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ABSTRACT Coded caching is widely regarded as an important tool to reduce pressure on the data
transmission during the peak traffic times in heterogeneous wireless networks. In this paper, we will provide
two concatenating constructions of coded caching schemes based on the schemes derived by Shangguan et al.
in 2018 and Yan et al. in 2017, respectively. Then we show that our new schemes have good performance
in reducing packet number. Furthermore, in some case, we present that our schemes have better perfor-
mances on user number, memory ratio, packet number and transmission rate than the schemes obtained by
Chittoor et al. in 2019 and Krishnan in 2018.

INDEX TERMS Coded caching scheme, placement delivery array, rate, packet number.

I. INTRODUCTION
The demand for high-definition video streaming services
such as YouTube and Netflix is driving the rapid growth of
Internet traffic. In order to mitigate the effect of this increased
load on the underlying communication infrastructure, con-
tent delivery networks deploy storage memories or caches
throughout the network.

Caching is an effective approach to reduce pressure on the
data transmission during the peak traffic times in heteroge-
neous wireless networks by storing contents into memories
across the network during the off-peak traffic times. Maddah-
Ali and Niesen in [14] introduced coded caching scheme,
which is applied in many fields due to its advantage in reduc-
ing congestion during the peak traffic times (see [8]–[10],
[13], [14], [16], and references therein).

Most studies focus on a centralized (K ,M ,N ) caching
system [14], where a central server coordinates all the trans-
missions. The server hosting a collection of N files is con-
nected through an error-free broadcast link to K users, each
of them has a cache memory of size M files. In a coded
caching scheme, there are two phases called the placement
phase during off-peak times and the delivery phase during
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peak times. In the placement phase, all the user caches store
content related to the N files. Most importantly, this is done
without any prior knowledge of user requests. In the delivery
phase, each user requests one of the N files from the server.
Based on the requests and the stored contents of the user
caches during the placement phase, the server transmits coded
packets of a length of at most R files over the broadcast
link to the users. Using the contents of its cache and the
received coded transmissions from the server, each user could
reconstruct its requested file. Formally, denote the N files by
W = {W1,W2, · · · ,WN } and the K users by K =

{1, 2, · · · ,K }. An F-division (K ,M ,N ) coded caching
scheme consists of two phases:
• Placement Phase: For any 1 ≤ n ≤ N , the file Wn is
divided into F equal packets, i.e., Wn = {Wn,j : j =
1, 2, · · · ,F}. For any 1 ≤ k ≤ K , denote the set of
packets cached by user k as Zk , where the size of Zk is
less than or equal to M .

• Delivery Phase: User k , 1 ≤ k ≤ K , requests one file
from W , denoted by Wdk . Once the server received the
users’ request d = (d1, d2, · · · , dK ), it broadcasts XOR
of packets with the size at most RdF packets to users.
Finally, user k , 1 ≤ k ≤ K , can recover its requested
fileWdk with the help of received signal and the packets
in its caches Zk .

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 86305

https://orcid.org/0000-0003-0360-0610
https://orcid.org/0000-0003-1034-0474
https://orcid.org/0000-0002-1942-3834
https://orcid.org/0000-0002-6977-6363


M. Cheng et al.: Some New Coded Caching Schemes With Smaller Subpacketization via Some Known Results

TABLE 1. Summary of some known coded caching scheme.

TABLE 2. Summary of some latest known coded caching schemes.

Denote the maximum transmission amount among all the
requests during the delivery phase by R, i.e.,

R = sup
d = (d1, · · · , dK )

dk ∈ [1,N ],∀k ∈ [1,K ]

{Rd} .

R is always called the rate of a coded caching scheme, which
is preferable as small as possible.

A. PRIOR WORK
In this paper, we will pay our attention to the centralized
coded caching schemes which many works focus on, for
instances, [1], [2], [7], [12], [14], [17], [24]–[28] etc. The
packet number F is one of the most important parameters in
such schemes as F is finite in practice and the complexity of a
coded caching scheme increases when F increases. Maddah-
Ali and Niesen [14] introduced the first deterministic coded
caching scheme for an F-division (K ,M ,N ) coded caching
scheme with F =

( K
KM/N

)
, where KM/N is an integer.

Obviously, the packet number F =
( K
KM/N

)
increases too

quickly with K to be used in practice when K is large. There
are some works paid attention to coded caching schemes with
lower subpacketization level, for instances, [5], [11], [18],
[20], [21], [26], [27] etc.

In this paper, we focus on the deterministic schemes when
K < N . In [21], the authors pointed out that all the deter-
ministic coded caching schemes can be recast into placement
delivery array (PDA) introduced by Yan et al. [26] when
K ≤ N . This implies that PDA is a good tool to construct
coded caching schemes. By means of PDA, Cheng et al. [4]
generalized the constructions in [18] and [26], and obtained
some schemes with more flexible memory size where F is

minimum for fixed R. We list these schemes and the schemes
from [5], [11] in TABLE 1, where

[
k
t

]
q
=

(qk−1)···(qk−t+1−1)
(qt−1)···(q−1) .

We also list some latest coded caching schemes in TABLE 2,
which are given by Chittoor et al. [6]. From TABLE 2,
the packet numbers of the schemes in [14] and [26] increase
exponentially with the user numbers, while the rates of such
schemes are optimal and asymptotically optimal, respec-
tively. The packet number of the scheme in [27] increases
exponentially, polynomially and linearly with the user num-
bers when the parameter a increases. The packet number of
the scheme in [2] increases linearly with the user number.
In [27] and [2] the authors further reduced the packet numbers
by increasing rates respectively.

Clearly, wewould like to construct a coded caching scheme
with F as small as possible for fixed parameters K , M/N
and R. In fact, we can also construct a coded caching scheme
with K as large as possible for fixed parameters F ,M/N and
R. Concatenating construction is naturally studied when we
construct a scheme with large number of users. Furthermore,
given the parameters F , M/N , R, some concatenating con-
structions of PDAs with large number of users (i.e., large
number of columns) have been studied. The first one is
called grouping method [19]. Cheng et al. in [3] generalized
the grouping method. We should point out that sometimes
the new schemes obtained by generalized grouping method
in [3] have better performances than the scheme directly
constructed. For example, from TABLE 2 in [11], the authors
listed a scheme with K = 63, M

N =
16
21 , F1 = 651 and

R1 = 15
7 when k = 6, t = 1, q = 2, and m = 3. From

Lemma 3 in Section II, we have a (K1 = 42, 84, 64, 105)
PDA when (m, q, z) = (1, 21, 16). Applying Lemma 4 in
Section II with the above PDA and K = 63, we have a
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TABLE 3. Constructions with M/N = z
q , z = 1, 2, . . . q− 1.

(63, 168, 128, 315) PDA which generates a coded caching
scheme with user number K = 63, cache size M

N =
16
21 ,

transmission rate R2 = 15
8 , and packet number F2 = 168.

Clearly R2 = 15
8 < 15

7 = R1 and F2 = 168 < 651 = F1.
From the above discussions, grouping method is an efficient
way to reduce the packet number. However, in the grouping
method, since all the users are divided into several groups
with equal size and each group of users uses the same scheme,
the resulting scheme has the same coded gain as the original
scheme. The interested reader is referred to [3], [19] for more
details. There are other results by means of concatenating
constructions such as [15], [22], and so on.

B. CONTRIBUTIONS
In this paper, we will propose concatenating constructions
such that the coded gain of the new scheme is lager than that
of the original scheme, while the cache size increase slowly.
We list the new classes of schemes in TABLE 3.

In Subsection III-C, we will show that our schemes include
the scheme with M

N = 1 − ( q−1q )t from [18] and the scheme
with M

N =
1
q from [26] as special cases. Furthermore, our

schemes have larger user number and smaller packet number
than the schemes in [4] which are listed in Lines 2 and 3 of
TABLE 1, while having larger transmission rate than those
schemes in [4]. We also show that the new schemes have
smaller packet number than the schemes in [5] and [11] by
some examples.

The rest of this paper is organized as follows. We firstly
introduce the relationship between coded caching scheme
and PDA in Section II. Then two classes of the schemes in
Theorems 1 and 2 are derived in Section III, and their detailed
performance analyses are proposed in Section IV. Finally,
we conclude the paper in Section V.

II. PLACEMENT DELIVERY ARRAY FOR CODED CACHING
SCHEME
In this section, we will show the relationship between coded
caching scheme and placement delivery array, which intro-
duced by Yan et al. in [26].
Definition 1: ( [26]) Suppose that K ,F,Z and S are pos-

itive integers. P = (pi,j), 1 ≤ i ≤ F, 1 ≤ j ≤ K ,
is an F × K array composed of a specific symbol ‘‘ ∗ "
and positive integers 1, 2, · · · , S, Then P is a (K ,F,Z , S)
placement delivery array (PDA for short) if

C1. the symbol ‘‘ ∗ " occurs exact Z times in each column;
C2. each integer appears at least once in the array;

C3. for any two distinct entries pi1,j1 and pi2,j2 ,
pi1,j1 = pi2,j2 = s is an integer only if
a. i1 6= i2, j1 6= j2, i.e., they lie in distinct rows and

distinct columns; and
b. pi1,j2 = pi2,j1 = ∗, i.e., the corresponding 2 × 2

subarray formed by rows i1, i2 and columns j1, j2
must be of the following form(

s ∗
∗ s

)
or
(
∗ s
s ∗

)
.

Lemma 1: ( [26]) Suppose there exists a (K ,F,Z , S)
PDA. Then an F-division (K ,M ,N ) coded caching scheme
with caching ratio M

N =
Z
F and rate R = S

F can be obtained
by using Algorithm 1.

Algorithm 1 Caching Scheme Based on PDA in [26]
1: procedure Placement(P, W)
2: Split each file Wn ∈ W into F packets, i.e., Wn =

{Wn,j | j = 1, 2, · · · ,F}.
3: for k ∈ K do
4: Zk ← {Wn,j | pj,k = ∗,∀ n = 1, 2, · · · ,N }
5: end for
6: end procedure
7: procedure Delivery(P,W, d)
8: for s = 1, 2, · · · , S do
9: Server sends

⊕
pj,k=s,1≤j≤F,1≤k≤K Wdk ,j.

10: end for
11: end procedure

Example 1: Consider the following (4, 4, 2, 4) PDA:

P =


1 ∗ ∗ 4
2 3 ∗ ∗

∗ 4 1 ∗

∗ ∗ 2 3

 .
Now we will show that a 4-division (4, 2, 4) coded caching
scheme can be obtained by making use of Algorithm 1.

During the off-peak traffic times, i.e., the placement phase,
fromLine 2, for any n ∈ [1, 4], divide each fileWn intoF = 4
packets, i.e.,

Wn = {Wn,1,Wn,2,Wn,3,Wn,4}.

According to Lines 3-5, user k , 1 ≤ k ≤ 4, caches the packets
in Zk , where

Z1 =
{
Wn,3,Wn,4 | n ∈ [1, 4]

}
,

Z2 =
{
Wn,1,Wn,4 | n ∈ [1, 4]

}
,

Z3 =
{
Wn,1,Wn,2 | n ∈ [1, 4]

}
,

Z4 =
{
Wn,2,Wn,3 | n ∈ [1, 4]

}
.

During the peak traffic times, i.e., the delivery phase, sup-
pose the request vector is d = (1, 2, 3, 4). From Lines 8-10,
we can obtain the transmitting process as following:
Intuitively, in a (K ,F,Z , S) PDA P, pi,j = ∗ implies that

user j has already cached the packets indexed by i of all the
files in the server; pi,j = s for a certain integer s implies
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TABLE 4. Delivery steps in Example 1.

that all the packets indexed i of all the files are not stored
by user j. Hence the server should find out all the entries
pi1,j1 , pi2,j2 , . . . , pih,jh such that pi,j = pi1,j1 = pi2,j2 =
. . . = pih,jh = s, and multicast a signal

⊕
1≤k≤hWdjk ,ik

.
The property of the PDA guarantees all the users can get the
requested files.

From Lemma 1, in order to obtain an F-division (K ,M ,N )
coded caching scheme, one only need to construct an appro-
priate PDA. The following schemes, which are listed in
TABLE 1, are the latest results on PDAs having good advan-
tages on packet number or transmission rate.
Lemma 2: ( [4]) Suppose that q, z,m and t are positive inte-

gers with q ≥ 2, q > z andm > t . Then there exists an (
(m
t

)
qt ,

b
q−1
q−z c

tqm, b q−1q−z c
t (qm−qm−t (q−z)t ), (q−z)tqm) PDAwhich

generates a b q−1q−z c
tqm-division (

(m
t

)
qt ,M ,N ) coded caching

scheme with M
N = 1− ( q−zq )t and rate R = (q− z)t/b q−1q−z c

t .
(This is the scheme in the second row of TABLE 1)
Lemma 3: ( [4]) Suppose that q, z and m are positive

integers with q ≥ 2 and q > z. Then there exists an ((m +
1)q, b q−1q−z cq

m, zb q−1q−z cq
m−1, (q− z)qm) PDA which generates

a b q−1q−z cq
m-division ((m+ 1)q,M ,N ) coded caching scheme

with M
N =

z
q and rate R = (q− z)/b q−1q−z c. (This is the scheme

in the third row of TABLE 1)
In order to fit for large number of users, a generalization of

grouping method was proposed by Cheng et al., in [3]. That
is, given a PDAwhich can realize a scheme withK1 users and
memory ratioM/N , one can obtain a PDA which can realize
a scheme with any number of users K ≥ K1 and the same
memory ratio M/N .
Lemma 4 (Generalizing Grouping Method [3]): Suppose

there exists a (K1,F,Z , S) PDA. Then, for any K > K1,
there exists a (K , h1F, h1Z , hS) PDA, which generates an
h1F-division (K ,M ,N ) coded caching scheme with M

N =
Z
F

and transmission rate R = K
K1
·
S
F , where h1 =

K1
gcd(K1,K ) and

h = K
gcd(K1,K ) .

III. CONSTRUCTIONS
In this section, we first introduce the characterizations of
the previously known concatenating constructions. Then we
propose the main idea of our concatenating method. Finally,
based on the original PDAs in [18] and [26], we obtain two
new classes PDAs.

A. RESEARCH MOTIVATION
It is well known that grouping method, which was proposed
by Shanmugam et al. in [19], is an effective method for
reducing packet number. The authors in [19] obtained new

PDAs from known PDAs in the following way: regard each
column of the original PDA as an entirety and then combine
these entries in a new array. Here we sketch the group-
ing method by the following useful notation. For any array
P = (pi,j) with alphabet [0, S)

⋃
{∗}, define P+a = (pi,j+a)

where a + ∗ = ∗. Given a (K ,F,Z , S) PDA P′, the authors
obtained an (mK ,F,Z ,mS) PDA

P′′ = (P′,P′ + S,P′ + 2S, . . . ,P′ + (m− 1)S).

From the process of a coded caching scheme generated by a
PDA, in each time slot s, the coded gain equals the number of
occurrences of the integer s in the PDA. Clearly the number
of occurrences of each integer in P′′ is the same as that of P′.
This implies that the coded gain of the schemes generated by
the constructions in [19] is the same as that of the schemes
generated by the original PDAs.

B. MAIN IDEA AND A RELATED EXAMPLE
From the above introduction, it is interesting to design new
concatenating constructions satisfying the following condi-
tions:

• the number of ‘‘∗"s increases slowly;
• the number of occurrences of each integer in the result-
ing PDA is larger than that of the original PDA.

In this paper, we will give such a concatenating construction.
Our main idea is as follows.

• Given a (K ,F,Z , S) PDA P, one can replace x inte-
ger entries of each column in P by ‘‘∗"s, and derive a
(K ,F,Z + x, S ′) PDA P′.

• Construct a (K + K ′,F,Z + x, S ′) PDA (P′,P′′). With
the number of ‘‘∗"s in each column increasing, one has
a good chance to add a well-designed F × K ′ array P′′

to P′ without increasing the number S ′, such that each
column of P′′ has the same memory ratio as the columns
of P′.

Obviously, in this case we should consider the structure
features of original PDAs. So such a method is not fit for all
the PDAs. In fact, the following PDAs from [18] and [26]
can be used as the original PDA of our new concatenating
construction.
Lemma 5: ( [18]) Suppose that q, t and m are positive

integers with q ≥ 2 and m ≥ t . Then there exists an (
(m
t

)
qt ,

qm, qm − qm−t (q − 1)t , (q − 1)tqm) PDA with M/N =
1− ( q−1q )t and rate R = (q− 1)t .
Lemma 6: ( [26]) Suppose that q ≥ 2 and m are

positive integers with q ≥ 2. Then there exists a
(q(m + 1), qm, qm−1, (q − 1)qm) PDA with M

N =
1
q and rate

R = q− 1.
In the following subsection, we will propose a new PDA

with Z
F = 1 − ( q−zq )t and a new PDA with Z

F =
z
q for any

z ∈ [1, q) based on the PDA with Z
F = 1− ( q−1q )t from [18]

and the PDA with Z
F =

1
q from Lemmas 5 and 6 respectively.

Let us take an example to show our specific method.
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Example 2: Given a (6, 9, 3, 18) PDA as follows.

P=



∗ (2, 0, 1) (2, 0, 0) ∗ (1, 1, 1) (0, 2, 0)
∗ (2, 1, 1) (2, 1, 0) (0, 0, 0) ∗ (1, 2, 1)
∗ (2, 2, 1) (2, 2, 0) (1, 0, 1) (0, 1, 0) ∗

(0, 0, 0) ∗ (0, 0, 1) ∗ (2, 1, 1) (1, 2, 0)
(0, 1, 0) ∗ (0, 1, 1) (1, 0, 0) ∗ (2, 2, 1)
(0, 2, 0) ∗ (0, 2, 1) (2, 0, 1) (1, 1, 0) ∗

(1, 0, 1) (1, 0, 0) ∗ ∗ (0, 1, 1) (2, 2, 0)
(1, 1, 1) (1, 1, 0) ∗ (2, 0, 0) ∗ (0, 2, 1)
(1, 2, 1) (1, 2, 0) ∗ (0, 0, 1) (2, 1, 0) ∗


Replace the entries (−,−, 1) in P by ‘‘∗"s, where (−,−, 1)
means that the element in the 3th position is 1, one can derive
a (6, 9, 6, 9) PDA P′.

P′ =



∗ ∗ (2, 0, 0) ∗ ∗ (0, 2, 0)
∗ ∗ (2, 1, 0) (0, 0, 0) ∗ ∗

∗ ∗ (2, 2, 0) ∗ (0, 1, 0) ∗

(0, 0, 0) ∗ ∗ ∗ ∗ (1, 2, 0)
(0, 1, 0) ∗ ∗ (1, 0, 0) ∗ ∗

(0, 2, 0) ∗ ∗ ∗ (1, 1, 0) ∗

∗ (1, 0, 0) ∗ ∗ ∗ (2, 2, 0)
∗ (1, 1, 0) ∗ (2, 0, 0) ∗ ∗

∗ (1, 2, 0) ∗ ∗ (2, 1, 0) ∗


Obviously, comparing with P, the number of ‘‘ ∗ "s in each
column of P′ increases. This implies that we have an oppor-
tunity to design a desired array P′′ by using the symbols in
P′. In our construction, we construct such an array based on
P′, i.e., for each i ∈ [0, 2],
• replace the entries (0, i, 0), (1, i, 0) and (2, i, 0) in the
first three columns of P′ with (2, i, 0), (0, i, 0) and
(1, i, 0), respectively;

• replace the entries (i, 0, 0), (i, 1, 0) and (i, 2, 0) in the
first last columns ofP′ with (i, 2, 0), (i, 0, 0) and (i, 1, 0),
respectively.

Then

P′′ =



∗ ∗ (1, 0, 0) ∗ ∗ (0, 1, 0)
∗ ∗ (1, 1, 0) (0, 2, 0) ∗ ∗

∗ ∗ (1, 2, 0) ∗ (0, 0, 0) ∗

(2, 0, 0) ∗ ∗ ∗ ∗ (1, 1, 0)
(2, 1, 0) ∗ ∗ (1, 2, 0) ∗ ∗

(2, 2, 0) ∗ ∗ ∗ (1, 0, 0) ∗

∗ (0, 0, 0) ∗ ∗ ∗ (2, 1, 0)
∗ (0, 1, 0) ∗ (2, 2, 0) ∗ ∗

∗ (0, 2, 0) ∗ ∗ (2, 0, 0) ∗


Add P′′ to P′, we have a (12, 9, 6, 9) PDA, i.e.,

(P′,P′′)=



∗ ∗ (2, 0, 0) ∗ ∗ (0, 2, 0)
∗ ∗ (2, 1, 0)(0, 0, 0) ∗ ∗

∗ ∗ (2, 2, 0) ∗ (0, 1, 0) ∗

(0, 0, 0) ∗ ∗ ∗ ∗ (1, 2, 0)
(0, 1, 0) ∗ ∗ (1, 0, 0) ∗ ∗

(0, 2, 0) ∗ ∗ ∗ (1, 1, 0) ∗

∗ (1, 0, 0) ∗ ∗ ∗ (2, 2, 0)
∗ (1, 1, 0) ∗ (2, 0, 0) ∗ ∗

∗ (1, 2, 0) ∗ ∗ (2, 1, 0) ∗

∗ ∗ (1, 0, 0) ∗ ∗ (0, 1, 0)
∗ ∗ (1, 1, 0)(0, 2, 0) ∗ ∗

∗ ∗ (1, 2, 0) ∗ (0, 0, 0) ∗

(2, 0, 0) ∗ ∗ ∗ ∗ (1, 1, 0)
(2, 1, 0) ∗ ∗ (1, 2, 0) ∗ ∗

(2, 2, 0) ∗ ∗ ∗ (1, 0, 0) ∗

∗ (0, 0, 0) ∗ ∗ ∗ (2, 1, 0)
∗ (0, 1, 0) ∗ (2, 2, 0) ∗ ∗

∗ (0, 2, 0) ∗ ∗ (2, 0, 0) ∗


C. GENERALIZED CONSTRUCTION
In this subsection, we formally introduce our constructions.
In order to show our constructions, the parameters K , F , Z
and S of a PDA will be represented by q-ary sequences.
Construction 1: Suppose that q, z, m and t are positive

integers with 0 < z < q and 0 < t < m. Let

K = {(β0, β1, . . . , βt−1, γ0, γ1, . . . , γt−1, η0, . . . , ηt−1) |
β0, . . . , βt−1 ∈ Zq, 0 ≤ γ0 < . . . < γt−1 < m,

η0, . . . , ηt−1 ∈ [0, b
q− 1
q− z

c)} (1)

and

F = {(α0, α1, . . . , αm−1) | α0, . . . , αm−1 ∈ Zq}. (2)

Construct a qm ×
(m
t

)
qtb q−1q−z c

t array Pt,m,q,z = (pa,b), where
a ∈ F, b ∈ K and

pa,b =


(α0, α1, . . . , βi − ηi(q− z), if αγi 6∈ Xβi,z,
. . . , αm−1, αγ0 − β0 − 1, ∀i ∈ [0, t)
. . . , αγt−1 − βt−1 − 1)q
∗ otherwise

(3)

whereXβi,z = {βi, βi−1, . . . , βi−(z−1)}q and the operations
are performed modulo q.
Theorem 1: Suppose that q, z,m and t are positive integers

with 0 < z < q and 0 < t < m. Then the array Pt,m,q,z given
in (3) is an

(m
t

)
b
q−1
q−z c

t -(
(m
t

)
qt (b q−1q−z c)

t , qm, qm−qm−t (q− z)t ,
(q−z)tqm) PDAwithM/N = 1−( q−zq )t and rateR = (q−z)t .
The proof of Theorem 1 can be found in Appendix A.
Construction 2: If t = 1, from (1), we can obtain

K = {(β, γ, η) | 0 ≤ γ < m, β ∈ Zq, η ∈ [0, b q−1q−z c)},

where q, z and m are positive integers with z < q. Let K1 =

{(β,m) | β ∈ Zq}. Construct an array Hm,q,z = (P,C) as
follows.
• P = (pa,b), a ∈ F , b ∈ K, is the qm × mqb q−1q−z c array
derived by Construction 1.

• C = (ca,b), a ∈ F , b ∈ K1 is a qm × q array define as
follows.

ca,b=


∗ if

∑m−1

k=0
αk ∈ Yβ,z

(α0, · · · , αm−1, otherwise

β−
∑m−1

k=0
αk − 1)q

(4)
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where Yβ,z = {β, β + 1, . . . , β + (z − 1)}q and the
operations are performed modulo q.

Theorem 2: Suppose that q, z and m with q ≥ 2 and
q > z. Then the array Hm,q,z generated by Construction 2
is an (mb q−1q−z c + 1)-(q(mb q−1q−z c + 1), qm, zqm−1, (q − z)qm)
PDA with M

N =
z
q and rate R = q− z.

The proof of Theorem 2 can be found in Appendix B.
Example 3: When m = 1 and q = 5, we can obtain the

following H1,5,z PDAs by Construction 2 for z = 1, 2, 3, 4
respectively.

H1,5,1 =


∗ 16 12 8 4 ∗ 0 5 10 15
0 ∗ 17 13 9 16 ∗ 1 6 11
5 1 ∗ 18 14 12 17 ∗ 2 7
10 6 2 ∗ 19 8 13 18 ∗ 3
15 11 7 3 ∗ 4 9 14 19 ∗



H1,5,2 =


∗ ∗ 12 8 4 ∗ 0 5 10 ∗
0 ∗ ∗ 13 9 ∗ ∗ 1 6 11
5 1 ∗ ∗ 14 12 ∗ ∗ 2 7
10 6 2 ∗ ∗ 8 13 ∗ ∗ 3
∗ 11 7 3 ∗ 4 9 14 ∗ ∗



H1,5,3 =


∗ ∗ ∗ 8 4 ∗ ∗ ∗ 6 2
0 ∗ ∗ ∗ 9 3 ∗ ∗ ∗ 7
5 1 ∗ ∗ ∗ 8 4 ∗ ∗ ∗
∗ 6 2 ∗ ∗ ∗ 9 0 ∗ ∗
∗ ∗ 7 3 ∗ ∗ ∗ 5 1 ∗

∗ 0 5 ∗ ∗
∗ ∗ 1 6 ∗
∗ ∗ ∗ 2 7
8 ∗ ∗ ∗ 3
4 9 ∗ ∗ ∗



H1,5,4 =


∗ ∗ ∗ ∗ 4 ∗ ∗ ∗ ∗ 3
0 ∗ ∗ ∗ ∗ 4 ∗ ∗ ∗ ∗
∗ 1 ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗
∗ ∗ 2 ∗ ∗ ∗ ∗ 1 ∗ ∗
∗ ∗ ∗ 3 ∗ ∗ ∗ ∗ 2 ∗

∗ ∗ ∗ ∗ 2 ∗ ∗ ∗ ∗ 1 ∗ 0 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ 2 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗
∗ 4 ∗ ∗ ∗ ∗ 3 ∗ ∗ ∗ ∗ ∗ ∗ 2 ∗
∗ ∗ 0 ∗ ∗ ∗ ∗ 4 ∗ ∗ ∗ ∗ ∗ ∗ 3
∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ 0 ∗ 4 ∗ ∗ ∗ ∗


Remark 1: It is worth noting that when z = 1, our

new PDAs in Theorems 1 and 2 are exactly the PDAs in
Lemmas 5 and 6, respectively. This implies that these two
families of PDAs from [18] and [26] can be obtained by our
method.

IV. PERFORMANCE ANALYSES
In this section, we compare our new constructions with
schemes obtained by generalizing grouping method from
Lemma 4 and the schemes from [5], [11] which are the most
latest results.

TABLE 5. The values of FTh1 and FG1
when q = 5 and z = 3.

A. COMPARISON OF THE SCHEMES FROM THEOREM
1 AND GENERALIZING GROUPING METHOD
Suppose that m, t , q and z are positive integers satisfying
m > t and q > z. We compare performances of the scheme
from Theorem 1 and the scheme generated by generalizing
grouping method based the original scheme from Lemma 2.

From Theorem 1, we have an (
(m
t

)
qt (b q−1q−z c)

t , qm,
qm − qm−t (q − z)t , (q − z)tqm) PDA, which generates a
(K ,M ,N ) scheme, say Scheme 1, with

K = (b
q− 1
q− z

c)t
(
m
t

)
qt ,

M
N
= 1− (

q− z
q

)t ,

FTh1 = qm, RTh1 = (q− z)t . (5)

From Lemma 2, we have a (K1,F,Z , S) PDA where

K1 =

(
m
t

)
qt , F = b

q− 1
q− z

c
tqm, S = (q− z)tqm,

Z = b
q− 1
q− z

c
t (qm − qm−t (q− z)t ), (6)

which generates a b q−1q−z c
tqm-division (

(m
t

)
qt ,M ,N ) coded

caching scheme with M
N = 1 − ( q−zq )t and rate R = (q −

z)t/b q−1q−z c
t . For any positive integer K > K1, from Lemma 4,

we have a (K , h1F, h1Z , hS) PDA, which generates an
h1F-division (K ,M ,N ) coded caching scheme, say
Scheme 2, with M

N =
Z
F and rate R = K

K1
·
S
F , where

h1 =
K1

gcd(K1,K ) and h =
K

gcd(K1,K ) . Let K = b
q−1
q−z c

t
(m
t

)
qt .

Then we have h1 = 1 and h = b q−1q−z c
t . By (6), the parameters

of Scheme 2 are:

K = b
q− 1
q− z

c
t
(
m
t

)
qt ,

M
N
= 1− (

q− z
q

)t ,

FG1 = b
q− 1
q− z

c
tqm, RG1 = (q− z)t . (7)

By (5) and (7) we have

FTh1
FG1

=
qm

b
q−1
q−z c

tqm
=

1

b
q−1
q−z c

t
,

RTh1
RG1

=
(q− z)t

(q− z)t
= 1.

From the above formulas, we can see RG1 = RTh1 and FG1 ≥

FTh1. This implies that if b q−1q−z c > 1, Scheme 1 has the same
user number, memory ratio and transmission rate while has
smaller packet number than Scheme 2.We list some examples
with (q, z) = (5, 3) in the following table.
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FIGURE 1. The packet numbers of Scheme 1 and 2 when t = 1, q = 5
and z = 3.

When t = 1, q = 5 and z = 3, according to (5) and (7),
we have K = 10m, MN =

3
5 , RTh1 = RG1 = 2, FTh1 = 5m,

FG1 = 2 · 5m. We list FTh1 and FG1 in FIGURE 1.
Similarly we can also compare performances of the scheme

from Theorem 1 and the scheme generated by generalizing
grouping method based the original scheme from Lemma 3.

B. COMPARISON OF THE SCHEMES FROM THEOREM
2 AND GENERALIZING GROUPING METHOD
Suppose thatm, q and z are positive integers satisfying q > z.
We now compare performances of the scheme from Theo-
rem 2 and the scheme generated by generalizing grouping
method based the original scheme from Lemma 3.

From Theorem 2, we have a (q(mb q−1q−z c + 1), qm, zqm−1,
(q − z)qm) PDA, which generates a (K ,M ,N ) scheme, say
Scheme 3, with

K = q(mb
q− 1
q− z

c + 1),
M
N
=

z
q
,

FTh2 = qm, RTh2 = q− z. (8)

From Lemma 3, we have a (K1,F,Z , S) PDA where

K1 = (m+ 1)q, F = b
q− 1
q− z

cqm,

Z = zb
q− 1
q− z

cqm−1, S = (q− z)qm, (9)

which generates a b q−1q−z cq
m-division ((m+ 1)q,M ,N ) coded

caching scheme with M
N =

z
q and rate R = (q −

z)/b q−1q−z c. For any positive integer K > K1, from Lemma 4,
we have a (K , h1F, h1Z , hS) PDA, which generates an
h1F-division (K ,M ,N ) coded caching scheme, say
Scheme 4, with M

N =
Z
F and R = K

K1
·
S
F , where h1 =

K1
gcd(K1,K )

and h = K
gcd(K1,K ) . Let K = q(b q−1q−z cm + 1). We have

h1 = m+1
gcd(mb q−1q−z c+1,m+1)

and h =
mb q−1q−z c+1

gcd(mb q−1q−z c+1,m+1)
. By (9),

the parameters of Scheme 4 are:

K = q(b
q− 1
q− z

cm+ 1),
M
N
=

z
q
,

FG2 =
m+ 1

gcd(mb q−1q−z c + 1,m+ 1)
b
q− 1
q− z

cqm,

TABLE 6. The values of FTh2, FG2
, RTh2 and RG2

when m = 20.

FIGURE 2. The packet numbers of Scheme 3 and 4 when t = 1, q = 5
and z = 3.

RG2 =
q− z

b
q−1
q−z c

mb q−1q−z c + 1

m+ 1
. (10)

By (8) and (10), we have

RG2

RTh2
= 1−

b
q−1
q−z c − 1

b
q−1
q−z c

1
m+ 1

,

FG2

FTh2
=

m+ 1

gcd(mb q−1q−z c + 1,m+ 1)
b
q− 1
q− z

c. (11)

When gcd(mb q−1q−z c+ 1,m+ 1) = 1, for instance, m+ 1 is
a prime power,

FG2

FTh2
= (m+ 1)b

q− 1
q− z

c. (12)

Obviously, when m is large,
RG2
RTh2

approximates to 1, and
FG2 is much larger than FTh2. In such a case, Scheme 3 has
the same user number, memory ratio and almost the same
transmission rate while has much smaller packet number than
Scheme 4. We list some examples with m = 20 in the
following table.

When t = 1, q = 5 and z = 3, according to (8) and (10),
we have K = 10m + 5, MN =

3
5 , RTh2 = 2,RG2 =

2m+1
m+1 ,

FTh2 = 5m and FG2 = 2 · 5m. We list FTh2 and FG2 in
FIGURE 2, and RTh2 and RG2 in FIGURE 3.

C. COMPARISON OF THE SCHEMES FROM THEOREMS
1,2 AND [5], [11]
In this subsection, we compare performances of the schemes
in Theorems 1, 2 and [5], [11]. In fact, we can not propose
a theoretic analysis as the expressions of parameters in the
schemes from [5] and [11] are too complex. So we only make
comparisons by some examples listed in TABLE 7.
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FIGURE 3. The rates of Scheme 3 and 4 when t = 1, q = 5 and z = 3.

TABLE 7. The schemes in Theorem 1,2 and [5], [11].

• From Lines 2-4 (or Lines 5-7) in TABLE 7, the
scheme in Theorem 1 (or Theorem 2) with param-
eters (t,m, q, z) ∈ {(2, 4, 8, 1), (2, 5, 8, 1)} (or
(m, q, z) ∈ {(6, 5, 2), (7, 4, 1)}) has larger user num-
ber than the scheme with (t,m, q, z) = (7, 3, 3, 3)
(or (t,m, q, z) = (6, 3, 2, 2)) in [5] while has smaller
memory ratio, packet number and transmission rate than
the scheme in [5]. That is, such schemes in Theorem 1
(or Theorem 2 has better performances on user number,
memory ratio, packet number and transmission rate than
the scheme in [5]. It is worth noting that the results in [5]
is the latest works on low subpacketization scheme.

• From Lines 8-10 (or Lines 11-13) in TABLE 7, the
scheme in Theorem 1 (or Theorem 2) with parameters
(t,m, q, z) ∈ {(1, 2, 16, 13), (2, 7, 3, 1)} (or (m, q, z) ∈
{(3, 7, 5), (3, 8, 6)}) has better performances on user
number, memory ratio, packet number and transmission
rate than the scheme with (k,m, t, q) = (8, 4, 1, 2)
(or (k,m, t, q) = (6, 3, 1, 2)) from [11].

V. CONCLUSION
In this paper, two concatenating constructions of coded
caching schemes are obtained. Then we showed that our
schemes can effectively reduce packet number. Furthermore,
in some case, our schemes have better performances on user
number, memory ratio, packet number and transmission rate
than the schemes in [5] and [11].
The concatenating constructions in this paper are based on

the PDAs in [18] and [26]. However, such constructions are
not suitable for all the known PDAs. So it is interesting to give
special concatenating constructions for some known PDAs,

such that the coded gain of the new scheme is lager than that
of the original scheme, while the cache size increase slowly.

APPENDIX A: PROOF OF THEOREM 1
Proof: We can directly check that there are exact

qm−t (q− z)t integer entries in each column, i.e., Z = qm −
qm−t (q− z)t . So C1 holds. By (3), the integer set of Pt,m,q,z
in Construction 1 is

S = {(s0, s1, . . . , sm−1, sm, . . . , sm+t−1) |
s0, . . . , sm−1 ∈ Zq, sm, . . . , sm+t−t ∈ [0, q− z)}

So S = |S| = qm(q − z)t . For an entry pa,b in Pt,m,q,z, there
exists s = (s0, s1, . . . , sm+t−1) ∈ S such that pa,b = s if and
only if

a = (α0, . . . , αγi , · · · , αm−1)

= (s0, . . . , sγi + sm+i + ηi(q− z)+ 1, · · · , sm−1)q
and

b = (β0, β1, . . . , βt−1, γ0, γ1, . . . , γt−1, η0, . . . , ηt−1)

= (sγ0 + η0(q− z), sγ1 + η1(q− z), . . . ,

sγt−1 + ηt−1(q− z), γ0, γ1, . . . , γt−1,

η0, . . . , ηt−1). (13)

for any t subset T = {γ0, γ1, . . . , γt−1} ⊆ [0,m) and t subset
� = {η0, η1, . . . , ηt−1} ⊆ [0, b q−1q−z c). Since there exists
exact a unique pair (a, b), such that pa,b = s for any fixed T
and �, then s occurs at most once in each column of Pt,m,q,z.
Furthermore, there exist exact

(m
t

)
(q − z)t pairs (T , �), then

integer s occurs
(m
t

)
(q− z)t times in Pt,m,q,z, i.e, C2 holds.

From the above discussion, we only verify whether or not
integer s occurs at most once in each row and C3-b) holds.
Assume there exists (a′, b′) 6= (a, b) such that pa′,b′ = s.
Then there must exist (T ′, �′) where T ′ = {γ ′0, . . ., γ

′

t−1}

and �′ = {η′0, . . ., η
′

t−1}, satisfying

a′ = (α′0, . . . , α
′

γ ′i
, · · · , α′m−1)

= (s0, . . . , sγ ′i + sm+i + η
′
i(q− z)+ 1, · · · , sm−1)q

and

b′ = (β ′0, β
′

1, . . . , β
′

t−1, γ
′

0, γ
′

1, . . . , γ
′

t−1, η
′

0, . . . , η
′

t−1)

= (sγ ′0 + η
′

0(q− z), sγ ′1 + η
′

1(q− z), . . . ,

sγ ′t−1 + η
′

t−1(q− z), γ
′

0, γ
′

1, . . . , γ
′

t−1,

η′0, . . . , η
′

t−1). (14)

We only need to consider the following cases, where all the
operations are performed modulo q.
• If {γ0, . . ., γt−1} 6= {γ ′0, . . ., γ

′

t−1}, then we can found out
i, i′ ∈ [0, t) such that γi 6∈ {γ ′0, . . ., γ

′

t−1} and γ
′

i′ 6∈ {γ0,
. . ., γt−1}. Next, we will prove that C3-a) and C3-b) hold
respectively.
– If a = a′, which implies s appears in the row a at

least twice, then αγi = α′γi . According to (13) and
(14), we can obtain

αγi = sγi + sm+i + ηi(q− z)+ 1, α′γi = sγi .
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This implies that

sm+i + ηi(q− z)+ 1 = 0. (15)

Since sm+i ∈ [0, q− z) and ηi ∈ [0, b q−1q−z c), then

1 ≤ sm+i + ηi(q− z)+ 1

< q− z+ (
q− 1
q− z

− 1)(q− z)+ 1 = q,

i.e., sm+i+ηi(q−z)+1 < q, a contradiction to (15).
Hence s occurs at most once in each row. So C3-a)
holds.

– If a 6= a′, from (13) and (14) we have

αγ ′
i′
= sγ ′

i′
, β ′i′ = sγ ′

i′
+ η′i′ (q− z).

Assume pa,b′ 6= ∗. Then αγ ′
i′
∈ {β ′i′ + 1, β ′i′ +

2, . . . , β ′i′ + (q − z)}. That is, there is an integer
j ∈ [1, q− z) such that αγ ′

i′
= β ′i′ + j, i.e.,

sγ ′
i′
= αγ ′

i′
= β ′i′ + j = sγ ′

i′
+ η′i′ (q− z)+ j.

This implies that

η′i′ (q− z)+ j = 0. (16)

Since η′i′ ∈ [0, b q−1q−z c), then

1 ≤ η′i′ (q− z)+ j

< (
q− 1
q− z

− 1)(q− z)+ (q− z) = q− 1,

i.e., η′i′ (q− z)+ j < q− 1, a contradiction to (16).
Hence pa,b′ = ∗. Similarly we can prove pa′,b = ∗.
So C3-b) holds.

• If {γ0, . . ., γt−1} = {γ ′0, . . ., γ
′

t−1}, we have
(η0, . . . , ηt−1) 6= (η′0, . . . , η

′

t−1) since s occurs at most
once in each column. So there is an integer i satisfying
ηi 6= η

′
i. Then we have

βi = sγi + ηi(q− z), αγi = sm+i + bi + 1,

β ′i = sγi + η
′
i(q− z). (17)

– a = a′ does not happen. From the above investi-
gation, i.e., there exists exact a unique pair (a, b),
such that pa,b = s for any fixed T and�, s does not
occur in the same row. Then C3-a) always holds.

– Suppose that a 6= a′. If pa,b′ 6= ∗, then αγi ∈ {β
′
i +

1, β ′i+2, . . . , β
′
i+(q−z)}. Hence there is an integer

j ∈ [1, q− z) satisfying αγi = β
′
i + j. Together with

(17), we have

sm+i + sγi + ηi(q− z)+ 1

= sγi + η
′
i(q− z)+ j. (18)

If ηi < η′i, we have

sm+i + 1 = (η′i − ηi)(q− z)+ j. (19)

Since 0 ≤ ηi, η′i < b
q−1
q−z c and 1 ≤ j, sm+i < q− z,

we have

1 ≤ sm+i + 1 ≤ q− z and

q− z+ 1 ≤ (η′i − ηi)(q− z)+ j < q

This implies sm+i + 1 6= (η′i − ηi)(q − z) + j, a
contradiction to (19). That is the subcase ηi > η′i is
impossible. If ηi > η′i, (18) can be written as

sm+i + (ηi − η′i)(q− z)+ 1 = j,

which is impossible as q − z + 1 < sm+i + (ηi −
η′i)(q − z) + 1 < q and 1 ≤ j < q − z. Hence
pa,b′ = ∗. Similarly we can prove pa′,b = ∗. Then
C3-b) holds.

APPENDIX B: PROOF OF THEOREM 2
Proof: Firstly, we will check the parameters K , F , Z and

S. Clearly K = q(mb q−1q−z c + 1), F = qm and Z = zqm−1.
We now determine the value of S. According to the proof of
Theorem 1, P is an (mq(b q−1q−z c), q

m, zqm−1, (q − z)qm) PDA
with

S = {(s0, s1, . . . , sm) |
s0, s1, . . . , sm−1 ∈ [0, q), sm ∈ [0, q− z)}.

So we only need to consider the alphabet of C. For any
s = (s0, s1, . . . , sm−1) ∈ S, consider the value of sm. For
any integer β ∈ [0, q), by (4) pa,b is a vector if and only if∑m−1

k=0 αk ∈ [0, q) \ Yβ,z. Then

sm ∈ {β − 1− c | c ∈ [0, q) \ Yβ,z = {β + z,

β + z+ 1, . . . , β + q− 1}q}

= {q− z− 1, q− z− 2, . . . , 0}q.

And sm can get every value in {0, . . . , q− z− 2, q− z− 1}q
when

∑m−1
k=0 αk goes through [0, q) \ Yβ,z. So the alphabet

of C is also S . From the above discussions, we know that
S = (q− z)qm.
Next, we will check the properties in Definition 1. First by

the above discussions about parameter Z , we have C1 always
holds. C2 always holds from the proof of Theorem 1. Now
we will prove that C3 holds. Suppose that pa,b and pa′,b′ are
two entries with pa,b = pa′,b′ = s ∈ S where

a = (α0, α1, . . . , αm−1)q, a′ = (α′0, α
′

1, . . . , α
′

m−1)q,

b = (β, γ, η), b′ = (β ′, γ ′, η′).

We only need to consider the following cases, where all the
operations are performed modulo q.
• If γ ∈ [0,m) and γ ′ = m, we have pa,b and pa′,b′ in
distinct columns. From (3) and (4) there is an integer
η ∈ [0, b q−1q−z c) satisfying

αγ − β − 1 = β ′ −
m−1∑
k=0

α′k − 1,

α′γ = sγ = β − η(q− z), αk = α′k (20)

for any k ∈ [0,m) \ {γ }.
– C3-a) holds. Assume that a = a′, which implies that
s appears in the row a at least twice. Then αγ = α′γ .
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From the first and the second items in (20), we have
αγ = β + β

′
−
∑m−1

k=0 α
′
k and α

′
γ = β − η(q − z),

respectively. Together with the above fact αγ = α′γ ,
we know that

η(q− z)+ β ′ −
m−1∑
k=0

α′k = 0.

Since
∑m−1

k=0 α
′
k 6∈ Yβ ′,z, then there is an element

j ∈ {1, 2, . . . , q− z} satisfying
∑m−1

k=0 α
′
k = β

′
− j.

Hence

η(q− z)+ β ′ − (β ′ − j) = η(q− z)+ j = 0,

which is impossible as

1 ≤ j+ η(q− z)

≤ (q− z)+ (
q− 1
q− z

− 1)(q− z)

= q− 1 (21)

by the fact η ∈ [0, b q−1q−z c).
– C3-b) holds. If pa′,b 6= ∗, we have α′γ 6∈ Xβ,z by

(3). Hence there is an element j ∈ {1, 2, . . . , q− z}
satisfying α′γ = β − j. Submitting α′γ = β − j
into the second item in (20) we have η(q − z) +
j = 0, wihch is impossible from (21). If pa,b′ is an
integer, we have

∑m−1
k=0 αk ∈ {β

′
− (q − z), β ′ −

(q− z− 1), . . . , β ′ − 1}q. Then there is an element
j ∈ {1, 2, . . . q − z} satisfying

∑m−1
k=0 αk = β

′
− j.

From (20), we have

m−1∑
k=0

αk =
∑

k∈[0,m)\{γ }

αk + αγ

=

∑
k∈[0,m)\{γ }

αk + (β + β ′ −
m−1∑
k=0

α′k )

=

∑
k∈[0,m)\{γ }

αk + (β + β ′

−

∑
k∈[0,m)\{γ }

α′k − α
′
γ )

= β + β ′ − α′γ

= β + β ′ − (β − η(q− z))

= β ′ + η(q− z)

Then β ′− j = β ′+η(q−z). Hence j+η(q−z) = 0,
which is impossible from (21).

• If γ = γ ′ = m, from (4) we have

β −

m−1∑
k=0

αk − 1 = β −
m−1∑
k=0

α′k − 1, αk = α′k

for any k ∈ [0,m). Then we know that a = a′ and
b = b′, a contradiction to our hypothesis.
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