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ABSTRACT Team sports can be viewed as dynamical systems unfolding in time and thus require tools and
approaches congruent to the analysis of dynamical systems. The analysis of the pattern-forming dynamics
of player interactions can uncover the clues to underlying tactical behaviour. This study aims to propose
quantitative measures of a team’s performance derived only using player interactions. Concretely, we
segment the data into events ending with a goal attempt, that is, ‘‘Shot’’. Using the acquired sequences
of events, we develop a coarse-grain activity model representing a player-to-player interaction network. We
derive measures based on information theory and total interaction activity, to demonstrate an association with
an attempt to score. In addition, we developed a novel machine learning approach to predict the likelihood of
a team making an attempt to score during a segment of the match. Our developed prediction models showed
an overall accuracy of 75.2% in predicting the correct segmental outcome from 13 matches in our dataset.
The overall predicted winner of a match correlated with the true match outcome in 66.6% of the matches
that ended in a result. Furthermore, the algorithm was evaluated on the largest available open collection of
soccer logs. The algorithm showed an accuracy of 0.84 in the classification of the 42, 860 segments from
1, 941 matches and correctly predicted the match outcome in 81.9% of matches that ended in a result. The
proposed measures of performance offer an insight into the underlying performance characteristics.

INDEX TERMS Dynamical systems, network science, distribution entropy, football, Kolmogorov complex-
ity, machine learning, performance analysis, Shannon entropy, support vector machines, soccer.

I. INTRODUCTION
Improving comprehension of strategic performance and suc-
cess in team competition is an important goal in sports sci-
ence [1]. Data-driven methods can effectively overcome the
subjective limitations (manual analysis) of the match and
offer better results for football clubs. Quantitative analysis
can provide players and coaches with such insight, by allow-
ing them to improve their match and assessment of the event
beyond what personal observation can accomplish [2]. Tradi-
tionally, methods of performance analysis push the study of
one-dimensional and discrete performance indicators towards
probabilistic and correlational approaches [3]. However, this
results in somewhat limited functional information as it lacks
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the understanding of the player-to-player interactions that
support the actions of players and overall team behaviour.

It is reasonable to expect an analysis of such one-versus-
one dynamics in team sports to be insufficient as multi-
player interactions are important in determining success and
failure [4]. Therefore, in order to quantify and explain per-
formance, it has been advocated that performance analysis
in team sports must also focus on the interactions between
players that sustain the overall team behaviour [5], [6]. From
the dynamical systems view, the understanding of how the co-
ordination emerges from the interaction among the system
components, that is, the player-to-player interaction, is the
key to performance analysis [7], [8]. In team sports, per-
formance analysis approaches that consider the interactions
of the players in many multiplayer team competitions like
football are not well explored [9].
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Inspired by empirical studies of networked systems,
researchers have recently developed a variety of techniques
and models to help us understand player interaction network
in sports [10]–[13]. Interaction or passing networks can be
constructed from the observation of ball transfer between
players. A key challenge is to leverage the interaction net-
works to gain a functional understanding of the underlying
team strategies. For example, by examining the structure of
interaction networks, recurrent pass sequences can be iden-
tified and linked to a team’s playing style [14], [15]. When
the emphasis is put at the player level, Duch et al. [16]
used the interaction networks to quantify and rank player’s
contribution relative to the overall team activity.

Due to dissimilarity and diversity in real-world sports data,
there is no systematic program for predicting network struc-
ture. In addition, there are no particular subsets of diagnos-
tics that are universally accepted [17]. Since team networks
are intrinsically subjective and dynamic objects, it is often
hard to determine a suitable way of network characterisation
that governs team formation [18]. In team sports like foot-
ball, quantifying player-to-player interaction is the key for
understanding the dynamic patterns that generate a scoring
opportunity [19]. This motivated us to develop an approach
that quantitatively characterises players’ interaction in team
sports. In this study, a data-driven approach to the study of
complex player interactions from event stream data generated
during football matches (henceforth referred to as soccer) is
employed. The proposed framework can be used to quantify
player interactions and connect that with the outcome using
a machine learning approach.

Data-driven approaches for soccer analytics are given
importance with the availability of the event stream data
(e.g., Opta, Wyscout, STATS, SecondSpectrum, SciSports,
and StatsBomb). Cintia et al. [15] in their work, extracted
pass-based performance measures to learn the correlation to
match outcome using a machine learning approach. More
recently, Pappalardo et al. [20] in their work employed a
machine learning approach to rank players. Their approach is
based on computing statistical features from the event stream
data for each player, which are then utilised to learn feature
weights in a supervised learning framework i.e., relative to
the match outcome. The authors then use the learned weights
to compute the rating of a player. In another recent study
by Decroos et al. [21], the authors have performed a seg-
mental analysis of different match states to extract several
associative features of player performance, which are then
used to determine the scoring or conceding probability using
an ensemble classifier. In contrast to the above-mentioned
studies that consider individual player’s actions or cumulative
team statistics, the proposed study describes a segment of a
match using a set of activity and entropy-based quantifiable
markers that capture both inter- and intra-player interactions.

To quantify interaction among players in team sports con-
ceived as dynamical systems unfolding in time, it is important
to use appropriate measures [22], [23]. The proposed study
considers the behaviour of multiple players and the emergent

nature of performance to develop pattern-forming dynamics,
that is, the dynamic physical relationships that a player may
establish with the teammates and opponents to make a goal.
We developed a coarse-grain activity model of player-to-
player interaction from the possession chain data, that can be
used to quantify the dynamic patterns underlying the inter-
action among players. We used the concepts of information
theory retrieval to quantify the complexity of a pattern repre-
senting player interactions during sub-segments of the match.
Another key challenge from the analytics perspective is the
format of the soccer log data, as different vendors use differ-
ent data formats [21]. Therefore, an analyst has to develop
complex pre-processors specific to a dataset. To tackle the
challenges posed by the variety of event stream formats and to
benefit the data-science community, we propose an approach
that uses only a limited amount of information. The pro-
posed approach only uses the possession information, such
as player, team, action type, and result from the event stream
data. The segmental analysis was thus performed using only
the possession information to quantify the team performance
and stability in team-dynamics during a specific module,
that is, a match segment. Furthermore, based on the derived
performance measures we developed a machine learning-
enabled decision support system for automated prediction of
a team’s likelihood of a successful attempt at goal.

II. APPROACH
A. DATASET
In this study we have analysed the dataset from a season
of Major League Soccer division of the United States and
Canada. The dataset consists of the possession chain data
from 13 matches. The interaction information (possession
chain) comprises of time and duration of all ball passes
and tackles between players. The dataset also includes the
nature of the interaction which can be categorised as being
between teammates or between opposing players (Table 1).
The positional information includes the x-y position of all
individuals throughout the entire match (∼90 minutes).

B. COARSE-GRAIN PLAYER INTERACTION MODEL
Given: A set of possession chain information for each match,
representing a set of events (pass, shot etc) between players
and the game outcome.

A match is split into a number of segments, where each
segment represents a phase of the match that begins with
either the start of the match or after an attempt (Shot) at
the goal and ends with a ‘‘SHOT ’’ (see Fig. 1). Further,
throughout the text the teams in an adversarial relationship
during a match were denoted by team-1 and team-2 for each
match in the dataset. Using the possession information corre-
sponding to every segment in the match, we propose a coarse-
grain model to find quantifiable measures of performance
that demonstrate an associationship with the outcome of that
segment, that is, which team (team-1 or team-2) makes an
attempt to score by taking a ‘‘SHOT ’’ at the opposition’s goal.
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TABLE 1. An example of ball possession chain data. The table shows a part of a ball possession chain dataset, which represents events in the 1st half of
a match.

FIGURE 1. Segmentation of the possession chain data. A match is split into different segments of varying length (or the number of events in a
segment) ending with a ‘‘SHOT ’’. The red and blue shaded cells represent possession by different teams. Each segment was individually
evaluated for measures of performance.

1) COARSE-GRAIN MODELS DERIVED FROM POSSESSION
CHAIN DATA
Each of the match segments was studied separately. The seg-
ments represent a sequence of ball possession change events
leading to an attempt to score. Each team in a soccer match
has 11 players with 3 allowed replacements. Based on the
sequence of events in each segment we define two types of
coarse-grain models. The first model weighs all the events
(e.g. pass, shot at goal, ball lost) equally, whereas the second
model weighs events based on their type. More specifically, a
higher weight of an event denotes a higher relevance. As we
are interested in measures that quantify a successful attempt
to score, we assign higher weights to shots and recoveries and
lower weights to events like ball lost and faults.

For each segment we first generate a pairwise player
matrix,Mi,j, where i, j = {1, . . . , 28}, each element of which
was initialised to zero. The matrixM contains players of both
teams (i, j = {1, . . . , 14} and i, j = {15, . . . , 28} for team-1
and team-2, respectively) and any elementMi,j represents the
interaction of the ith player with jth player in the segment.
The value of the Mi,j element denotes the number of times
the players interacted or the number of times the players
interacted weighed by the type of event. For example, if
player 1 of team-1 passes the ball to player 5 of team-1 the
element M1,5 of the matrix is incremented by 1 (i.e., M1,5 =

M1,5+ 1). Similarly, if player 3 of team 2 recovers the ball in
a tackle from player 5 of team 1, then the elementM14+3,5 of
the matrix is incremented by 1 (i.e.,M14+3,5 = M14+3,5+1).

Therefore, the diagonal 14×14 blocks of thematrixM denote
interactions of the players within a team whereas, the off-
diagonal blocks represent the inter-team player interactions.

Thus, the matrixM (such that,Mi,j ≥ 0 ∀i, j) was termed as
the interaction matrix. The matrix M represents the connec-
tions on the network of players (agents), related to activity-
based decision-making to the directed transfer of information
(ball) from one agent to another. This coarse-grain interaction
model (M ), represents the network of connections, accumu-
lated over a sequence of events during a segment of thematch.
We analysed the interaction between players based on the
following approach:

a: UNIT INCREMENT
Each element Mi,j of the interaction matrix is incremented
by 1 for an interaction between the ith and jth player of the
same team (ball passed) or players of the different team (ball
recovery, tackle, ball lost etc.) as follows:

Mi,j 7→ Mi,j + 1 (1)

b: WEIGHTED INCREMENT
Each elementMi,j of the interaction matrix is weighted by the
type of the event Et . More specifically, we assign a weight to
each event for evaluation of its contribution. Given that we
are mostly interested in goal attempts, we introduce a higher
weight for shots in comparison to passes, ball losses and other
events that lead to loss of ball possession.

Mi,j 7→ Mi,j +WEt , (2)
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where WEt is the weight corresponding to the event Et . As
we are interested in the likelihood of a successful attempt at
goal, we assign a highweightWshot = 2 to shots, a lowweight
Wpass = 0.5 to passes, and an average weight Wshot,pass = 1
to all other event types as suggested by Decroos et al. [24].

C. QUANTIFICATION OF TEAM PERFORMANCE FROM
COARSE-GRAIN MODELS
To quantify the performance of a team in each segment of the
match four measures were proposed:

1) TOTAL ACTIVITY INDEX (TAI)
To quantify the interaction in a segment the matrix M is
further divided into four blocks by summing all the elements
(Mi,j) in top left (team-1 ∀ i, j in {1, . . . , 14}), and the bottom
right (team-2 ∀ i, j in {15, . . . , 28}), which represent the
overall activity of each team that is obtained by summing the
activity of all players in a team. The off-diagonal elements
represent the interaction between players of both teams. Any
row in the top left (team-1 ∀ i in {1, . . . , 14}) or bottom right
(team-2 ∀ i in {15, . . . , 28}) block of matrixM represents the
interaction of the ith player with the rest of his team. Similarly,
any row in the off-diagonal blocks of the matrixM represents
player i (∀ i ∈ {1, . . . , 14}) of team 1 losing the ball to player
j (∀ j ∈ {15, . . . , 28}) of team 2 and vice versa. We introduce
the average 2 × 2 team activity matrix T as follows:

T =
[
T11 T12
T21 T22

]
(3)

where each element of matrix T represents the average activ-
ity of each block inM , as follows:

T11 =
N∑

i,j=1

Mi,j (4)

T22 =
2N∑

i,j=N+1

Mi,j (5)

T12 =
N∑
i=1

2N∑
j=N+1

Mi,j, (6)

T21 =
2N∑

i=N+1

N∑
j=1

Mi,j, (7)

where N = 14, and
∑N

i,j=1Mi,j represent a player’s activity
(team-1 ∀ i ∈ {1, . . . , 14}, and team-2 ∀ i ∈ {15, . . . , 28},
respectively). The overall activity (Ac) of each team in a
segment is then calculated as:

Ac1 = ε × (T11 + T21 − T12) (8)

Ac2 = ε × (T22 + T12 − T21) (9)

where ε =
∑

i,j=1..2 Ti,j is a normalisation constant.
The total activity index (TAI ) of the match is then com-

puted as follows:

TAI = Ac1 − Ac2 (10)

2) INFORMATION ENTROPY AS A MEASURE OF
PERFORMANCE
It has been advocated that performance analysis in a team
sports should consider the dynamical nature of the match and
must consider player-to-player interaction [5], [8]. The stabil-
ity and consistency of interaction between different players of
a team have been considered as a measure of performance
in soccer matches [25]. Entropy quantifies the uncertainty
coming from the random aspect of the dynamics. Entropy as a
measure can be utilised to quantify the consistency of patterns
representing player-to-player interaction in the match.

a: SHANNON ENTROPY
Previously, Shannon entropy has been used as a measure of
uncertainty in team sports to quantify the variability associ-
ated with the movements of players in a match [26]. In this
work, we have used Shannon entropy to quantify the patterns
representing player-to-player interaction during a segment of
the match. Shannon entropy is a measure of the uncertainty or
unpredictability in the estimate of the information content of
a random variable [27]. The Shannon entropy (H ) is defined
as follows:

H = −
N∑
i=1

pi ln(pi), (11)

where, pi is the probability of the ith element in the sequence.

b: KOLMOGOROV COMPLEXITY
As an alternative to the probabilistic notion of information
content, the Kolmogorov complexity is based on the concept
of recursive function [28]. Kolmogorov complexity allows
the characterisation of chaotic motion in dynamical sys-
tems and the analysis of spatiotemporal patterns [28]. The
Kolmogorov complexity c(N ) of a sequence with N samples
is the length of the shortest binary program that can generate
that sequence as output [28], [29]. An appropriate measure of
Kolmogorov complexity can be defined by h(N ) as follows:

h(N ) =
c(N )
b(N )

(12)

where b(N ) = N log2 N . In this work, Kolmogorov complex-
ity of the signal was calculated following Kaspar et al. [28].

c: DISTRIBUTION ENTROPY
Distribution entropy (DistEn) computes the complexity
of a time-varying sequence using the distribution of the
inter-vector distances [30]. Unlike approximate and sam-
ple entropy, DistEn offers high robustness for short length
sequences and reduced dependence on pre-determined
parameters [30]. DistEn has been previously used in many
biomedical applications to quantify the complexity of short
length signals [30], [31]. In the context of soccer, DistEn
can be used to characterise the complexity of the dynamical
network patterns representing the player-to-player interaction
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during a segment. The DistEn of a vector can be defined as:

DistEn(m, τ, β) =
1

log2(β)

β∑
i=1

pi log2(pi) (13)

where β = 64 is the number of bins in the probability
distribution, obtained from the data with the lag τ = 1
and embedding dimension m = 2. These parameter values
are selected based on common recommendations from liter-
ature [30].

d: ENTROPY DERIVED PERFORMANCE INDEXES
To quantify the complex behaviour in which players interact
during a soccer match, three entropy measures were calcu-
lated. Based on the type of the entropy three indexes were
defined: (1) Shannon entropy index (SEI ), (2) Kolmogorov
complexity index (KCI ), and (3) Distribution entropy index
(DEI ). Let s(N ) denote the entropy for a sequence of length
N . We calculate s(N ) for each row in each of the four blocks
of the interaction matrix M . We introduce a 2 × 2 matrix S
to represent the team entropy/complexity matrix as follows:

S =
[
S11 S12
S21 S22

]
(14)

Here, the elements of matrix S represent the averaged
entropy/complexity of player-to-player interaction in each
block of matrixM , as follows:

S11 =
1
N

N∑
i=1

h(Mi,j=1...N ) (15)

S22 =
1
N

2N∑
i=N+1

h(Mi,j=(N+1)...2N ) (16)

S12 =
1
N

N∑
i=1

h(Mi,j=(N+1)...2N ) (17)

S21 =
1
N

2N∑
i=N+1

h(Mi,j=1...N ), (18)

where N = 14.
The overall complexity for each team in a segment is given

by:

s1 = S11 + S21 − S12 (19)

s2 = S22 + S12 − S21, (20)

The three entropy derived indexes (SEI , KCI , and DEI ) of
a segment in the match are then computed as follows:

DerivedIndex = s1 − s2, (21)

where the DerivedIndex is SEI , KCI , DEI for s denoting
Shannon entropy, Kolmogorov complexity, and distribution
entropy, respectively.

D. MACHINE LEARNING APPROACH
The possession chain data from each segment in a match
was quantified using the proposed measures, which were
then used as features for predicting the team that makes the
‘‘SHOT ’’ during the segment. In themodel training phase, the
predictive model was trained using a supervised framework,
where each segment ending in a ‘‘SHOT ’’ was given a label
‘‘1’’ if team-1makes the shot and a label ‘‘2’’ if the opposition
makes the shot. During the testing and validation phase, the
learned model was then used to predict the team making
the ‘‘SHOT ’’ in a segmental manner. The outcome of the
game (i.e. team winning the match) was determined based
on the classification of the segments (team-1/team-2) where
the ‘‘SHOT ’’ ends in a goal. For each game, we report the
segmental performance and the predictedmatch outcome (i.e.
winner of the match). We now describe the classifier and the
learning procedure.

1) SUPPORT VECTOR MACHINE
Support vector machines (SVM) are state-of-art binary state
classifiers, which are suited for pattern recognition and classi-
fication problems with good robustness to overfitting. Given
an i.i.d . learning set {(x1, y1), (x2, y2), . . . , (xi, yi)}, where
x ∈ <N , y ∈ {−1, 1}, the kernel function maps the input
feature space to a high-dimensional space where the data
is linearly separable, offering the ability to learn non-linear
functions and decision boundaries. The decision function
separating the two classes is learned as a hyperplane. The
optimisation problem can be formulated as:

min
ω,b,ξ

1
2
‖ω‖2 +

C
n

n∑
i=1

l(ξ ) (22)

subject to yi(ω ·φ(x)+b) ≥ 1− ξi, ∀ i ∈ 1, . . . , n, where C
is a positive regularisation constant and ξ is the slack term.

By using the Lagrange multiplier techniques, the optimi-
sation problem in SVM is reduced to a dual optimisation
problem:

max
αk

W (α)=
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiyiαjyjK 〈xi ·xj〉 (23)

subject to
∑n

i=1 αiyi = 0 and αi ∈ [0,C] ∀ i = 1, . . . , n.
The learned decision function can then be represented as:

f (x) = sgn

(
n∑
i=1

αiyiK 〈xi, x〉 + b

)
, (24)

where K 〈xi, xj〉 represents the kernel function. In this study
we have used the Gaussian radial basis kernel function.

2) LEARNING CLASSIFICATION MODELS
The classification models were trained using a leave-one-
out cross-validation approach [32]. Let N represents the
total number of matches. In leave-one-out cross-validation
approach, the dataset corresponding to a match is left out
while the dataset from the remaining matches (N − 1) is
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FIGURE 2. (a) Player interaction matrix M, computed for the unit
increment for a segment of match G3. (b) Same as (a) for the weighted
increment. (c) Team activity matrix T , computed for the unit increment for
a segment of match G3. (d) Same as (c) for the weighted increment. The
self-interaction (main diagonal of the matrix M) has been saturated in the
left panel to reveal the interaction between the players. Every element
Mi,j represents the ball originator and receiver for an event. The main
diagonal blocks in (a) and (b) represent the interaction between players
of the same team, whereas the top-right and bottom-left corner blocks
represent interactions with the players of the opposition team. The lighter
the color, the higher the value of activity between the players. For the
shown segment, team-1 made an offensive attack against the team-2,
which is also evident in the higher activity (lighter color) of team-1 as
shown in (c) and (d).

used for training the SVM classifier. A feature selection using
Lasso technique was applied on the training set for finding the
least correlated and most discriminating features [33], thus
ensuring the test data (left-out match) was not a part of feature
selection and model learning procedure.

III. RESULTS AND DISCUSSION
In this study, we have analysed each match by segmenting
into sequences that end with a ‘‘SHOT ’’. The possession
chain data in each segment was first mapped onto a matrix
M representing match-integrated ball possession activity of
players (Fig. 2). To calculate the estimate of complexity and
non-linear dynamics in a match of soccer using the proposed
coarse-grain model of teams’ activity, we introduced four
quantitative measures of team performance (TAI , SEI , KCI ,
and DEI ). In addition, a machine learning approach was
presented, where we developed machine learning models to
predict the outcome of a segment based on the proposed
quantitative measures of performance.

We first explain the quantitative measures of performance
derived from the proposed coarse-grain model of player inter-
actions network, (A) total activity index (TAI ), (B) Shannon
entropy index (SEI ), (C) Kolmogorov complexity index
(KCI ), and (D) distribution entropy index (DEI ), followed

FIGURE 3. Match G3: Atlanta United FC (team-1) vs. San Jose
Earthquakes (team-2), season 2018 (final results: 4-3). Temporal
evolution of the proposed quantitative markers of performance (a) Total
activity index (TAI), (b) Shannon entropy index (SEI), (c) Kolmogorov
complexity index (KCI), and (d) Distribution entropy index (DEI), derived
using the weighted network of connections represented by matrix M. The
vertical dashed lines indicate the moments at which a goal was scored in
the match (the red (− − −) and blue (− − −) lines represent the goal
scored by team-1, and team-2, respectively). Each interval on the timeline
represents the time stamp of the segment ending with a ‘‘SHOT ’’.

by (E) the performance of the proposed machine learning
approach and future work.

A. TOTAL ACTIVITY INDEX (TAI)
The total activity index (TAI ) is a measure of a team’s activity
relative to the other during a segment. Based on the definition
of TAI , a positive value of TAI indicates that team-1 is likely
to take the ‘‘SHOT ’’ at the end of the segment, while a neg-
ative value indicates team-2 (Table 2, Fig. 3 (a)). The under-
lying hypothesis was that the more frequently or longer the
players of a team interact during a segment, the more likely it
is that this team scores in the particular segment of the match.
This was further corroborated by the minimum and the maxi-
mum values of TAI as seen, for example, inmatchG3 (Atlanta
United FC (team-1) vs. San Jose Earthquakes (team-2),
season 2018 (final result: 4-3)) that correspond to the seg-
ments when first team-2 was trying to score and then team-1
was trying to equalise by maintaining a higher possession of
the ball (the segment ending at 12th and 25th minutes of the
matchG3, Fig. 3 (a)).When plottedwith respect to the ground
truth (i.e the outcome of the segment w.r .t to the team taking
the shot) the distribution of TAI is close to normal for both the
teams (Fig. 4a, Fig. 4b). The descriptive statistics relating to
the performance of TAI are shown in Table 2. Results showed
significantly different (p < 0.05) means for both teams
(Table 2). Although a certain overlap could be seen among the
TAI value ranges derived using the unit and weighted incre-
ment matrices (Table 2, Fig. 4a, and Fig. 4b), the area under
the receiver operator characteristics curve (AUC) values of
0.79 and 0.81 for TAI derived from the unit and weighted
increment matrices show a good class separability.
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FIGURE 4. A distribution of the proposed measures of performance on
‘‘SHOTS’’ with respect to the true segmental outcome, shown for all
matches in the dataset; (a-b) TAI , (c-d) SEI , (e-f) KCI , and (g-h) DEI ,
derived using unit and weighted network of connections represented by
the interaction matrix M. The distribution of the derived quantitative
measures (TAI , SEI , KCI , and DEI) was close to normal, with both teams
having a significantly different means (p < 0.05).

The better performance of the weighted increment matrix
shows the introduced bias towards the segment outcome
(‘‘SHOT ’’) due to the higher weights given for the events
that are likely to result in goal attempts in comparison to
normal passes. Furthermore, the use of weights provides an
alternative evaluation function that offers the opportunity to
consider the types of events appearing in a pattern, and the
pattern’s support to determine its relevance. Finally, the TAI
derived from the coarse-grain activity model shows good
potential as a quantitative measure of performance in a team
sport like soccer.

B. SHANNON ENTROPY INDEX (SEI)
Shannon entropy gives a measure of uncertainty to quan-
tify the randomness associated with a time-varying signal.

The Shannon entropy index (SEI ) quantifies the underlying
variability in player-to-player interaction for a team relative to
the other team. The Shannon entropy of a team in a segment
would be low (≈ 0) if only few players interact with each
other, thus minimising the randomness and the associated
unpredictability, whereas it would be high (≈ 1) if different
players are continuously interacting with each other. A higher
entropy indicates that there is more uncertainty in pattern-
forming dynamics governing the interaction among players.
Alternatively, a higher entropy represents that players are not
constrained to a specific role and assume a higher tactical role
(e.g. players moving both forward, backward, and through
the sides of pitch, thus forging more player-to-player interac-
tions). In team sports, a longer possession of the ball is likely
to forge more player-to-player interactions especially, during
a strategy leading to an offensive on the opposition more
players are likely to be involved (e.g. in a match of soccer
midfielders, centre forwards, wing forwards can be a part
of an attack). Therefore, we hypothesised that the Shannon
entropy for the team that is attacking would be higher relative
to the other. Therefore, as defined in section II-C.2.d, SEI
would be > 0 if team-1 is attacking and < 0 if team-2
is attacking (Table 2, Fig. 3 (b)). The minimum and the
maximum values of SEI denote an offensive behaviour by
team-2 and team-1, respectively (segments ending at 12th and
25th minute in Fig. 3 (b)).

Thus, SEI can be a good marker indicating when a team
makes an offensive against the opposition. The SEI index
correlated with the segment outcomes, that is whether team-1
or team-2 takes the shot (highest AUC: 0.80, Table 2). The
mean SEI for team-1 and team-2 were significantly differ-
ent for both unit and weighted increment matrix (Table 2).
A similar observation was made from the distribution when
SEI was plotted with respect to the true outcome of the
segment (Fig. 4c, and Fig. 4d). Based on the descriptive
statistics (Table 2), the SEI index can be used as a potential
marker of a team’s performance derived from a coarse-grain
network model representing player-to-player interaction.

C. KOLMOGOROV COMPLEXITY INDEX (KCI)
The use of Kolmogorov complexity was motivated by the
presumption that interaction among players during a seg-
ment can be both random or synchronised (if certain play-
ers interact more frequently). Let us consider two vec-
tors sx = {0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0}, and sy =
{0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0} of length 14 each (only
a maximum of 11 players of each team were active during
any segment of the match; however, a pattern length of 14
was considered as a soccer match can have a maximum of 3
substitutes.), that represents interaction pattern of players sx
and sy. The value of the ith element in vectors sx and sy rep-
resents the number of times the ith player (∀i ∈ {1, . . . , 14})
interacted with player sx or sy, including any self-interaction.
Both the sequences sx and sy have the same Shannon entropy
of 2 and DistEn of 0.143 (m = 2, β = 64), whereas
both have a different Kolmogorov complexity (0.81 and 1.63,
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TABLE 2. Mean, standard deviation, and area under the receiver operator characteristic curve statistics of the indexes TAI , SEI , KCI , and DEI derived using
two different types of interaction matrix M over all matches in the dataset. The statistics show that the proposed indexes have significantly different
values corresponding to the team taking the shot at the goal. A positive value of the derived indexes denotes that team-1 takes the shot, while a negative
value indicates team-2, relative to whom the indexes are computed.

respectively). Sequence sx has a pattern composed of units
{0, 0, 1} in recursion, whereas sequence sy has no obvious
pattern, thus sy has a higher complexity. In the context of
soccer, if the players are interacting in a synchronisedmanner,
that is, few particular players are part of a strategy (offensive
or defense), such patterns would be represented by simpler
sequences with lower complexity or unpredictability. From a
coaches point of view, it is important to assess the dynam-
ics of pattern formation occurring in each segment of the
match to decode the underlying strategy [22]. The proposed
Kolmogorov complexity index derived from the player-to-
player interaction network (matrix M ) gives a quantitative
measure of local numerical relations in which the dynamics
of a teams pattern formation varies relative to the other team.
For example, if certain players are only restricted to particular
parts of the playing pitch as in the formation 4:4:3, the player-
to-player interactions in such a segment would be represented
by a less complex patterns like sx . On the other hand, if a team
allocates more players in sub-segments of a match to prevent
opposition’s attacking move (i.e., a defensive strategy) or to
create an offensive move at opposition’s goal, the player-
to-player interactions would be represented by more com-
plex patterns without any recursive sub-patterns as shown by
sy. Therefore, Kolmogorov complexity derived (KCI ) index
captures the complexity of patterns that is different from
Shannon entropy derived index or SEI . KCI showed a good
correlation when plotted with the segmental outcome of a
match (AUC (0.73), Table 2). A KCI value > 0 favoured
team-1, while a KCI < 0 indicates a shot taken by team-2
(Fig. 3 (c)). For match G3, the segment ending at the 54th
minute represents a case when team-1 is making an offensive
against the opposition to level the scores at 2 − 2, which is
shown by the maximum value of KCI at the 54th minute
(Fig. 3 (c)). The KCI index followed a distribution close
to normal, when plotted on the true segment outcome, that
is, with respect to the team taking the ‘‘SHOT ’’ (Fig. 4e,
and 4f), with a significantly different mean values for both the
teams (Table 2). KCI is a measure to quantify the regularity
of complex patterns in which players interact during team
sports. It gives a numerical relation in which the dynamics

of a team’s pattern formation varies over the segments of
a match. KCI can allow coaches to discover, identify and
quantify segments during a match, when a team interacts in
more complex or rather synchronised patterns.

D. DISTRIBUTION ENTROPY INDEX (DEI)
The distribution entropy (DistEn) measures the complexity
of patterns governing player-to-player interactions by taking
into account the hidden information in the state-space via
estimating the probability density of inter-vector distances.
A chaotic sequence has the maximum DistEn, thus patterns
of player-to-player interaction with high variability would
be characterised by a high DistEn (≈ 1) and vice versa.
The distribution entropy derived index (DEI ) quantifies the
chaotic patterns underlying player-to-player network of inter-
action for a team relative to the other. Similar to Shannon
entropy-derived index, a DEI > 0 would indicate a higher
variability (associated with an attacking move) in patterns
governing player-to-player interaction for team-1, when com-
puted relative to team-2 (Fig. 3 (d)). However, a particular
advantage of DEI over SEI is that SEI can be affected by
the variance of the sequences representing player interaction
patterns, while DEI is derived using a probability density
function with fixed bin number (β). Thus, DEI is more
robust as it considers inter-vector distances. Let us consider
two vectors sx = {0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 3, 1, 1, 0}, and
sy = {0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 5, 0, 1, 0} that represent the
interaction patterns of player x and player y during a segment
of thematch, and having the same number of total interactions
(
∑
sx =

∑
sy = 10). The 5 in sy represents the number

of times the 11th player of the team interacted with player
y during the segment. The Shannon entropy for sx , and sy is
2.84, and 1.96, respectively, whereasDistEn is 0.27, and 0.36,
respectively. Pattern sy represents that player y interacts more
frequently (5 times) with the 11th player, which results in high
inter-vector distances thus leading to a higher DistEn value.
The interaction pattern represented by sy indicates the events,
when player y is continuously interacting with a particular
player (11th player in the team). This pattern might signify an
underlying strategy where the players’ (defender/midfielder)
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FIGURE 5. Match G3: Atlanta United FC (team − 1) vs. San Jose Earthquakes (team − 2), season 2018 (final results: 4-3). The
segmental analysis for match G3, showing the predicted outcomes for every segment compared to the true outcomes; (a)
segmental likelihoods, (b) predicted outcomes, and (c) the true match outcome, which is the team taking the ‘‘SHOT ’’ at the
oppositions goal at the end of the segment. The vertical bars on the match timeline show the segments where a team scored a
goal. Red bars indicate team-1 and blue bars indicate goals scored by team-2. The intervals on the timeline indicate the time
stamp corresponding to the segments ending with a ‘‘SHOT ’’.

are interacting with a particular player (forward) as a part of
a strategy to generate a scoring opportunity. DistEn provides
an ability to encode such patterns, thus distribution entropy-
derived index (DEI ) can be a good marker to characterise the
complexity of player-to-player interaction patterns, such that
the underlying strategy can be quantified as a measure of a
team’s performance during a segment of the match. When
plotted with respect to the outcome of the segment, the DEI
values were normally distributed (Fig. 4g, and 4h). The mean
DEI values for the teams in the adversarial relationship were
significantly different (Table 2), and a good class separability
was achieved with an AUC of 0.79, and 0.81 forDEI derived
using unit and weighted interaction network of players.

E. PERFORMANCE OF THE MACHINE LEARNING
APPROACH
We developed an automated machine learning model to pre-
dict the outcome of a match segment using the proposed
measures of performance quantification (TAI , SEI , KCI ,
and DEI ). Our machine learning approach showed a mean

sensitivity of 78.3% (95% confidence interval (CI): 70.3%
- 85.3%), a specificity of 73.8% (95% CI: 69% - 80.2%)
and an overall accuracy of 75.2% in predicting the segmental
outcomes of the matches. Although our dataset comprised of
only 13 matches, it should be noted that we performed a seg-
mental analysis on segments of different duration (segments
ending with ‘‘SHOT ’’), resulting in a sizeable number of
samples (241 temporal segments) for training and validating
the machine learning classifier. In addition, our approach is
based on a robust cross-validation approach that ensures no
bias of the learned model to the ground truth.

The predicted segmental outcomes for all the matches in
the database are shown in Table 3. One match G13 ended
in draw. Among the rest, the predicted outcome correlated
with the ground truth (i.e., the winner of the match) in 8
(66%) of 12 matches. Furthermore, the application of the
automated segmental analysis is not limited to the overall
match outcome. It also helps to analyse the underlying local
prediction statistics. The outcome of our developed prediction
model on a complete match is shown in Fig. 5. The predic-
tion models give the segmental likelihood of an attempt to
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TABLE 3. The predictive performance of our developed machine learning models. Shown are the segments predicted in favour of a team with the overall
prediction accuracy, the predicted winner, and the true match results.

TABLE 4. Validation of the proposed approach on the largest open collection of soccer logs from 7 major competitions [34]. Shown are the total number
of matches, matches ending in result, the number of analysed segments, mean performance measures with 95% [CI: confidence interval] over all matches
of each competition, and the accuracy depicting the percentage of matches where the predicted winner correlated with the true match outcome.

goal for both the teams (Fig. 5 (a)). In the particular match
shown in Fig. 5, team-1 (shown in red) won the match 4-3.
The segments where a goal was scored are marked with ∗
(segments 3, 11, 13, 17, 19, 20, and 22 shown in Fig. 5).
It can be seen in Fig. 5 that segments where team-1 has
scored a goal (segments 13, 19, 20, and 22) have a higher
likelihood. Similarly, the likelihood for team-2 is higher in
the segments where they scored a goal. Segments 9, 14, 18,
and 19 show where both the teams are engaged in gaining the
possession of the ball as they want to equalise. The segments
where the predicted outcome (Fig. 5 (b)) did not match the
true outcome (Fig. 5 (c)) are the ones, where the possession
of the ball is continuously changing between the teams. To
quantify the minority of segments, where the model does not

provide a sufficient agreement with the ground truth data,
in future we would incorporate more sophisticated measures
by introducing player labels (forwards, mid-fielders, defence)
to understand player-to-player interaction using concepts of
mutual information retrieval [36].

F. VALIDATION AND COMPARISONS ON PUBLIC DATASET
To elaborate on the efficacy of the proposed approach a thor-
ough performance evaluation was carried out on the largest
available public dataset of soccer logs [34]. This dataset com-
prised event logs (possession chain data) from 1, 941matches
of 7 major competitions (Table 4). The proposed machine
learning approach showed an overall sensitivity of 83.5%, a
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specificity of 83.4%, F1 score of 83.7%, and an AUC of 0.84
in classifying a total of 42, 860 segments ending in ‘‘SHOT ’’
(i.e., whether team-1 or team-2 makes the ‘‘SHOT ’’ at the
goal) (Table 4). The match outcome (segments leading to a
goal) correctly correlated in 1, 202 (81.9%) of 1, 467matches
that ended in a result. The performance measures with the
95% CI (calculated over all matches in a competition) for
each competition are also reported (Table 4). The European
cup 2016, and the Italian first division had the lowest and the
highest AUC for segmental analysis among the 7 competi-
tions. Overall the AUC of the segmental performance was
close to the overall AUC for each of the 7 competitions, which
shows the consistent performance of the proposed approach
across the competitions. The Italian first division had the
highest number of segments ending in ‘‘SHOT ’’ (8, 758) from
the 380 matches. The proposed machine learning approach
resulted in anAUCof 0.85 (95% [CI]: 0.84 - 0.86) in correctly
classifying the segments. Furthermore, the predicted match
winner correlated with the ground truth in 254 (85.5%) of
the 297 matches of the Italian first division that ended in a
result. The overall performance of the proposed approach on
1, 941 matches and 42, 860 segments shows the efficacy of
the proposed quantitative markers (TAI , SEI , KCI , and DEI )
of a team’s performance.

Furthermore, to elaborate the efficacy of the proposed
quantifiable markers of team performance, we compared
the results of the proposed approach with studies that
employ a machine learning approach for evaluating perfor-
mance [15], [20], [21]. A direct comparison of the proposed
segmental analysis approach can be done with the study by
Decross et al. [21]. They employed a segmental analysis to
learn the importance of players actions based on the outcome
of a match state (e.g. success in taking a ‘‘SHOT ’’ at oppo-
nents goal). On the contrary, Pappalardo et al. [20] defined
a feature vector for each team and modelled the outcome of
the match (Win/Loss) using a linear support vector machines
classifier. As both the studies [20], [21] use different datasets,
therefore, to ensure a direct comparison of the proposed
approach the algorithms by Decross et al. [21], and Pap-
palardo et al. [20] are run on the soccer logs from 1, 941
matches of 7 competitions [34]. The model estimation and
the learning task was performed using a leave-one-out cross-
validation approach as explained in section II-D. Addition-
ally, the results on the public dataset were compared with the
study by Cintia et al. [15], who analysed the match outcome
using pass-based performance indicator (H-indicator) and
evaluated the performance on the German, Spanish, Italian,
and English division leagues.

For a comparison of the segmental performance, the algo-
rithm by Decross et al. [21] was used to model the segments
ending in a ‘‘SHOT ’’ with an XGBoost classifier [37]. The
algorithm by Decross et al. [21] showed an overall AUC
of 0.83 (Table 5). In comparison, the proposed approach
showed a similar performancewith an overall AUC of 0.84 on
42, 860 analysed segments (Table 5). Further, for a compari-
son of the correctly predicted match outcome, the algorithm

TABLE 5. Comparisons of the proposed approach with some recent
machine learning-based studies.

by Pappalardo et al. [20] was employed. The algorithm by
Pappalardo et al. [20] could correctly classify the match
outcome in 1176 (77.5%) of 1467 matches that ended in a
result among the 7 competitions (Table 5). In comparison, the
proposed approach could correctly classify the match-winner
in 1, 202 of 1, 467 matches. Furthermore in comparison to
the study by Cintia et al. [15] who reported a mean accuracy
0.55 in correctly predicting the match outcome, the proposed
approach showed a higher mean accuracy of 0.82 (German:
0.81, Spanish: 0.78, Italian: 0.85, and English division: 0.86)
in correctly predicting the match outcome. The improved per-
formance of the proposed approach shows the robustness and
efficiency of the proposed quantitative markers (TAI , SEI ,
KCI , andDEI ) in capturing a team’s underlying performance
characteristics (Table 5).

The performance of the proposed approach can be
attributed to the use of kernelised classifier and the non-
linearity of the proposed indices like SEI , KCI , and DEI that
can quantify the underlying non-linear dynamics of player
interaction. Based on the performance validation on exter-
nal dataset and comparison with recent studies, it can be
concluded that the proposed approach offers a data-driven
framework for evaluating a team’s performance in a segmen-
tal manner, offering the potential for predictive analytics in
sport sciences using data science research.
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FIGURE 6. The feature histograms showing players activity, Shannon entropy (ShnEn), Kolmogorov complexity (KolCmp), and Distribution
entropy (DistEn) derived from the player interaction matrix M. The derived parameters are normalised to ensure feature commensurablity.
Shown here for a segment of match G3 (a) team-1, and (b) team-2. The dotted horizontal lines in subplots (a), and (b) represent the mean
across all the players of a team. The rectangular box in histogram plot for team-1 (subplot (a)) indicates the players (P2, P5, P8, P9, P10,
and P11) who maintain a ball possession activity that is higher than the team’s mean. Player P10, who makes the shot at goal had the
highest interaction with the rest of the players during team-1 ball possession activity. In contrast, the ball possession activity of team-2 is
mainly among players P1, P5, P7, and P8.

G. INTERPRETABILITY FOR SPORTS ANALYSTS
Our analysis shows that the interaction between players is
essential for generating a scoring opportunity. To outline the
applicability of the proposed features, we use histogram plots
representing each player’s feature values that are derived from
the player interaction matrix M for a segment of the match
(Fig. 6).

The histograms illustrate the level of interaction of each
player, when their team has possession of the ball. The players
that are more frequently involved in the ball possession have
feature values above the team’s mean value, which is repre-
sented by the dashed line (−−) as shown in Fig. 6. Across this
match segment, team-1 performs better than team-2, because
the segment ends with team-1 having a successful attempt at
scoring i.e., a ‘‘SHOT ’’ at goal. Six players of team-1 (P2, P5,
P8, P9, P10, and P11) maintain a level of interaction (as indi-
cated by the rectangular box in 6a) above the team’s mean,
which is higher than team-2, where only three players are
above the team’s mean (as indicated by the rectangular box
in Fig. 6b).

The feature Activity shows the players that are more fre-
quently involved in a team’s ball possession activity. The
remaining features (ShnEn, KolCmp, and DistEn) were also
above average for more players in team-1 than for team-2.
Sports analysts can interpret this as an association between
the complexity of passing between players and the likelihood
of having a shot at goal. In other words, when a team has
possession of the ball, there may be a benefit in making a rel-
atively large number of passes between a large proportion of
the team, as they move the ball towards their opponent’s goal
post.

The usual analysis of an opponent’s tactics is a resource-
intensive procedure, as most tactical analyses are performed

by manually reviewing the match videos or scouting matches
in-person to identify the players that are constantly part of
the ball possession activity and are involved in generating
scoring opportunities [24]. The features used in the present
analysis may enable the automatic identification of such play-
ers using a data-driven approach. For example, player P10 in
team-1 is one such player who had the highest ball possession
activity during the shown segment of the match (indicated
by an ∗ in Fig. 6a). Identifying the players that are more
frequently involved in match states that end with an attempt
at scoring i.e., a ‘‘SHOT ’’ at goal, may assist sports analysts
and team staff to develop strategies suited to an opponent’s
playing style.

The proposed study presents different characteristics of a
team’s performance during a segment of a match that ends
with a ‘‘SHOT ’’ on the goal. Although, there are different
ways to define match segments (e.g. a segment ending with
the ball going out, a foul etc.) the purpose of the study was to
identify the characteristics leading to an attempt at scoring a
goal. Therefore, in this study, we analysed segments ending
with a ‘‘SHOT ’’ on the goal, which is also a limitation of the
study. Furthermore, the influence of match location, quality
of opposition, match type etc. were not controlled for while
developing the predictive models. Thus, further research is
required to investigate the effects of these variables to fur-
ther enhance the understanding of teams and players perfor-
mances.

IV. CONCLUSION
Our study proposes information theory-derived quantifiable
measures of performance that can uncover the dynamic pat-
terns underlying team sports like soccer. The study provides
first evidence of a machine learning-enabled approach for
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automated predictive analysis of performance in a segmental
manner, offering the potential for uncovering local numeri-
cal markers of team performance. Our developed predictive
models show amean accuracy of 75.2% in predicting the seg-
mental outcome of the likelihood of teammaking a successful
attempt to score a goal on our dataset comprising 13 matches.
In addition, the segmental outcomes could predict the correct
overall winner in 66.6% of the matches that resulted in a win-
ner. Furthermore, the validation on an external dataset com-
prising 42, 860 segments from 1, 941 matches showed the
robustness of the approach. Finally, the study demonstrates
that the analysis we present can help uncover the pattern
dynamics of a team’s network derived using possession chain
data, by quantitatively analysing measures of performance
that have a specific distribution and that can be used to predict
the performance of a team.
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