops within less
than 10 [ms] after detecting an unexpected impact, and the
surface of the robot is coveredwith soft pads for absorbing the
physical impacts. In addition, the positions of YuMi’s joints
and the length of each joint are carefully designed such that
there is no gap where the worker’s fingers can get stuck.
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These robots ensure worker safety by utilizing emergency
stop functions when collisions are detected and by computing
trajectories for collision avoidance based on the distance
between the robot and the worker [14]–[16]. In other words,
these safety functions are based on the current state of the
robot and the worker. In addition to these functions, predict-
ing the worker’s movement can greatly improve production
efficiency by decreasing the number of emergency stops,
increasing the running speed of the robot, and computing
more efficient trajectories for collision avoidance [17].

The prediction of worker movements at production sites
is categorized into the following two types. The first is the
prediction of the movement of the worker’s center of mass
[18], [19], while the second is the prediction of the motion
of the worker’s arm, which is referred to as the reaching
motion [29]–[31]. The former is mainly treated as a problem
of predicting the movement of a mass point. In contrast,
predicting the reaching motion is more difficult since the
dynamics ofmotion of a human arm are highly nonlinear [32].
However, in many assembly tasks, the worker’s arm moves
with nearly no change in the worker’s center of mass.

Therefore, this paper focuses on predicting the reaching
motion of a worker. A number of prediction methods for
reaching motion have been proposed. A prediction method
that uses a Bayes classifier and assumes that the positions of
each joint are recognized and measured is reported in [31]. In
their method, the reaching motion is considered to be divided
into two layers: the upper layer defines the type of task for
the reaching motion and the lower layer provides the motion.
The method proposed herein predicts the type of task and
motion, and subsequently, integrates each prediction. Their
paper reports that a prediction accuracy of greater than 70% is
achieved based on 1/3 of the trajectory of the reachingmotion.

With technological advances on three-dimensional mea-
surement [20], [21], a lot of robotic tasks have been achieved
with 3D sensors, such as, positioning [22], [23], pose esti-
mation [24]–[26], picking [27], [28], and measurement of
worker’s movement. Researches [29] and [30] also employed
motion-capture systems to detect the arms and utilized the
Gaussian Mixture Model (GMM) algorithms to predict the
reaching motion of the arm. Their studies focused on learning
models that describe how humans cooperate, which can be
applied to cooperative human-robot work. Other similar tech-
niques used to investigate human motion have been studied
by using Hidden Markov Models (HMMs) [33].

In these models, the positions of the worker’s joints, par-
ticularly the arm joints, are measured using a motion-capture
system, which requires (1) attaching markers to the worker
and (2) placing at least three cameras. These requirements
increase the cost of installing a cooperative production system
and place limitations on the working environment.

Alternative methods for predicting the reaching motion
without a motion-capture system have been proposed using
a skeleton model of the worker.

For example, a prediction method for the reaching motion
based on gesture recognition was proposed in [34]. In this

method, the various types ofworkermovements are registered
in a database in an offline process. The movements are then
categorized into classes, and one GMM is assigned to each
class. The volume swept by the worker is also computed for
each class. Next, in an online process, the current motion
is first categorized based on the recognized gesture, and the
time series of the volume swept by the worker is predicted.
This method achieved prediction accuracies of 50% and 92%
based on measured data of 43% and 80% initial trajectories,
respectively.

Ravichandar et al. proposed a prediction method for the
trajectory of reaching motion and reaching point based on
the dynamics of a human arm model using a neural net-
work (NN) [32]. In their experiment, a skeleton model of
the worker was tracked in real-time with a Kinect sensor.
The prediction accuracy and prediction time of this algorithm
were 87% (seven correct predictions out of eight trials) and
50 [ms], respectively.

Jiang et al. [35] proposed a method that identifies the
skeleton model and predicts the reaching motion by using
the identified skeleton model. They represented the skeleton
model as a mapping between high- and low-dimensional rep-
resentations in the skeleton model by using latent conditional
random fields to model the spatial and temporal contexts of
human activities. The method of Jiang et al. took 11.2 [s] to
compute 10 [s] of the reaching motions.

The above methods estimate the joint positions of the
worker by using the estimated skeleton model in real-time.
However, to develop the skeleton model, it is necessary to
place a 3D sensor in front of the worker in order to capture the
upper body. In other words, these methods place limitations
on the placement of the 3D sensor.

To overcome these limitations, we propose a fast and
highly accurate prediction method, called fast prediction of
reaching motion (F-PREMO) for the prediction of reaching
motion without the need to attach markers to the worker or
place a 3D sensor in front of theworker. The proposedmethod
divides the common working area of the worker and robot
into different regions and predicts which region the worker’s
hand will reach into. The proposed method mainly comprises
the three following processes. First, the method extracts a
set of 3D points comprising of the worker, which is called
the ‘‘worker’s cluster’’ in this paper, from the obtained 3D
point cloud at each time step. Next, the method calculates a
feature vector of the reaching motion from the time series
composed of the worker’s clusters. Finally, the proposed
method predicts the region into which the worker’s hand will
reach by using a random forest. We confirmed the perfor-
mance of the proposed method using an assumed assembling
task. We conducted an experiment using a Microsoft Kinect
v2 [36] as the 3D sensor; the sensor was mounted above the
worker rather than in front of the worker. The experimental
results showed that the proposed method could accurately
predict the reaching motion based on 50% initial data for
the reaching motion. In addition, the average computational
time for the prediction was 5.2 [ms]. These results show that
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FIGURE 1. Situation for cooperative work considered in this paper. The
working space consists of three types of areas: the robot’s working area,
common working area, and the worker’s working area. In the robot’s and
worker’s working areas, only a robot and worker can be located,
respectively. The common working area is divided into several regions,
each of which is assigned a label. A 3D sensor is located at a position
where it can observe the common working area and movements of the
worker.

the proposed method can quickly and accurately predict the
reaching motion without requiring marker attachments or 3D
sensors in front of the workers.

The remainder of the paper is organized as follows.
Section II describes the problem considered in this paper:
predicting the reaching motion of a human doing cooperative
work with a robot. Section III describes the processes for
computing the feature vector showing the worker’s reaching
motion from 3D point cloud data obtained by a 3D sensor.
Section IV describes the semi-automatic process for creating
training data and the process to construct a predictor using a
random forest. Section V experimentally examines the per-
formance of F-PREMO, including prediction accuracy and
computation time. Section VI concludes this paper.

The following notations are used in this paper. A sphere
with its center located at p ∈ R3 and radius r ∈ R is
denoted by S(p, r). Elements of set A are represented by
ai(i = 1, 2, · · · ). The symbol |A| is defined as the number
of elements of a set A. Using the above notations, we can
write

A := {a1, a2, · · · , a|A|}. (1)

II. PROBLEM STATEMENT
As described in the previous section, this paper aims to
predict a human’s reaching motion during cooperative work
between the human and the robot. In cooperative work, there
is a chance of collision in the common working area where
the robot and worker co-exist.

To address the above problem, we consider the working
situation shown in Fig.1. This paper assumes three types of
areas: the robot working area, common working area, and
worker’s working area. The common working area is divided
into several regions, each of which is given a label. We will

FIGURE 2. Prediction process from 3D point cloud data to prediction in
the proposed method. Based on the 3D point cloud data, the method
categorizes the point cloud and identifies 3D points representing a
worker, as shown in Sec. III-B. We refer to the 3D points as a worker’s
cluster. The proposed method then computes a feature vector using the
time-series data of the worker’s clusters, as shown in Sec. III-C. Finally,
the method predicts the reaching motion from the current time t to t + T
by using a random forest, as shown in Sec. IV.

propose a method that predicts the area that the worker’s arm
is reaching toward.

In addition, the proposedmethod does not require attaching
markers to the worker or placing the 3D sensor in front of
the worker. The only requirement concerning the placement
of the 3D sensor is to mount it such that it can observe the
worker movements in the common working area and in the
worker’s working area.

We can summarize the problem described above as
follows:
Problem 1: There exists a common working area for a

worker and a robot, which is divided into n regions repre-
sented by �1, �2, · · · , �n. The time-series data of the 3D
point cloud in the common working and worker’s working
areas are assumed to be given from the initial time 0 to the
current time t , and are denoted by P(0),P(1), · · · ,P(t). The
region located closest to the robot’s working area Srobot and
where the worker’s hand will reach from the current time t to
t + T is determined as

i∗(t : T ) = argmini∈Î(t+1:t+T ) d(�i, Srobot), (2)

where d(X ,Y ) denotes the distance function for the regions
X and Y . Î(t + 1 : t + T ) is the predicted index set of regions
toward which the worker’s hand will reach from time t+1 to
t + T , and is defined by

I(ts : tg) = E(I(ts), I(ts + 1), · · · , I(tg)), (3)

I(τ ) = {i | ‖(V̂worker(τ ) ∩�i‖volume > Vth}, (4)

where E(J1, J2, · · · , Jn) is a mapping from the multi-set
{J1, J2, · · · , Jn} to a unique set in which each element has
a multiplicity of 1. The symbol Vth represents a threshold
for volume. The symbol V̂worker represents the predicted
area occupied by the worker at time τ and ‖X ∩ Y‖volume
denotes the volume of the intersection between regions
X and Y.

To solve Problems 1 and 2, we first propose a method
to extract the worker’s cluster from the obtained 3D point
cloud data; this method is a solution to Problem 1, shown
in Sec. III-B. We then propose a process to compute a fea-
ture vector that represents the reaching motion, as described
in Sec. III-C. Finally, we present a method to estimate
the region �i∗ that satisfies (2) by using the time-series
data of the feature vectors; This method is a solution to
Problem 2.
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FIGURE 3. Process for computing a feature vector for the worker’s
reaching motion. This computation consists of four steps. In the first step,
the worker’s cluster is determined from point clouds obtained by a 3D
sensor. In the second step, the 3D space is divided into voxels, and each
voxel is binarized such that whether the number of points for the
worker’s cluster located in each voxel exceeds a threshold or not. After
this process, the binary vector f (t) is obtained in the third step. In the
fourth step, the feature vector of the worker’s reaching motion F (t) is
computed from the time series of the binary vectors f (t), f (t − 1), · · · .

III. COMPUTATION OF FEATURE VECTOR
This section describes the process of computing a feature
vector of the worker’s reaching motion. The process mainly
consists of four steps, as shown in Fig.3.

In the first step, the worker’s cluster is extracted from 3D
point cloud data. In the second step, the working area is
divided into voxels and each voxel is binarized to indicate
the presence of the worker. Subsequently, the binary vector
f (t) is obtained in the third step. Finally, in the fourth step,
a feature vector F(t) is computed based on the time series of
binary vectors f (t), f (t − 1), · · · .
Section III-A will explain preparation needed to be per-

formed for the process of computing the feature vector. The
first step is described in sec. III-B and the rest of the steps are
shown in sec. III-C.

A. PREPARATION
First, it is necessary to install a 3D sensor in a place where
it can observe the common working area and the worker’s
working area. It is not necessary for the 3D sensor’s observa-
tion area to cover the entirety of the worker’s working area. In
addition, the 3D sensor is assumed to be able to obtain depth
images of the scene. Thus, each 3D point obtained by the 3D
sensor will have a corresponding 2D representation (u, v) in
the camera’s view, which can be represented by

s

uv
1

 = g(x, y, z), (5)

where (x, y, z) and s are the obtained 3D point’s coordinates
and a scale parameter, respectively. A number of models have
been proposed for the function g [37]. The simplest one is the

pin-hole camera model, which can be represented by

g(x, y, z) = K


x
y
z
1,

 (6)

where K is the intrinsic matrix and includes the focal length
of the camera.

Second, a rigid body conversion matrix T S
M to transform

the manipulator’s coordinate system to the 3D sensor’s coor-
dinate system can be obtained by offline calibration. Next,
the 3D shape of the manipulator is approximated by a primi-
tive shape χ (e.g., a cuboid or a sphere) [14], and a function

VM
= g(χ, pjoint1 , pjoint2 , · · · , pjointJ ) (7)

is identified, where VM and pjointi , i = 1, 2, · · · , J represent
the approximated occupied space of the manipulator and each
joint position of the manipulator, respectively. As a final
phase in the preparation, the 3D sensor obtains a point cloud
data for background where the manipulator is set to be in an
initial pose, and the worker is not present.

B. RECOGNITION OF WORKER BASED
ON 3D POINT CLOUD DATA
This section describes the process for extracting the worker’s
cluster of 3D point cloud data from the obtained 3D point
cloud data at each time point.

First, the 3D points consisting of themanipulator are recog-
nized in the 3D point cloud data as follows. Here, the 3D point
cloud data are denoted by P(t) := {p1(t), p2(t), · · · , pnt (t)}.
For the extraction, each joint position of the manipulator
qMi , i = 1, 2, · · · , J in the robot coordinate system is com-
puted by encoders from the angles of the joints. The joint
positions are converted into the 3D sensor’s coordinate sys-
tem by

qSi (t) = T S
Mq

M
i (t), i = 1, 2, · · · , njoint. (8)

From the computed joint positions, we can specify the space
occupied by the manipulator as

VM(t) = g(χ, qS1 (t), q
S
2 (t), · · · , q

S
J (t)). (9)

The 3D points corresponding to the manipulator are recog-
nized by

PM(t) := {pi(t) | pi(t) ∈ VM(t)}. (10)

Next, we perform the background subtraction for the point
cloud and extract the changed points to satisfy

ψz(p(u,v)(t))− ψz(p(u,v)(0)) ≥ εbs, (11)

where p(u,v)(t) ∈ R3 represents the 3D point correspond-
ing to the 2D representation (u, v) and ψz(p) is a func-
tion that returns the z coordinate of a 3D point p. Here,
the set of points satisfying (11) is defined by Pbs(t) :=
{p(u,v)(t) | satisfies eq.(11)}.
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The manipulator’s points are then removed from Pbs(t);
that is,

P̄bs(t) := Pbs(t)\PM(t). (12)

The clustering is performed for points P̄bs(t) using either
the 3D representation of the points [38] or the projected 2D
representation of the points [39]:

P̄bs(t) = {Pbs
1 (t),Pbs

2 (t), · · · }. (13)

The clustered points are then obtained.1

The clusters in P̄bs(t) with more than εworker points are
considered to be the worker; that is,

Pworker(t) := {P̄bs
i | i ∈ {1, 2, · · · }, |P̄

bs
i | > εworker}, (14)

where εworker is the user-defined threshold, which should be
set depending on the worker’s volume.

We write the above process for extracting the worker’s
cluster of 3D point cloud data from P(t) as

Pworker(t) = ξ (P(t),P(0)), (15)

where P(0) represents the 3D point cloud obtained as the
background. The function ξ in (15) is a solution to Problem 1.

C. FEATURE VECTOR OF THE WORKER’s
REACHING MOTION
This section describes the process of computing a feature
vector of the worker’s movement from the obtained worker’s
cluster derived in the previous section. The reaching motion
is predicted using a random forest [40] with the feature vector
as input.

First, we assume that the worker’s cluster of 3D point cloud
data is given from the initial to current time Pworker(τ ), τ ∈
{0, 1, · · · , t} by using the method shown in sec. III-B.
The 3D space is then divided into voxels with length Lvoxel

on each side. Each voxel is turned into a binary state to
indicate the presence of the worker inside a voxel. If at least
one point from Pworker(t) is mapped to the voxel, the voxel
takes the value 1; otherwise, the voxel takes the value 0. After
this process, the 3D voxel space is mapped into a 1D space,
creating a binary vector denoted by f (τ ) ∈ {0, 1}nf , τ =
t, t − 1, · · · , as shown in Fig.3.
Now, we are ready to define the feature vector as

F(t) : =


f (t)

δ(0, κ0, κ1)
δ(1, κ0, κ1)

...

δ(k0, κ0, κ1)

 ∈ {−1, 0, 1}nF , (16)

where κ0 and κ1 are user-defined constants for time delay. The
function δ represents the time change for a worker’s pose and
is defined by

δ(k, κ0, κ1) = f (t − kκ0)− f (t − kκ0 − κ1). (17)

1We have used an approach similar to that of [39] in sec. V.

IV. PREDICTION OF REACHING MOTION
WITH FEATURE VECTOR
This section explains the prediction process by using random
forest as a classifier. Before use, the random forest is trained
on the data pairs of the feature vectors and region labels.

These training data are semi-automatically created from
time 0 to Ttrain using the following process. The training data,
which are constructed of pairs of the feature vector F(t) and
the region label `(t), are created in real-time without post-
processing. To create the training data, the worker only needs
to indicate the starting time ti for the i-th reaching motion.
The end time for each reaching motion is automatically iden-
tified as follows. Once the worker’s hand is detected inside
the region `i in the common working area at time t reachi , a
timer will run for the duration stimer. If the worker’s hand
has been inside the region `i during the whole duration of
stimer, the training dataset Di for the i-th reaching motion is
constructed by

Di := {(F(ti), `i), (F(ti+1), `i), · · · , (F(ti+Ti), `i)}, (18)

where Ti represents prediction horizon, which is defined as
t reachi − ti + stimer. The collection of ntrain reaching motion
samples is combined as

Dpredict
:= {D1,D2, · · · ,Dntrain}. (19)

Not all feature vectors from time 0 to Ttrain are included in
Dpredict. The feature vectors that are not included in Dpredict

(i.e., the worker is not performing a reaching motion toward
the common working area) are denoted by F(tnoi ) and col-
lected in

Dno
:= (F(tno1 ),−1), (F(tno2 ),−1), · · · , (F(tnomno

),−1), (20)

where the label -1 indicates no reaching motion toward the
common working area. Here, note that

{tno1 , t
no
2 , · · · , t

no
mno
} = {0, 1, · · · ,Ttrain}\{t1, t2, · · · , tntrain}.

(21)

Finally, we combine all training datasets generated by the
above process into one training dataset:

D := {Dpredict,Dno
}. (22)

The random forest classifier consisting of ntree decision
trees is then built using the training dataset. Each decision
tree in the random forest is trained on randomly chosen data
pairs (F(t), `(t)) from D, where F(t) is the input vector to a
decision tree and `(t) is supervised data. In the online predic-
tion process, the output of the random forest is the integrated
output from each decision tree, as shown in Fig.4. The output
of each tree is a probability prediction score for each region,
including the special label -1. The output ipredictregion (t) from the
random forest represents the region into which the worker’s
hand will reach with high probability from time t to t + T .

Representing the reaching motion with the feature vector
F(t) allows us to store the current and previous positions of
the worker’s poses in a single vector without imposing any
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FIGURE 4. Process of predicting the region toward which the worker’s
hand will reach from current time t to t + T by using a random forest.
First, a feature vector F (t) of the worker’s reaching motion is computed
from the point cloud data P(t). The feature F (t) is then inputted to the
random forest, which is obtained by the semi-automatic training process
described in Sec. IV. A random forest is a set of binary decision trees, and
each tree outputs the probability of the worker’s hand reaching a certain
region. The outputs of each tree are integrated, and the region with the
highest probability is the prediction output from the random forest.

kinematic model for the worker’s body. Even though F(t) is
a high-dimensional binary vector, the fast computation of the
reaching motion is achievable. The random forest classifier
can ignore unimportant elements inside F(t) (e.g., voxels that
have never been occupied by the worker). Each decision tree
is trained to identify and disregard unimportant feature values
inside the first binary decision tree layers, thereby quickly
reducing the feature space for the prediction process.

V. VALIDATION OF THE PREDICTION METHOD
Figure 5 shows a photo of the experimental system used for
validation.

The validation experiment involves a cooperative assembly
task as follows.

1) A robot sequentially assembles six types of parts in the
robot’s working area.

2) The robot places an assembled part in the correspond-
ing parts boxes (six boxes are located on a table).

3) Step-by-step assembly instructions for a product are
shown to a worker.

FIGURE 5. Experimental system. A detailed explanation is given in the
caption of Fig.6.

FIGURE 6. Illustration of the experimental system. The six blue boxes are
located in the common working area; the worker reaches and picks up
pieces from the boxes needed for the assembly task, and the robot
supplies the boxes with the pieces. The common working area is
monitored by a 3D sensor, which generates point clouds of the scene.

4) The worker selects and picks up parts that are necessary
for the product from the parts boxes, and assembles the
product on a conveyor belt.

In practice, the robot does not assemble parts in the robot’s
working area, and six types of parts are prepared in the
common working area because this situation is sufficient to
evaluate the performance of the proposed method and verify
the extraction of the worker’s cluster from the 3D point cloud,
including the robot’s cluster.

In the verification experiment, the common working area
is coincident with the area where the parts boxes are located.
This commonworking area is divided into six regions, each of

VOLUME 8, 2020 90345



S. Arai et al.: Fast Prediction of a Worker’s Reaching Motion Without a Skeleton Model (F-PREMO)

FIGURE 7. Prediction results for the worker’s reaching motion in the 65th cycle from time 0.0 [s] to 2.2 [s]. Upper: 3D point cloud data
obtained by the Kinect v2 camera installed above the part boxes and prediction results indicating which box was targeted by the worker’s
hand. Middle: time-series photos captured by a camera located next to the Kinect v2 camera. Lower: time-series photos captured by the
camera located in front of the conveyor belt. Figures 7a–7d show the worker’s hand approaching box 1 and Figs. 7i–7l show the worker’s
hand picking up the part. The prediction result of ‘‘no box’’ shown in Figs.7a and 7b indicates that the worker’s hand will not reach the
common working space from time t to t + T . The prediction result in Fig.7c illustrates that the proposed method outputs the correct
prediction at 0.4 [s] after the initial pose of the worker. The results show that the proposed method generates correct predictions based
on slight changes in the worker’s posture.

which is represented by a box. In this situation, the proposed
method predicts which box the worker’s hand will reach.

The system configuration is shown in Fig.6. A Kinect
v2 for Windows [36] is used as the 3D sensor and set at
1.2 [m] above the parts boxes. The Kinect v2 captures 512×
424 depth images at a frequency of 30 Hz. The 3D point cloud

data obtained by Kinect v2 are sent to a PC with an Intel
Core i7-4720HQ CPU and 16 GB of DDR3 SDRAM, and
processed for prediction. A point cloud library [41] is used
for processing the 3D point cloud data.

To create the training dataset, the worker performs
300 cycles (50 cycles for each box). Here, starting from the
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FIGURE 8. Prediction results for the worker’s reaching motion in the 65th cycle from time 2.5 [s] to 5.0 [s]. Figures 8a–8e show the hand
setting the part in the fixture on the conveyor belt. After the worker picks up the part shown in Fig. 7l, the proposed method also provides
the correct prediction of ‘‘no box,’’ as shown in Figs. 8a–8h.

TABLE 1. parameter setting.

initial pose of the worker, we define one cycle process to
include the worker picking up one part and inserting that
part into a fixture located on a conveyor belt. The ran-
dom forest is constructed using the created training datasets.
A method for this machine-learning part is implemented with
a machine-learning library called scikit-learn [42].

Table 1 shows the parameter settings for the proposed
prediction method. In this experiment, Kinect v2 can measure
a 3D space with a volume of 2.2[m] × 2.2[m] × 3.1[m].

Here, we set an ROI of 1.0[m] × 1.0[m] × 1.0[m] in the
observed 3D space. In the ROI, we divide the 3D space
by voxels with length = 0.1[m] in each dimension. Thus,
the dimension of the binary vector f (t) is equal to 1,000. In
addition, the dimension of the feature vector is 4,000 since k0
is set to be two, as shown in Table 1.
To validate the proposed prediction method, we performed

an experiment for 90 cycles (i.e., 15 cycles for each of the six
boxes). The number of 3D points obtained by Kinect v2 is
almost 217,000. Downsampling is performed at each time
point, and the number of obtained 3D points is decreased to
nearly 14,000 points.

Figures 7 and 8 shows the obtained 3D point cloud, pre-
diction results, and photos for the 65th cycle. In Figs. 7a–8h,
the upper, middle, and lower figures show the 3D point cloud
with prediction results, photos captured by the camera located
above the conveyor belt, and photos captured by the camera
located in front of the conveyer belt, respectively. In Fig. 7
and 8, the processes of stretching out, picking up the part,
and putting it on the conveyer belt are shown in 7a–7d, 7i–7l,
and 8a–8e, respectively. After picking up the part, the method
predicted ‘‘no box’’ (i.e., the worker will not pick up any part
in the current phase), as shown in Figs. 8a–8h. This result and
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FIGURE 9. Time-series prediction results of the random forest for the
cycle shown in Fig.7. The horizontal axis shows time, with t = 0 being the
beginning of the reaching motion. The vertical axis shows the output of
the random forest. The worker can be considered to be in one out of
seven states [i.e., reaching box i ∈ {1, · · · , 6} or not reaching any box (‘‘no
box’’)]. For this cycle, the proposed method can predict the reaching
motion correctly at time 0.4[s] since the output of the random forest
changes from ‘‘no box’’ to ‘‘Box 1’’ at that time.

Fig.7c show that the proposedmethod can produce the correct
prediction based on slight changes in the worker’s posture.

Figure 9 illustrates the result of time-series prediction for
the 65th cycle. In this experiment, a total of seven states of
the worker can be considered, that is, reaching boxes i, i ∈
{1, 2, · · · , 6} and not reaching any box (‘‘no box’’). Thus,
Fig.9 shows the predictions for the seven states. The output
of the random forest corresponds to the state with the highest
likelihood at each time point. The output of the random forest
changes from ‘‘no box’’ to ‘‘Box 1’’ at approximately time
t = 0.4[s]. Thus, the proposed method achieved the correct
prediction based on 0.4[s] of the observation of the reaching
motion.

Figure 10 shows the statistical prediction result for the
entire validation set of 90 reaching motions. Compared to
Fig.9, which illustrates the prediction result over time, this
graph shows the prediction result over normalized distance
ratio, where 0 and 1 are the initial point of the trajectory of
the reaching motion and the point where the worker’s hand
reached the box, respectively. Figure 10 shows that when the
worker has performed 40% to 50% of the reaching motion
from the worker’s initial position, the proposed method can
correctly predict the reaching motion. The placement of the
boxes with regard to the initial pose of the worker indicated
that the reaching motions for the right arm were longest for
box 1, with motion’s length diminishing for every box down
to box 6. Longer arm reaching motion results in more visual
features of worker’s posture that can be used to distinguish the
reaching motion toward different boxes. This would explain
the differences in the early prediction results seen in Fig.10
for different targeted boxes.

Figure 11 shows the computation time for the prediction
process. Each prediction process, including the processing
of the 3D point cloud, takes 5.18 [ms]. This result indicates
that real-time prediction can be performed by the proposed
method.

The changes in prediction accuracy and computation time
with the number of decision trees constructing the random
forest are shown in Fig.12. Figure 12 illustrates ‘‘Prediction
using Random Forest’’ corresponding to Fig.11 since the

FIGURE 10. Statistical result of the prediction of 90 reaching motions.
The horizontal axis shows the distance ratio of trajectories beginning
from the initial position to the worker’s hand reaching the boxes. The
average prediction result for each reaching motion is illustrated in this
graph. Based on the 40% to 50% initial trajectory of the reaching motion,
the proposed method can correctly predict the reaching motion.

FIGURE 11. Computation time for a prediction. The average number of
points obtained by the Kinect v2 camera in the experiment is
approximately 14,000. The proposed method takes 5.18 [ms] to predict
the worker’s reaching motion. The prediction process mainly comprises
four steps, as shown in this plot. The detection of the robot and worker
described in Sec. III-B, computation of the proposed feature vector for the
worker’s reaching motion described in Sec. III-C, and prediction using a
random forest described in Sec. IV take 3.70[ms](71%), 0.61[ms](12%),
0.06[ms](1%), and 0.81[ms](16%), respectively.

FIGURE 12. Relationship between prediction accuracy and prediction
time corresponding to ‘‘Prediction using Random Forest’’ in Fig.11. The
prediction time depends mainly on the number of trees in the random
forest. The data shown in this graph are obtained by changing the
number of trees.

computation time for processing the 3D point cloud and
feature vector do not depend on the number of decision
trees. This figure shows that the prediction accuracy exceeds
more than 85% when the computation time is more than
0.2 [ms], and the accuracy gradually increases up to 90%.
This result indicates that the proposed method can perform
high-accuracy prediction in real-time.

VI. CONCLUSION
This paper proposed a prediction method for reaching
motions used to achieve efficient collaborative tasks by a
worker and an industrial robot (F-PREMO). The proposed
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method has the following three advantages: First, the pro-
posed method does not require the posture of each joint
of the worker to be estimated or a skeleton model of the
worker. In other words, the method does not impose any
restrictions such as attachingmarkers to the worker or placing
a 3D sensor in front of the worker. The second advantage
relates to the computation time and prediction accuracy of
the proposed method. The experimental results show that the
performance of the proposed method is similar to or better
than existing methods, without imposing any restrictions for
the placement of the 3D sensor. Finally, the proposed method
does not require much time and cost to generate training data.
In general, the training data utilized for supervised learning
methods are created manually, requiring considerable time
and cost. To solve this problem, the training data are gen-
erated semi-automatically in the proposed method using a
random forest.

In future work, we will confirm that the proposed predic-
tion method can be applied to worker motions other than the
reaching motion. It is also necessary to consider the method
that generates the trajectory of the manipulator by using the
prediction obtained by the proposed method.
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