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ABSTRACT With the rapid diffusion of smartphones as well as the technical advances in mobile platform
technologies, application domains supported by smartphones have dramatically increased. Unlike traditional
computer systems, however, the context of applications may be lost in a smartphone as mobile OS usually
kills applications without user’s approval when free memory space is exhausted. This was not a serious
issue when a smartphone was a personal entertainment device, but it is now significant as a lot of official
works are also performed by a smartphone. Instead of killing a process, the context of an application can be
backed up to swap storage, but smartphones do not accept it as swap incurs excessively heavy I/O traffic.
However, our findings show that the overhead of swap is not serious in recent smartphone devices and it can
also be eliminated by judicious software management. This article proposes a selective swap scheme that
classifies applications based on their context-saving characteristics, and controls the number of processes
involved in swap by monitoring system situations and application characteristics. That is, we maintain the
context of applications selectively by swap or application’s own state-saving. We implement and measure
the effectiveness of our scheme on a real Android device, showing that it provides the context-savings of
applications without additional overhead.

INDEX TERMS Android, mobile platform, application, process context, smartphone, swap.

I. INTRODUCTION
In traditional computer systems, the context of an application
is maintained by the operating system until the process is
terminated. Unless an exceptional case such as a system crash
occurs, a process is not killed without user’s acknowledg-
ment. Thus, users do not need to be concerned about whether
the context of an application will be lost or not. However, this
is no longer the case for smartphone systems.

With the rapid diffusion of smartphone devices as well
as the advances in mobile platform technologies, desktop
applications increasingly switch their execution platform to
smart devices [1], [2]. New smartphone applications using
camera, GPS (global positioning systems), and sensors also
emerge every day [3]–[6]. However, smartphone systems do
not guarantee the keeping of application contexts due to the
philosophy of mobile platforms. In particular, smartphone
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platforms such as Android lose the context of an application
by killing it when the free memory space in the system
becomes lower than a certain threshold [7], [8]. As this is per-
formed without user’s approval, applications usually restart
without their previous context. This was not a serious issue
when a smartphone was a personal entertainment device, but
now it is significant as the domain of smartphone applications
becomes wider. For example, terminating amusic player does
not incur serious results but killing a stock trading application
while changing the price of some stock orders may cause
serious problems. To resolve this issue, some applications
preserve their context by themselves before termination and
restore it when restarting. However, as this is not performed
by the operating system, the saved context is limited and lots
of applications do not even provide such functions

Instead of killing processes, traditional computer systems
support swap, which uses a certain portion of secondary
storage as main memory’s extension for saving application’s
memory context [9]. As smartphones now act as general
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purpose multi-tasking systems, the necessity of swap is
becoming increasingly important. However, it is reported that
the I/O traffic of smartphones increases significantly when
the swap function is provided, which also slows down the
launch time of applications [10]. One way of coping with
this situation is to use additional hardware components. For
example, non-volatile memory can be adopted to absorb
I/O traffic generated by swap, thereby alleviating the slow
launch time of smartphone applications [11]–[13], [21], [23].
However, adding a hardware component incurs additional
cost and is not effective unless smartphone vendors accept
it. Furthermore, non-volatile memory such as PCM (phase-
change memory) or STT-MRAM has not yet opened its com-
plete market for smartphone systems [14]–[16].

Our aim is not to use additional hardware components,
but to utilize only judicious software management for main-
taining application contexts. To do so, we perform some
preliminary experiments with an Android reference device
and find out that recent smartphone devices do not incur
excessively heavy I/O traffic although swap is supported.
However, we also observe that Android swap still suffers from
heavy I/O traffic as the number of applications in execution
becomes excessively large. This is different from the original
Android (i.e., swap-disabled) case, where the performance is
not degraded seriously even though the number of applica-
tions increases. This is because low-memory-killer (LMK)
controls the number of processes in the system by killing and
restarting applications without incurring heavy I/O traffic.
This implies that terminating and restarting an application
incurs less overhead than swap-out and swap-in as killing
an application removes most of process’s memory address
space (i.e., code, data, stack, heap) without saving to storage.
If it restarts, the memory address spaces such as data, stack,
and heap are created in memory rather than loading from
storage. However, original Android (i.e. swap-disabled) has
the problem of losing application’s context if the application
does not save its context by itself.

By considering this, we propose a selective swap scheme
that controls the number of processes to be swapped by
monitoring the system situation and application character-
istics. Instead of equally maintaining all process contexts,
our scheme maintains the context of processes selectively by
the operating system’s swap or the application’s own state-
saving. To determine whether to support swap or to kill an
application, our scheme classifies applications based on their
context-saving characteristics, and selectively support swap
for applications that do not save context by themselves.

To assess the effectiveness of the proposed scheme,
we implement our scheme on a real Android platform and
perform measurement studies to compare the launch time of
applications in original Android, swap-supported Android,
and our scheme. Performance evaluation results show that
Android with our selective swap scheme does not incur addi-
tional overhead in application’s launch time. Furthermore,
the variation of the launch time is significantly reduced
compared to the swap-supported Android. Specifically, our

scheme improves the average launch time of applications by
19-83% in comparison with the swap-supported Android, and
also reduces the standard deviation of launch time by 20-96%.
Our new findings and contributions can be summarized as
follows.

• Supporting swap in a smartphone incurs excessively
heavy I/O traffic in early days, but it is not the case
for recent smartphone devices.

• However, when compared with the swap-disabled kill-
based systems, swap-based systems still incur heavy
I/O traffic as the number of applications in execution
becomes very large.

• We categorize smartphone applications, and find out
that some applications do not need the assistance of
swap as they save application contexts by themselves.

• We propose a selective swap scheme that controls the
number of processes involved in swap by monitoring
system status and application characteristics.

• Although there is no hardware assistance, our scheme
maintains the context of applications without perfor-
mance degradations in terms of application’s launch
time and their variations.

The remainder of this article is organized as follows.
Section II briefly explains freememorymanagement schemes
in Linux and Android. In Section III, we quantify the over-
head of swap in Android. Section IV describes the proposed
selective swap scheme for smartphones. Performance eval-
uations based on measurement studies to assess the effec-
tiveness of the proposed scheme are depicted in Section V.
Section VI briefly summarizes the related works of this study.
Finally, Section VII concludes this article.

II. FREE MEMORY MANAGEMENT IN LINUX AND
ANDROID
As the size of main memory in a system is limited, the avail-
able memory space is getting smaller and is finally exhausted
as the number of processes in the system increases. When
there is not enough free memory, swap is triggered in Linux.
Specifically,kswapd is activated tomake freememory space
by saving some memory context of processes to secondary
storage [17]. As Android also adopts Linux kernel in its
bottom architecture, kswapd can be activated. However,
the current Android architectures adopt LMK (low memory
killer), which is firstly triggered when free memory space
becomes low [10], [18]. Specifically, LMK kills low-priority
processes without user’s agreement when free memory space
is below a certain threshold. Thus, the context of an applica-
tion killed by LMK disappears in Android unless the appli-
cation itself saves it.

There is another software module, OOM (out of memory
killer), which is activated when the free memory space is
almost exhausted. Specifically, OOM works when it fails
to free page frames, thereby making the system difficult to
normally operate. Actually, this is an emergency situation that
does not happen in usual cases as LMK or kswapd works
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FIGURE 1. Triggering conditions of LMK, kswapd, and OOM in Android
and Linux.

before OOM is activated. Once OOM starts its work, pro-
cesses are killed based on their scores evaluated by memory
occupation and nice values until minimum freememory space
is made.

Figure 1 depicts the triggering conditions of LMK,
kswapd, and OOM in Android and Linux. As shown in
the figure, Android’s LMK works more aggressively than
kswapd because Android does not support swap. Although
this improves the response time of applications by sufficiently
keeping free memory space, it fails to guarantee the reliability
of program executions.

III. QUANTIFYING THE OVERHEAD OF SWAP IN
ANDROID
This article focuses on the Android smartphone environ-
ment that is reconfigured to support virtual memory swap.
Although supporting swap in Android is not impossible,
previous studies have shown that it incurs heavy I/O traffic,
thereby degrading the smartphone system performances sig-
nificantly [10], [23].

To quantify the overhead of swap, we also perform exper-
iments by reconfiguring an Android smartphone to support
swap and collect storage I/O traces while executing various
kinds of applications. Storage I/O traces in our experiments
were extracted by ftrace in Android kernel [19]. We warm
up memory by executing a variety of Android applications
to make full use of available memory, and then induce swap
situations.

We sequentially execute a series of applications and then
repeat them to see the effect of swap. (Detailed characteristics
of execution scenarios will be explained later in Section V.)
As each sequence consists of a sufficient number of appli-
cations to fill up memory, applications are essential to be
terminated and restart upon their next launch in original
Android whereas swap-supported Android saves and restores
applications’ memory data by making use of swap.

We use two kinds of Android reference devices to per-
form our experiments. The first is ODROID-Q, which con-
sists of 1GB DDR2-DRAM memory and 1GB swap file
on 16GB eMMC [20]. Actually, this is an outdated hard-
ware spec but we use this to set up similar conditions with

previous studies [21], [23]. Figure 2(a) shows the storage
I/O traffic of original Android and swap-supported Android
on ODROID-Q. The graph shows the I/O traffic normalized
to the original Android case for each experiment. Similar
to previous studies, our analysis shows that swap-supported
Android incurs about 8 times more I/O traffic than original
Android [23]. This is because supporting swap requires addi-
tional storage accesses for saving and retrieving application’s
memory address space, whereas killing and restarting an
application without swap perform most of their works in
memory.

Recently, Android versions and the hardware spec of
smartphones are advancing rapidly. To see the effect of such
improvements, we perform our second experiments with
another Android reference device, Nexus 5, which consists
of 2GB LPDDR3-SDRAM memory and 2GB swap file on
16GB eMMC [22]. Interestingly, our experimental results
show that the I/O traffic problem of Android swap becomes
weak or almost disappears. As shown in Figure 2(b), swap
does not increase the I/O traffic at all in Scenario A. Note
that Scenario A executes 12 concurrent applications repeat-
edly within 20 minutes. Although this is sufficient number
of applications for common smartphone users, we raise the
workload intensity and see the effect of swap in excessively
heavy workload conditions. Figure 2(c) shows the I/O traffic
of original Android and the swap-supported Android as we
repeatedly execute 24 concurrent applications. As shown in
the figure, swap increases I/O traffic but is not as serious as
the situation in ODROID-Q.

This implies that swap does not incur serious performance
problems in the current Android devices. We only need to
see the effects of swap upon a thrashing condition where the
number of applications involved in swap becomes more than
a certain threshold, thereby exhausting the available memory
space. In that case, some kinds of essential Android ser-
vices and shared libraries are evicted from memory and then
reloaded repeatedly. Thus, Android swap needs a mechanism
that does not incur such phenomena. One way of coping with
this situation is to adjust the number of processes involved in
swap not to incur heavy I/O traffic, which will be discussed
in the next section.

Now, let us briefly discuss the storage issue of swap. Flash
memory is used as the storage device of smartphones, but
it was difficult to use flash as the swap device not only
due to the heavy I/O traffic but also the performance and
endurance issues of flash memory devices. Early flash prod-
ucts suffered from the freezing phenomenon in which the
performances of storage I/Os are degraded seriously when
the Garbage Collection starts [34]. There were also perfor-
mance fluctuations in flash storage as the internal state of
the storage device changes over time. However, such prob-
lems have been improved significantly by adopting internal
buffer and/or cache in recent flash storage products. Also,
recent flash storage devices adopt wear leveling techniques
in their FTL (Flash Translation Layers) and it is known that
such techniques can redistribute the write traffic to storage
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FIGURE 2. Comparison of I/O traffic for original Android and swap-supported Android.

well [34]. Thus, the lifespan of storage mainly depends on
the write I/O traffic to storage. Unlike early Android devices
that incur excessively heavy I/O traffic when swap is enabled,
this article argues that swap does not incur heavy I/O traffic
in recent smartphone devices. Specifically, if we control the
number of applications involved in swap, the endurance of
flash memory is not a problem any longer.

IV. THE SELECTIVE SWAP SCHEME IN SMARTPHONES
Our aim is to maintain the context of smartphone applica-
tions, thereby making smartphones more reliable comput-
ing devices. Nevertheless, we do not want either perfor-
mance degradation or addition of hardware components. This
implies that supporting such functions should be done only by
judicious software management.

To do so, we utilize the following two characteristics that
appear in smartphone applications. First, some smartphone
applications are developed to maintain their context by them-
selves, not needing the assistance of swap. For example,
the current version of the Android video player restarts from
the previouslywatched position, although it is killed by LMK.
We exclude such applications from the targets of swap. Sec-
ond, the number of applications executed by a single user is
limited, and thus situations that we need to control the number
of processes to be swapped rarely happen. It is reported
that a common smartphone user runs less than 10 applica-
tions within a day [24]. The problem situation happens only
when the number of concurrent applications that need the
assistance of swap becomes excessively large. That is, when
the working-set of a system is beyond the capacity of main
memory, thrashing happens, which incurs excessively heavy
I/O traffic. We need to control the number of processes to be
swapped in this case.

A. APPLICATION CLASSIFICATIONS
To determine whether to support swap or to kill an applica-
tion, our selective swap scheme classifies applications based
on their context-saving characteristics and priorities. Then it

Algorithm 1
// Low-Memory-Killer (LMK)
if free memory falls below kill_threshold then
Select the oldest app A in kill_target_app_list;
Terminate A through sending the kill signal;

end if
// Kernel-Swap-Daemon (kswapd)
if free memory falls below swap_threshold then

Select victim page p not used recently from
inactive_list;
if p belongs to swap_target_apps then

Evict p from memory;
end if
if the size of inactive_ list is below inactive_low then

Refill inactive_ list with old pages in active_ list;
end if

end if
if # of apps involved in swap exceeds swap_max then
Select the lowest priority app p in swap_target_app_list;
Delete p from swap_target_app_list;
Insert p to kill_target_app_list;

end if
// Out-Of-Memory-Killer(OOM)
if kswapd fails to free pages then
Select the lowest priority app A in the system;
Terminate A through sending the kill signal;

end if

selectively supports swap for applications that do not save
context by themselves.

We classify smartphone applications into two categories:
the swap-target applications of which operating systems need
to maintain their contexts, and the kill-target applications
that internally save contexts by applications themselves or no
contexts to be saved. However, if the number of processes
needs to be controlled, some swap-target applications can
be shift to kill-target applications based on the priority of
applications.
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TABLE 1. Classification of applications and their examples.

This article suggests the basic classification principles, but
does not focus on who has the responsibility of this classi-
fication. However, it would be difficult to ask the applica-
tion developers or end users to make such decisions. Thus,
we suggest a simple way of classifying applications with
respect to the context-saving characteristics. That is, Android
supports a certain form of context-saving files for application
developers whenever the activity state changes. Thus, in order
to distinguish whether it is a state-saving application or not,
our scheme makes use of the existence of such files created
or saved when the application is killed.

We also categorize applications by their priorities as
shown in Table 1. The priorities here are defined based
on the application’s functionalities similar to previous
studies [4].

The high priority class includes office applications, finan-
cial applications, and location tracing applications. For exam-
ple, car navigation, stock trading, and spreadsheet are classi-
fied into this class. Social networks and multimedia appli-
cations are categorized as the medium priority class. Most
applications in this class need personalized services, but they
are usually network-based applications that frequently update
contexts to provide their information. Games, which require
long loading time, are also classified into this class. The
low priority class includes information provision, advertise-
ment, and camera applications. We classify camera appli-
cations into low priority as taking a picture does not need
context-saving because context in camera is valid only
when the application is running as a foreground process.
Note that the foreground process is not selected as the
target of kill in any kinds of operating systems including
Android.

B. TRIGGERING KSWAPD AND LMK
Now, let us explain the details of the proposed selective
swap scheme. The key idea of the proposed scheme is to
control the number of applications involved in swap. To do
so, we classify applications’ priorities and context-saving
characteristics; then we maintain the context of applications
selectively by the operating system’s virtual memory swap
or the application’s own context-saving. In case of the latter,
our scheme does not perform swap but kills and restarts the
application as is done in original Android. Applications that
do not perform self-context-savings are the targets of swap.
However, if the number of applications involved in swap
exceeds a certain threshold, thrashing may happen and thus
we need to limit the number of applications to be swapped.
In this case, the priority of applications classified in the
previous section is considered, and the application with the
lowest priority is excluded from the targets of swap.

When the availablememory space becomes below a certain
threshold, our selective swap scheme triggers both kswapd
and LMK to make free memory. The default triggering con-
ditions of kswapd and LMK, which we call swap-threshold
and kill-threshold, are set to 4MB and 180MB, respectively.
Note that these are the default settings of Linux and Android,
respectively. When we apply these settings, LMK is triggered
earlier than kswapd. This is a reasonable configuration as
killing and restarting an application requires less cost than
swap I/O. However, for a comparison purpose, we set up
another version of the selective swap scheme that triggers
swap earlier than kill. We call these two variants of the selec-
tive swap scheme, the kill-first and the swap-first schemes.
Table 3 depicts the default thresholds of these two schemes
used in our experiments.

85144 VOLUME 8, 2020



J. Kim, H. Bahn: Maintaining Application Context of Smartphones by Selectively Supporting Swap and Kill

TABLE 2. Application scenarios used in the experiments

If the free memory space is below the kill-threshold, our
scheme selects the least recently used application among
the kill-target applications and terminates it through send-
ing the kill signal. If the free memory space becomes
below the swap-threshold, memory pages are reclaimed
by kswapd.

Pages that belong to swap-target applications are the can-
didates of reclamation. We use the default reclamation algo-
rithm in Linux, which maintains two page lists, the active list
and the inactive list, and evicts pages not used recently in the
inactive list [25], [26].

Note that the granularity of LMK is a process whereas
the granularity of kswapd is a page. Figure 3 overviews the
proposed scheme and Algorithm 1 describes the pseudocode
of our scheme.

V. MEASUREMENT STUDIES
In this section, we present the performance evaluation results
to assess the effectiveness of the proposed selective swap
scheme.

TABLE 3. Threshold parameter setting.

A. EXPERIMENTAL SETUP
Our experimental setup consists of Nexus 5 with 2GB
LPDDR3-SDRAM memory and 2GB swap file on
16GB eMMC. The swap file is created on /stor-
age/self/primary. We install Google Android 6.0.1 and
Linux 3.4.0. We reconfigure the Android kernel to support
virtual memory swap and also implement our selective swap
scheme on it.

Table 2 shows the scenarios we executed. In this table,
applications in gray-cells are kill-target applications, whereas
those in white-cells are swap-target applications. In the case
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FIGURE 3. Overview of the proposed scheme.

of Scenarios A and B, we execute all applications in the table
sequentially and repeat their executions 10 times to see the
effect of swap. Scenarios A1 and A2 consist of 12 appli-
cations, which represents normal situations as the number
of applications executed by a smartphone user is usually
less than 10 per day [24]. Scenario A1 sequentially exe-
cutes 12 applications and repeats by the same order whereas
Scenario A2 randomly rearranges their execution order at
each round. Scenarios B1 and B2 consists of 24 applications,
which represents heavy workload situations. Similar to
Scenarios A1 and A2, Scenarios B1 and B2 execute by
the sequential and random orders, respectively, in each
round.

We alsomake use ofmore realistic scenarios that reflect the
access locality of smartphone’s application use. Specifically,
we used the workload scenario similar to Kim et al. [32] by
making use of the smartphone usage traces in the Livelab
project of Rice University [33]. As the traces in the Live-
lab project consist of the application usage of iPhone users,
we picked the same or a similar Android application from

the Google Play Store. Among the long traces of many users,
we randomly selected a certain time window for a single user,
and extracted the sequence of application launches within
the trace. This is Scenario C in Table 2, which consists of
30 applications.

We implemented our scheme by modifying the LMK
of Android not to kill swap-target applications. We also
modified the reclamation module of kswapd to prevent
the swap-out of pages belonging to kill-target applications.
In order to measure the application’s launch time, we first
made the launcher script that contains the sequence of appli-
cation’s launch command for each scenario, and then exe-
cuted the launcher script in original Android, swap-supported
Android, and the two versions of our schemes. Specifi-
cally, we used the ‘‘am’’ command to launch each appli-
cation and measured the launch time through the ‘‘time’’
command. After that, we inserted the ‘‘sleep’’ command
for 30 seconds and then launched the next application.
Figure 4 shows an example of our application launcher
script.
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FIGURE 4. An example of the launcher script for the measurement of the scenarios.

FIGURE 5. Launch time of applications in Scenario A1.

Although it would be more meaningful to measure the time
taken for the full features of an application to be activated, this
requires some interactions with the user to proceed to the next
step, making fair comparison difficult due to the variations
caused by humans. As the scenarios cannot be executed with
the same user interaction for each application run, we use the
launcher script that can repeat the scenarios with identical
conditions and measure the launch time by the system.

B. EXPERIMENTAL RESULTS
We compare our scheme, called the selective swap scheme,
with the original Android and the reconfigured Android
that supports swap for all applications, which we call
swap-supported Android. As we mentioned in the previous
section, we use the two variants of our selective swap scheme:
the kill-first scheme that uses the default threshold of LMK
and kswapd thereby triggering LMK earlier than kswapd,

and the swap-first scheme that triggers kswapd earlier
than LMK.

Figures 5 to 9 show the average launch time and the
standard deviation of the launch time of applications for
each scenario. We compare the original Android, the swap-
supported Android, and the two versions of our selective
swap scheme. As shown in Figures 5 and 6, the launch
time of the swap-supported Android and the proposed
scheme is as good as that of the original Android when
the number of concurrent applications is 12. This is
because the capacity of memory is enough for executing
these applications and thus the overhead of swap is negligible.

However, the results are contrasted under heavy work-
load conditions. Specifically, as the number of applications
becomes 24, the launch time of the swap-supported Android
is degraded significantly as shown in Figures 7 and 8.
In comparison with the original Android, the performance
of the swap-supported Android is degraded by 2x to 5x.
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FIGURE 6. Launch time of applications in Scenario A2.

FIGURE 7. Launch time of applications in Scenario B1.

This indicates that supporting swap may still be the
performance bottleneck in smartphones as the number
of concurrent applications becomes large. Unlike the

swap-supported Android, the performance of the proposed
scheme is not degraded even when we compare it with the
original Android. When compared with the swap-supported
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FIGURE 8. Launch time of applications in Scenario B2.

Android, our scheme with kill-first reduces the application’s
launch time by 51% on average. Our scheme also improves
the standard deviation of application’s launch time in com-
parison with the swap-supported Android. Specifically, the
improvement is 78% on average. This is a significant result
as users expect uniform latency for the same application
launching.

In case of some swap-target applications like Instagram,
Facebook, and Youtube, the launch time of the proposed
schemewith swap-first is even shorter than that of the original
Android. This is because our scheme sets the swap-threshold
smaller than the kill-threshold, leading to less possibility
of evicting swap-target applications from memory. When
comparing swap-first and kill-first, kill-first performs slightly
better than swap-first in terms of the average launch time.
Since kill-first preserves free memory space by terminat-
ing kill-target applications first, it reduces the overhead of
swap I/O even more. Although available memory becomes
insufficient, kill-first still maintains hot pages of essential
Android services and shared libraries in memory as it makes
free memory by LMK first and then evicts cold pages not
used recently. When we compare kill-first with the original
Android and the swap-supported Android, the improvement
of the average launch time is 22% and 51%, respectively.

Figure 9 shows the average and the standard deviation of
each application’s launch time as we performed Scenario C.

Note that the standard deviation bar does not exist if an
application is executed only once in the scenario. The result
shows that the overhead of swap is similar to Scenario B
although Scenario C has more applications. This is because
Scenario B executes applications by sequential or random
orders, but Scenario C considers the access locality of smart-
phone’s application use. In this situation, frequently used
applications are highly likely to restart in memory with-
out killing or swapping, leading to improved performances.
When comparing the four schemes, our two schemes perform
similar to the original Android throughout all application
launches with respect to the launch time and its variation,
whereas the swap-supported Android do not exhibit stable
performances in some cases.

Figure 10 shows the average launch time of applications
when the original Android, the swap-supported Android, and
the two versions of our scheme are adopted. We show the
average launch time of swap-target and kill-target applica-
tions separately, and then show the average of all applications.
As can be seen in Figures 10(a) and 10(b), the average launch
time of swap-target applications in swap-supported Android
performs the best. This is because the number of applications
executed is not large enough to incur swap situations and thus
most of application’s data still remain in memory although
swap is turned on. This happens due to the default gap of kill-
threshold and swap-threshold.

VOLUME 8, 2020 85149



J. Kim, H. Bahn: Maintaining Application Context of Smartphones by Selectively Supporting Swap and Kill

FIGURE 9. Launch time of applications in Scenario C.

Figures 10(a) and 10(b) also show that the performances
of our kill-first and swap-first schemes are slightly degraded
in kill-target and swap-target applications, respectively. This
is due to the priority of applications the two types of our
schemes give, but the overall performance is not degraded
when considering the total applications as shown in the fig-
ure. Also, we do not take this seriously as it is within a
certain short time range of 1.x seconds for a person to feel
interactive. In reality, the more important thing for humans
to feel comfortable is small variations in each launch case.
In this aspect, our conclusion is that the proposed scheme
does not have problems in light-weight scenarios considering
the results.

Now let us see the results for heavy-weight scenarios.
As shown in Figures 10(c) and 10(d), the proposed scheme
with kill-first performs the best when the workload condition
becomes excessively heavy. Since the proposed scheme pre-
serves free memory space by terminating kill-target applica-
tions first, it reduces the overhead of storage I/O generated
by swap. Although the available memory space becomes
insufficient, the contexts of swap-target applications are still
in memory, leading to better results. When we compare our
scheme (kill-first) with the original Android and the swap-
supported Android, performance improvement is 22% and
51%, respectively, in terms of the average launch time.

Finally, Figure 10(e) shows the performance of the
four schemes when Scenario C is executed. Although the

performance gap becomes narrow compared to the result
of Scenario B, our schemes perform better than the
swap-supported Android, and almost similar to the original
Android.

Before concluding this section, we briefly discuss the I/O
traffic of Android swap with respect to the read/write ratio
and the percentage of I/O for swap versus non-swap traffic.
We have already seen the heavy I/O traffic of Android swap
in early days, but now the overhead of swap becomes small
and we focus on the analysis of I/O traffic under realistic
workload situations.

Figure 11(a) shows the read/write traffic of the original
Android and the swap-supported Android while executing
Scenario C. As shown in the figure, the two systems incur
similar read traffic but the write traffic of swap-supported
Android is heavier than that of the original Android. How-
ever, the increased I/O traffic is not serious when considering
the total I/O traffic. Figure 11(b) separates the same I/O traffic
into swap I/O and non-swap I/O. As we see, the original
Android only incurs non-swap I/O, but most of these I/O
traffics change to swap I/O as the swap function is turned on.
Instead, non-swap I/O becomes very small in swap-supported
Android.

VI. RELATED WORKS
A lot of studies have been performed to efficiently support
swap in smart devices. Android supports the zRAM swap
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FIGURE 10. Average launch time of swap-target, kill-target, and total applications when selective swap
(kill-first), selective swap (swap-first), original Android, and swap-supported Android are adopted.

FIGURE 11. Comparison of I/O traffic in original Android and swap-supported Android.

scheme since version 4.4, which makes use of a certain area
of DRAMmemory as ramdisk and performs swapping to this
area in a compressed form [27]. Han et al. present a hybrid
swapping scheme that supports both secondary-storage swap
and zRAM swap [28]. They attempt to swap out all pages in
the working set of a process to the zRAM swap space rather
than killing the process selected by the low-memory killer,
and swap out the least recently used pages into the secondary

storage swap space. Chae et al. suggest CloudSwap as a swap
mechanism for mobile devices by utilizing remote storage as
a swap area [29]. Zhu et al. present the SwapBench to evaluate
various swapping schemes, specifically focusing on the two
performance measures, the application launch time and the
application switch time on Android smartphones [30].

Some studies aim to use NVM (non-volatile memory) as
the swap area of smartphones [11], [12]. Kim et al. adopt

VOLUME 8, 2020 85151



J. Kim, H. Bahn: Maintaining Application Context of Smartphones by Selectively Supporting Swap and Kill

a small size of NVM to absorb hot data that appear in
swap-supported Android by making use of efficient man-
agement policies including admission-control [23]. Zhong
et al. also use NVM as the swap area of smartphones and
focus on the limited endurance problem of NVM [10], [11].
Kim et al. propose an NVM-based swap scheme for
smartphone systems, called CAUSE (Critical Application
Usage-aware Swap Enhanced memory system) [31]. CAUSE
tries to distinguish critical pages by considering application
usage patterns, and manages these pages so as to reduce the
probability of being swapped-out.

If we do not use LMK and activate kswapd like traditional
computer systems, the context of applications can be fully
preserved. However, studies on smartphone swap usually
focus on using both kswapd and LMK, and then try to
improve the performance by harmonizing the two indepen-
dent layers. For example, Kim et al. observe that the targets
of kswapd and LMK can be overlapped as kswapd evicts
old pages (i.e. pages not used recently) and LMKalso kills old
applications (i.e. applications not used recently) [32]. In this
situation, swapped pages will become useless if the owner
application of that pages is killed. To reduce such useless
swap I/O traffic, Kim et al. do not allow the swap-out of pages
that belong to old applications as they will be killed soon by
LMK [32]. In other words, their scheme tries not to overlap
the targets of kill and swap in the ‘‘performance’’ aspect not
in the ‘‘context-saving’’ aspect. Thus, applications may be
killed without preserving their contexts.

In contrast, our scheme separates the targets of kill and
swap by the context-saving characteristics, i.e., kills for
context-saving applications and swaps for non-saving appli-
cations. Thus, in our scheme, the situation that Kim et al.
claimed, i.e., unnecessary I/O traffic due to the kill of
swapped applications, does not happen.

Note that the motivation of our study is the ‘‘reliability’’
issue of smartphone’s program execution rather than the
‘‘performance’’ issue. That is, we focus on the problem of
losing application’s context as smartphones kill applications
without user’s agreement when free memory is exhausted.
Thus, to make smartphone a more reliable computing device,
we maintain the context of applications by either swap or
application’s own state-saving. In particular, applications are
selectively managed by LMK (for context-saving applica-
tions) or kswapd (for non-saving applications), thereby
guaranteeing the context-savings for all types of applications.
Unlike our study, existing studies have focused on the ‘‘per-
formance’’ issue rather than the ‘‘reliability’’ issue.

VII. CONCLUSION
In this article, we presented the selective swap scheme for
maintaining the context of smartphone applications. Our
scheme classifies applications based on their context-saving
characteristics, and selectively supports swap for applications
that do not save context by themselves. We showed that
the heavy I/O traffic problem of smartphone’s swap does

not occur in recent Android devices unless the number of
concurrent applications becomes excessively large.

To avoid such thrashing situations, we make use of sys-
tem status and application characteristics in controlling the
number of applications involved in swap. Measurement stud-
ies under real Android reference devices showed that our
scheme maintains the full context of applications without
performance degradations in terms of application’s launch
time and their variations.

In the future, we will implement our scheme on a more
recent Android reference device and perform measurement
studies to see the effectiveness of the proposed scheme
according as the hardware spec of a smartphone is improved.
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