
Received April 20, 2020, accepted April 28, 2020, date of publication May 4, 2020, date of current version May 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991986

Virtual Network Embedding With Dynamic Speed
Switching Orchestration in Fog/Edge Network
YAO CHIANG1, (Student Member, IEEE), YU-HSIANG CHAO2, CHIH-HO HSU1,
CHUN-TING CHOU2, (Member, IEEE), AND HUNG-YU WEI 1, (Senior Member, IEEE)
1Graduate Institute of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
2Graduate Institute of Communication Engineering, National Taiwan University, Taipei 10617, Taiwan

Corresponding author: Chun-Ting Chou (chuntingchou@ntu.edu.tw)

This work was supported in part by the Foxconn, and in part by the Ministry of Science and Technology (MOST) of Taiwan under
Grant 108-2221-E-002-033-MY3 and 108-2218-E-002-060.

ABSTRACT In the future 5G networks, network deployment flexibility and low network latency are two
of the most critical requirements and issues. Recently, network virtualization and Fog/Edge computing have
been proposed as two potential solutions to enable the desired future network environment. This paper
investigates the Virtual Network Embedding (VNE) problem in a Multi-access Edge Computing (MEC)
architecture, according to the standards proposed by European Telecommunications Standards Institute
(ETSI). We propose an embedding algorithm, called PSO-CSNR, to optimize end-to-end latency constraints
in anMEC network. In addition, we adopt Activity on Vertex (AOV) network as our Virtual Network Request
(VNR), which is more realistic to real applications. Moreover, we consider the latest processor technologies
for substrate nodes, where the CPUs are deployed with asymmetric core frequencies, and propose the second
algorithm, called DSS. The DSS can dynamically orchestrate the processing speed of each virtual function,
in order to decrease the processing time of virtual functions on virtual nodes, so that the Infrastructure
Providers (InPs) can gain more profit in the same amount of time. We then combine the PSO-CSNR with
DSS, and refer to it as VNE-DSSO. The simulation results show that the VNE-DSSO algorithm outperforms
the other existing algorithms in terms of revenue, acceptance ratio and embedding cost.

INDEX TERMS Network function virtualization, virtual network embedding, multi-access edge computing,
asymmetric frequency core, dynamic speed switching.

I. INTRODUCTION
With the explosive growth of smartphones and social media,
the network traffic has grown exponentially and it is expected
to increase by 40-fold over the next five years, according to
a white paper of Cisco System [1]. The enormous data trans-
mitting between the data centers and users causes traffic bot-
tlenecks in the core and backhaul networks. Thus, the users’
Quality of Experience (QoE) sharply declines, and real-time
applications become hard to be implemented. Moreover, due
to the increasing of the multimedia services and heteroge-
neous applications with diverse scenarios and requirements,
network operators are taking enormous efforts to keep up
with these demands. However, the gap between traffic growth
and revenues produced by the operators becomes greater and
greater [2]. This reduces the operators’ willingness to upgrade
their network facilities, and further causes stagnation to the

The associate editor coordinating the review of this manuscript and

approving it for publication was Zehua Guo .

whole network. To take down these problems, Fog/Edge
computing and network virtualization are regarded as game
changers and two of the most promising technologies for the
future 5G networks.

Proposed by ETSI, MEC is an emerging technology to
cope with a large number of low-latency requests in a
Fog/Edge network, ensuring users’ QoE under limited back-
haul traffic capacity [3]. MEC reduces both network latency
and cloud resource demands by offloading computing and
storage capacities from the Internet cloud to places close
to end users. Applications can be directly hosted on MEC
servers operated by InPs. These MEC servers can be located
in different places in the network edge, such as base stations
or smart cells [4]. MEC servers are able to receive requests
from the end users, and offer services or information locally
in order to provide a low-latency environment. Network
virtualization is another promising technology for future
networks. In a network virtualization environment, multiple
Service Providers (SPs) are able to create Virtual Network

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 84753

https://orcid.org/0000-0002-3116-306X
https://orcid.org/0000-0001-7314-410X


Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

(VNs), and each VN offers a customized service in a specific
scenario [5]. The VNs consist of several virtualized network
functions, called virtual nodes. These virtual nodes are con-
nected by virtual links, which require bandwidth resources.
SPs hand these VNs to InPs in a VNR format. The VNRs
are then mapped on virtualized substrate resources (e.g. CPU,
bandwidth), deployed and maintained by one or more InPs.
The network resources are virtualized and isolated from other
users on the same physical infrastructure. This increases the
network flexibility, and mitigate the ossification of the phys-
ical network [6]. Mapping multiple virtual networks onto a
given Substrate Network (SN) is a major resource allocation
challenge in network virtualization and is usually referred to
as VNE problem.

Although some previous efforts have been made to design
algorithms for the VNE problem with different objectives,
most of the studies of the works considered VNE problems
in a signal data center environment [7]–[13], or focused on
the offline solutions [14]. Those VNE methods cannot be
carried out in an MEC network environment, which con-
sists of distributed MEC servers in different edge areas.
Besides, the end-to-end latency is the most important issue in
an MEC network; however, solutions considering the cloud
environment or offline cases fail to apply in real-time MEC
applications. The VNRs in most of the previous researches
are arbitrary network requests [7]–[17], which consist of
nodes and links in a random method. Here, we consider
Activity on Vertex (AOV) networks as our VNRs [18], [19],
which the nodes are represented by network functions, and
they will process one after another. We believe that AOV
network VNRs are more realistic to most of the MEC appli-
cations, such as video stream and facial detection. Take facial
detection application for example, the photo goes through
decompressing before the face recognition and then pro-
ceeds to the next step if the identity is verified. Additionally,
the substrate nodes in most VNE problems are resources,
such as CPU or storage, with fixed capacities and symmetric
processing speed [7]–[17]. VNRs with different service pri-
orities or different latency requirements will be ignored and
treated equally in terms of processing time. The fixed capac-
ities and symmetric processing speed substrate nodes are not
suitable for serving heterogeneous virtual requests simulta-
neously in that they are comprised of latency-sensitive MEC
applications and non-latency-sensitive applications. With the
emerge of new processor technologies, such as Intel Speed
Select Technology (SST) [20], [21], high priority or latency-
sensitive workloads are able to be powered up, while lower
the processing speed of the other workloads, leading to higher
software performance. This kind of concept perfectly meets
the characteristic of MEC applications in a virtualized 5G
environment or even 6G networks in the future. If InPs can
dynamically adjust the processing speed of the substrate
nodes for each network request, the overall processing delay
will decrease, and the revenue in a long run will increase at
the same time.

This paper proposes a novel algorithm for VNE based on
dynamic speed switching orchestration in MEC networks.
We enhance the architecture in our previous work [22], and
consider the MEC network as a three-tier hierarchy architec-
ture, which follows the ETSI standards [3]. This architecture
contains an orchestrator, control nodes and compute nodes.
The orchestrator is a centralized scheduler, which is respon-
sible for calculating the solutions. And the control nodes
manage the virtualized infrastructure and execute the VNE
procedure on the compute nodes based on the solution. The
previous two-tier architecture, which only deals with a signal
edge area, is not able to handle requests from different edge
areas because it merely contains a signal control node. Dif-
ferent from the previous architecture, the three-tier hierarchy
architecture contains an orchestrator with a global view of
every edge area, which allows the InP to manage resources
across edge areas. The main idea is to dynamically adjust the
processing speed of instructions on virtual nodes to accelerate
the overall processing process and increase InP’s long term
revenue when types of asymmetric working frequency cores
are supported. Moreover, we consider AOV format as our
VNRs since many of the MEC applications are in AOV
networks [18], [19]. In addition, we consider three types of
delay that each VNRwill experience in the substrate network.
To the best of our knowledge, this is the first attempt to to
propose dynamic speed switching for asymmetric processing
speed processors in a VNE-MEC integrated system. Specif-
ically, our contributions in this paper can be summarized as
follows:

1) We extend the VNE problem into an MEC architecture,
which follows the ETSI standards, and propose a novel VNE-
DSSO algorithm to efficiently minimize the end-to-end ser-
vice time for each virtual request.

2) We transform the Particle Swarm Optimization (PSO)
from continuous to discrete to formulate the VNE problem
and consider AOV networks as our VNRs, which are more
realistic to real MEC applications.

3) We investigate the newest asymmetric processor tech-
nologies, which can be adopted to substrate networks. Then,
we design the first MEC environment VNE algorithm,
which is able to dynamically adjust the processing speed
of virtual network functions to accelerate the end-to-end
processing time.

The rest of the paper is organized as follows. In Section II,
we provide an overview of the related work, including opti-
mizing revenue of InP and network latency in a virtualized
environment. Section III provides the network model and
the considered VNE problem. In Section IV, we provide
details about our VNE-DSSO algorithms. Simulation results
of the proposed algorithms are presented in SectionV. Finally,
we conclude this work in Section VI.

II. RELATED WORK
Different approaches for various objectives have been pro-
posed so far for the VNE problem. In this section, we outline

84754 VOLUME 8, 2020



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

some of the most related works based on revenue or latency
optimization.

A. REVENUE
The authors in [7] proposed a heuristic algorithm that allowed
the substrate network to split a virtual link over multiple
substrate paths, and it employed path and node migration
to periodically re-optimize the utilization of the substrate
network. The goal was to maximize the revenue of the InP.
Besides, they explored node-mapping algorithms that are
customized to common classes of virtual network topologies.
In [8], [9], the authors improved [7] with a novel node selec-
tion, and details on embedding VN in a cloud environment
were presented. Two reliable VNE algorithms were proposed
in [15]. The authors took the reliability requirements of end-
users into consideration in order to improve the Quality
of Service (QoS) and QoE. Besides, the methods would
reduce the chance to re-embed the virtual network requests
or migrate substrate nodes and links when facility failure
happens. According to the simulation results, the algorithms
achieve better performance in terms of acceptance ratio and
revenue. In [16], the authors proposed a novel embedding
model that considered the label, CPU and bandwidth resource
constraints. Furthermore, two window-based heuristic algo-
rithms, called VNE-LIA and VNE-iLIA, using the greedy
algorithm and the proximity principle were proposed to solve
the VNE problem. The simulation experiments showed that
the proposed algorithms successfully increased the revenue
to cost ratio.

Metaheuristic algorithms for VNE problems have been
widely studied [10]–[13]. Some bionic algorithms are
redesigned to solve the optimization problem. In [10],
the authors proposed the first Ant Colony based algorithm
to solve the VNE problem. It aimed at minimizing the usage
of substrate resource, in order to minimize the reject rate and
maximize the business profit. To reduce the cost, the authors
in [11] pointed out that it is important to take the distancemes-
sage related to links into consideration in the node mapping
phase, so that they can reduce the link cost of VN requests.
This allows them to accept more requests and gain better
business profit. In [12], a unified enhanced particle swarm
optimization-based VN embedding algorithm, called VNE-
UEPSO, is presented. Besides, a large to large and small
to small preferred node mapping strategy is proposed to
achieve better convergence and load balance of the substrate
network. In [13], the authors proposed the first genetic-based
VNE algorithm. According to the simulation results, GA-
based algorithm outperforms PSO-based algorithm in terms
of revenue.

B. LATENCY
Several studies on optimizing the latency in VNE problem
are as follows. The authors of [23] investigated VNE in a
LTE-A cellular network with the goal to minimize the total
end-to-end delay on the path under different service priorities.
In addition, the user mobility effect was taken into account,

making the algorithm suitable for various scenarios in low-
latency applications. However, the architecture of MEC is
not involved in the structure and the placement of network
functions has not been considered. In [24], the authors sug-
gested that link utilization significantly influences queuing
delay of routers. As discussed in this paper, there was a
trade-off between delay-awareness and cost-efficiency, but no
algorithms were proposed. In [2], the authors discussed new
challenges for VNE in MEC network. New VNE parameters
and optimization objectives specific to the MEC scenarios
were analyzed, which were not considered in traditional VNE
problems. However, no VNE algorithms for optimizing the
MEC network latency were proposed. The work presented
in [17] considers the embedding of virtual switches onto
substrate switches. The authors proposed an algorithm, called
KCL-vSDNE, which considered not only load balance but
also controller to switch latency. K-means algorithm was
employed to find out candidates of the substrate switches.
Simulation results showed that the KCL-vSDNE increased
the acceptance ratio while maintaining the latency less than
the threshold.

Similar issues have been discussed in the Service Func-
tion Chain (SFC) placement problem. A Latency-Aware SFC
placement problem is studied in [25]. The authors used inte-
ger linear programming techniques to formulate and solve an
SFC placement problem. The objective is to minimize the
end-to-end latency of requested services, service cost, and
service function migration frequency, respectively. A heuris-
tic algorithm has been proposed in order to optimize the
problem in large scales. In [18], the authors investigated Vir-
tual Network Function (VNF) SFC scheduling problem. They
considered VNF transmission and processing delays and for-
mulated the joint problem of VNF scheduling and traffic
steering as a mixed integer linear program. A dynamic virtual
link bandwidth allocation was proposed with the objective to
minimize the latency of the overall service chain. This allows
operators to servemore customers, and consequently increase
revenue. A genetic algorithm-based method was developed
for large scale problems.

In all the above previous research works, the substrate
networks are equipped with fixed capacity CPUs [7]–[17]
while asymmetric processing speed processors have not been
considered in any existing VNE problems. Moreover, none
of the previous works investigate in details how to embed
MEC application VNRs with latency constraints in an MEC
environment, and how the MEC architecture works in this
scenario from end-to-end. Besides, the considered VNRs in
[7]–[17] are arbitrary network requests, which may be hard to
relate to real applications or services. As mentioned above,
these are important technologies and issues that need to be
taken into account when applying VNE in the future MEC
networks. A list of the relatedworks is presented in TABLE 1.
To compare the features with each other, we classified the
works according to their objectives, VNR topology, using
Fog/Edge or not, optimization methods and processor types.
As we can see, most of the works did not apply Fog/Edge and

VOLUME 8, 2020 84755



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

TABLE 1. Taxonomy of related works.

AOV design, and the variation of processors were not taken
into account.

III. NETWORK MODEL AND PROBLEM FORMULATION
In this section, we first introduce our hierarchy MEC system
architecture. Second, the comparison between novel proces-
sor technologies and the traditional ones is discussed. Third,
we model the substrate network and virtual network request
provided by InP and SP, respectively. Fourth, the formulation
and definition of the general VNE problem are presented.
In the last three subsections, we describe the VNE problem
in more detail according to our considered scenario and the
proposed algorithm.

A. EDGE SYSTEM ARCHITECTURE
We consider a three-tier hierarchy edge network architecture
as shown in Fig. 1 [3]. In this scenario, at the top there is
an orchestrator with the global view of the whole edge net-
work. The orchestrator is designed to provide real-time and

rule-driven service orchestration and automation, including
the start-up and configuration of virtual and physical network
functions. The orchestrator offers access points that allow
users and third parties to access in order to subscribe to appli-
cations or deploy servers. When the orchestrator receives
VNRs from all its clients as inputs, it calculates the VNE
solution based on the constraints and the network resource
usage. This solution is then handed over to one or more
control nodes to implement the VNE solutions. Each control
node is responsible for the virtualized infrastructure prepa-
ration, and system resource usage information report. It also
manages the virtualized infrastructure and the resource of the
compute nodes and substrate links in its manage edge area.
Each control node is assigned to manage compute nodes in
a specific geographical location. Accessing compute nodes
in a different edge area directly is usually not allowed [3]
due to management efficiency and security issue. The control
nodes can be all kinds of Virtualized Infrastructure Manager
(VIM), such as OpenStack, Kubernetes and ONAP, which are

84756 VOLUME 8, 2020



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

FIGURE 1. Three-tier hierarchy edge network architecture.

FIGURE 2. Message flow of VNE-DSSO.

composed of functions that are used to control and manage
the virtualized infrastructure under the authority of the oper-
ator. The reason for splitting the managing jobs into orches-
trator and control nodes is because this makes the whole
deployment more flexible and efficient. The operator can
easily manage and adopt optimization algorithms to control
and compute nodes in different edge areas. Compute nodes
are the basic processing or resource elements in the edge
network, and they can be any kind of storages or processors,
such as CPU or GPU.When a virtual node is embedded on the
compute node, the compute node starts the working process,
such as data storage and/or instruction processing until it is
done. In the rest of the paper, compute nodes and networks in
the edge area are represented by substrate nodes and substrate
networks, respectively.

Themessage exchange flow between each role in the archi-
tecture is shown in Fig. 2. After the VNRs are embedded, all
the compute nodes should report resource information to the
control nodes and the orchestrator, so that the orchestrator can

find a new solution with a faster processing speed according
to our proposed DSS algorithm (in section IV). Then all the
resource information should be updated again for the next
VNE round.

B. ASYMMETRIC PROCESSING SPEED OF PROCESSORS
In the past, research has mainly focused on fixed or single
option CPU capacity [7]–[17]. The tasks, such as software
applications and virtualized network functions, worked in the
same processing speed or CPU core frequency. Thus, it was
inflexible to schedule virtual requests with different priori-
ties. Fig. 3a shows the concept of symmetric core frequency
deployment. The task can be represented by any software
functions, applications or instruction sets. It could be seen
that no matter how high or low priority the requests are,
they all function at the same processing speed. Recently,
with the introduction of some advanced processor technolo-
gies, the overall system workload increases and satisfies
the processing time constraints according to their priorities.

VOLUME 8, 2020 84757



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

FIGURE 3. Core speed for different priority tasks deployment methods.

As shown in Fig. 3b, the high priority requests are able to
run in a much faster speed CPU core, by moving some of
the resources from other cores which handles low priority
tasks. These technologies increase the system performance
while staying within almost the same power consumption
[20], [21]. In this work, we adopt the asymmetric processing
speed deployment, so the cores in each substrate node can
be divided into two sets according to their processing speeds.
The two sets of CPU cores are able to deal with high and low
priority requests, respectively.

C. SUBSTRATE NETWORK
We denote the topology of the SN by a undirected graph
Gs = (N s,Ls), where N s is a set of the substrate nodes, and
LS is a set of the substrate links. We use superscript to refer
substrate (s) or virtual (v) network, and use subscript to refer
to nodes (n) or links (l). Each substrate node ns ∈ N s is asso-
ciated with attributes, such as processing capacity, storage
or location. In this paper, we consider processing capacities
and geographic regions for node attributes. The geographic
region indicates which edge area the substrate node is located.
Besides, different from most of the previous works, where
substrate nodes operate at the same speed, as shown in Fig. 3a,
we take asymmetric processors into consideration. A sub-
strate node consists of two processing capacity types of cores
[20], [21], as shown in Fig. 3b. High processing capacities
cores are denoted by Type-H and low processing capacities
cores are denoted by Type-D. The processing capacities can
be represented by how much instruction sets can be done per
time slot. Here, the instruction set indicates how much work-
load the VNF has. The set can be kilo instructions, million
instructions or evenmore. The capacities of Type-H and Type-
D are denoted byCh(ns) andCd (ns), respectively. In addition,
the two types of capacities have their own scheduling table,
denoted by AN h(ns) and AN d (ns). They provide the comput-
ing resource usage information for each time slot. We assume
each slot for an asymmetric processor cannot be shared by
multiple requests. Each substrate link lsnsi ,nsj

∈ Ls between

two substrate nodes nsi and n
s
j is associated with attributes,

such as bandwidth, processing capacity or delay. In this paper,
we consider processing capacity in terms of megabytes per
time slot for link attributes, denoted by C(ls). In addition,
each substrate link has its own scheduling table AL(ls), and it
provides the information of howmuch bandwidth is occupied
at each time slot. We assume each slot cannot be shared by
multiple requests in the same bandwidth. We also denote by
Ps the set of all loop-free paths in the SN, Ps(nss, n

s
d ) and the

set of substrate paths from node nss to node nsd .

D. VIRTUAL NETWORK REQUEST
Different from substrate network, the topology of the VN is
denoted by a directed graph Gv = (N v,Lv), where N v is
a set of the virtual nodes, and Lv is a set of the virtual
links. Each virtual node nv ∈ N v is associated with the
number of instruction sets processed on the virtual node,
denoted by D(nv). Each virtual link lvnvi ,nvj

∈ Lv from virtual

nodes nvi to n
v
j is associated with the number of megabytes

carried on the virtual link, denoted by D(lv). The virtual
link between each virtual node is responsible for carrying
the processed instructions to the next node. General VNE
problems consider arbitrary topologies of VNRs and sub-
strate networks [7]–[17]. However, in this study, we focus on
chain AOV network because many network applications are
in service chain topologies as mentioned previously. These
applications could be abstracted into multiple processes such
as firewalls, network address translators. The traffic should go
through these processes in a pre-defined order. The instruc-
tions on a virtual node would start to process after the pre-
vious nodes and links end their procedure. The resource is
released when the nodes or links finish their procedures. Two
types of VNRs are considered in this paper. The first one
is VNRs with high priority or latency-sensitive constraints,
such as video application or vehicle-to-vehicle communica-
tion. The end-to-end latency requirements for these scenarios
should be less than 1 ms [26]. This kind of VNRs can only
be mapped on high capacity substrate nodes to ensure the
requirement. Here, it is reasonable to set the larger capacity
for high capacity substrate nodes than the high priority or

84758 VOLUME 8, 2020



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

TABLE 2. Notation list.

latency-sensitive node requirements [20], [21]. That is, in a
reasonable arrival rate, the proposed VNE-DSSO algorithm
would find an embedding solution for the high priority or
latency-sensitive node requests, and the high capacity sub-
strate nodes are able to complete all the requests under
such latency requirements. Thus, in this case, the request
is accepted. If the arrival rate is too high and the phys-
ical resources are not sufficient to serve all the requests,
the orchestrator may not be able to find a proper solution to
meet the requirement for the request, then the VNR would
be rejected. Second, VNRs with low priority or non-latency-
sensitive constraints, such as some IoT applications, can only
be mapped on low capacity substrate nodes initially. If suf-
ficient physical resources are to serve the request, then the
VNR is accepted and vice versa.

E. SUBSTRATE NETWORK RESOURCE MEASUREMENT
We denote by RN (ns, t) the residual or the available capacity
of type k of a substrate node ns ∈ N s at time slot t as

follows:

RN (ns, t) = Ck (ns)−
∑
∀nv↑ns

E(nv, t) (1)

where nv ↑ ns denotes that the virtual node nv is mapped
on the substrate node ns. All of the mathematical symbols
and operators in this work are listed in TABLE 3. E(nv, t)
represents the number of resources that nv occupies on ns

at time slot t . The sum of E(nv, t) during the instruction
processing time (for example, from time slot t1 to t2) of nv

is equal to the instructions requirement D(nv) as shown in
(2). Besides, the duration between current time and the first
time slot of type k of a substrate node ns ∈ N s that contains
available resources can be denoted by Dur(ns, k).

D(nv) =
t2∑
t1

E(nv, t) (2)

The capacity of a substrate link ls ∈ Ls is a binary value
indicating if the substrate link is occupied at time slot t or
not, denoted by RL(ls, t) as follows:

RL(ls, t) ∈ {0, 1} (3)

Similarly, the duration between current time and the first time
slot of substrate link ls that contains available resources can
be denoted by Dur(ls). All the VNE notations are listed in
TABLE 2.

F. VNE
The virtual embedding problem is defined as a mapping M
from Gv to a subset of Gs, while the constraints in Gv are
satisfied, i.e.,

M : Gv→ (N s
alloc,P

s
alloc) (4)

where N s
alloc ∈ N s and Psalloc ∈ Ps. Besides, two virtual

nodes in the same VNR cannot be mapped on the same
substrate node. The VN embedding can be decomposed into
two procedures as follows:
1) Node mapping Mn: Each virtual node from a request is
mapped to a different substrate node by a mappingMn

: N v
↑

N s
alloc as shown in (5), which satisfies the node constraints,

such that for all nv ∈ N v,

Mn(nv) ∈ N s

s.t. c1. ∀ns ∈ N s,
∑

nv∈N v BN nv
ns ≤ 1

c2. ∀nv ∈ N v,
∑

ns∈N s BN nv
ns = 1

c3.
∑

nv∈N v BN nv
ns · E(n

v, t) ≤ RN (ns, t) (5)

The constraints c1. and c2. ensure that every virtual node
will be mapped on a substrate node, and each virtual node in
the same VNR cannot be mapped on to the same substrate
node. The constraint c3. specifies that all the processing
requirements on the virtual nodes will not exceed the residual
capacity of the substrate node, which they map on.
2) Link mappingM l : Each virtual link in a request is mapped
to a substrate path between the two substrate nodes that the

VOLUME 8, 2020 84759



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

TABLE 3. Definition of mathematical operators.

two end virtual nodes of that virtual link is mapped on. It is
defined by a mapping M l

: Lv ↑ Psallocas shown in (6),
which satisfies the link constraints such that for all lvnvi ,nvj

∈

Lv, nvi , n
v
j ∈ N

v,

M l(nvi , n
v
j ) ⊆ Ps(Mn(nvi ),M

n(nvj ))

s.t. c4. ∀nsi ∈ N
s,∀lvnvu,nvw ∈ L

v∑
ls
nsi ,n

s
j
∈Ls f

lv
nvu,nvw
lv
nsi ,n

s
j

−
∑

ls
nsj ,n

s
i
∈Ls f

lv
nvu,nvw
lv
nsj ,n

s
i

=


1 if (BN

nvu
nsi
= 1)

−1 if (BN
nvw
nsi
= 1)

0 otherwise

(6)

where f
lv
nvu,nvw
lv
nsi ,n

s
j

is a binary variable, it is 1 if virtual link lvnvu,nvw is

routed on substrate link lsnsi ,nsj
and 0 otherwise. The constraint

c4. ensures that equal amounts of flow due to virtual link
lvnvu,nvw enter and leave each substrate node that does not corre-
spond to the source nvu or destination n

v
w. Moreover, the virtual

node nvu has an exogenous input of 1 unit of traffic that has
to find a path to the substrate corresponding to node nvw.
Someworks proposed to reserve backup resource when doing
link mapping to overcome link failure [27]. However, since
resources in Fog/Edge are limited compared to could-based
data centers, our work does not map redundant link resource
for each VNR.

G. DELAYS
Three types of delays for each VNR are considered in our
work. First, the executing of VNFs or instruction sets for a
virtual node on a substrate node will introduce processing
delay. Let Tn(nv) be the instructions processing delay of
virtual node nv as follows:

Tn(nv) =
D(nv)
Ck (ns)

(7)

where Ck (ns) is the processing capacity of the substrate node
ns of type k that the virtual node is mapped on. The processing
delay is represented in terms of time slots. The substrate
node, where nv is mapped on, will reserve resources in its
scheduling table.

Second, the transmission delays of network services
through virtual links are also considered. The packets that
have been processed will experience delay as they transmit
through a link connecting two substrate nodes. Let Tl(lv) be
the delay of virtual link lvnvi ,nvj

as follows:

Tl(lv) =
∑
ls∈P′

D(lv)
C(ls)

(8)

where D(lv) is the number of megabytes generated after
instructions D(nvi ) have been processed. These bytes will be
carried from virtual node nvi passing through link l

v
nvi ,n

v
j
to node

nvj .C(l
s) is the number of processing capacity of the substrate

link that virtual link ls maps on. p′ is the set of substrate links
that the virtual link passes through. The transmission delay is
represented in terms of time slots. The substrate path, where
lv is mapped on, will reserve bandwidth and time slots in its
scheduling table. Fig. 4 shows an example of mapping a low
priority VNR onto a shared SN with asymmetric processors.
Because the request is a low priority request, the virtual nodes
nva, n

v
b, n

v
c, can only be mapped on substrate nodes’ Type-

D. If the mapping result is: nva ↑ nsA, n
v
b ↑ nsB, n

v
c ↑ nsC .

The processing delay of virtual node nva in the example is
Tn(nva) =

D(nva)
Cd (nsA)

=
6
5 . Therefore, node n

v
a requires two

entire time slots to process. The transmission delay of virtual

link lvnva,nvb
is Tl(lvnva,nvb

) =
D(lv

nva,nvb
)

C(lv
nvA,nvB

) =
1
2 . Therefore, virtual

link lvnva,nvb
needs one entire time slot to do the transmission.

The scheduling tables of the substrate nodes and links that
involved in the VNE are shown in Fig. 5 where the number
on the time slot represents the remaining node capacity of the
processor at that time.

Third, we consider the propagation delays between edge
areas as well, which is a critical issue in MEC. We assume
that the geographical distance between two edge areas is
far enough, such as different states or cities. Therefore
the packets that transmit through a substrate link across
edges would experience a propagation delay. The propagation
delays between edge areas will be much higher than in the
same edge area. For simplicity, we assume the propagation
delays within the same edge area are small enough to ignore.
Let Tp(ls) be the propagation delay of substrate link ls as

84760 VOLUME 8, 2020



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

FIGURE 4. An example of embedding a low priority request.

FIGURE 5. Scheduling table of the substrate nodes and links.

follows:

Tp(ls) =
Dis(ls)
S

(9)

where Dis(ls) is the geographical length of substrate link ls

which crosses edges, S be the wave propagation speed in the
substrate link [24].

H. OBJECTIVE
Our main interest in this paper is to propose a Dynamic
Speed Switching (DSS) algorithm for online VNE problem,
where VN requests arrive and depart over time. The goal is
to minimize the total processing time of each request as well
as use the substrate resource efficiently so that the InP is able
to accept more requests in the same amount of time, given by
the following:

min(
∑
nv∈N v

Tn(nv)+
∑
lv∈Lv

Tl(lv)+
∑
ls∈Ls

Tp(ls)) (10)

I. GOAL AND PERFORMANCE METRIC
The revenue can be defined in various ways according to the
needs of the InP [6]. Similar to the previous works [7]–[17],
the node and link capacity are the main SN resources in this
paper. Thus our revenue model is set as the sum of revenues
for virtual links and nodes by the following equation:

Rev(Gv) = (wc1 ·
∑
nv∈N v

D(nv)+ wb1 ·
∑
lv∈Lv

D(lv)) (11)

where wc1 and wb1 are the charge per CPU capacity unit
demand and the charge per link capacity unit demand,
respectively.

The cost of embedding a VN request is defined as the sum
of the total time slots of substrate nodes and links allocated
to the VN as follows:

Cost(Gv) = (wc2 ·
∑
nv∈N v

Tn(nv)+ wb2 ·
∑
lv∈Lv

Tl(lv)) (12)

where wc2 and wb2 are the cost per time slot for CPU capacity
and link capacity, respectively.

IV. PROPOSED VNE-DSSO ALGORITHM
In this section, we propose a batch scheduling-based embed-
ding algorithm based on the speed switching technology.
It collects a group of input requests during a time window
and then starts to allocate substrate resources to satisfy their
requirements. Here we set the time window as one time slot.
As shown previously in Fig. 2, the proposed VNE-DSSO
algorithm can be divided into two parts. First, we redesign the
previous work [12] to create a PSO based algorithm, and add
a Greedy Comprehensive Substrate Node Ranking (Greedy-
CSNR) to do the node selection. We denote this algorithm
by PSO-CSNR. Second, after the mapped is done, a DSS
algorithm is proposed to execute the speed switching process.

A. PSO-CSNR
PSO is a stochastic population-based optimization method
proposed by Kennedy and Eberhart in 1995 [28]. It is inspired
by social behavior andmovement dynamics of insect swarms,
birds flocking, and fish schooling. In PSO, a swarm of
particles is represented as potential solutions, which moves
through the solution space, searching for the best solution.
Each particle records the best solution it has found so far and
shares it with the others. How the position changes for each
particle is according to the persistence, which is the direction
it was previously going, the best history position it recorded
and the best solution shared by all particles. The new position
is updated as follows:

NewPosition = CurrentPosition+ Persistence

+SelfImpact + SocialInfluence (13)

VOLUME 8, 2020 84761



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

The original PSO can only handle continuous optimiza-
tion problems [28]. Thus, similar to the previous work [12],
we redefined the parameters and operations of the particles
in PSO to meet the discrete characteristic of VNE. There is
a swarm of particles in the search space. Each particle has
its position and velocity. The particles fly in the search space
by updating their positions and velocities. The position vector
Xi = (x1i , x

2
i , . . . , x

D
i ) of the particle i denotes a possible VNE

solution, where xdi is the substrate node that virtual node is
mapped on. D is the number of virtual nodes in the request.
The velocity vector Vi = (v1i , v

2
i , . . . , v

D
i ) of the particle i

guides the particle to a better solution, where vdi is a binary
variable. If V d

i = 1, it means that the current VNE solution
in xdi is not suitable for virtual node and should be adjusted
by reselecting another substrate node from its candidate node
list; if V d

i = 0, it then remains the current selection. The
velocity of each particle can be initialized randomly within
the corresponding ranges; whereas, the position vector can
be initialized either randomly or with a node ranking system
according to the objective [9], [12]. The shortest path in terms
of delay between the pair of nodes is selected according to
Dijkstra algorithm. A fitness function f is defined to let the
particle know whether the new position is more suitable than
the previous one or not. It is defined as follows:

f (X )=
1

(
∑

nv∈N v Tn(nv)+
∑

lv∈Lv Tl(lv)+
∑

ls∈Ls Tp(l
s)
(14)

The position with the best fitness that the particle i has
achieved so far denotes by pBesti = (p1i , p

2
i , . . . , p

D
i ). The

position with the best fitness in the swarm is denoted by
gBest = (g1, g2, . . . , gD). The denominator of the function
f is the total delay of the virtual request, which is our objec-
tive function. The smaller the total delay of this solution is,
the bigger the fitness value is. The particles will try to search
for the biggest fitness value. The idea of the fitness function
f is to indicate the performance of current solution, and guide
the particles to the optimal solution.

During the optimization process, the position and velocity
of a particle on dimension are updated according to the con-
cept of equation (13). Here we formulate the concept onto
calculable function as follows:

vdi = wvdi ⊕ c1(pBesti 	 x
d
i )⊕ c2(gBest

d
	 xdi ) (15)

xdi = xdi � v
d
i (16)

where w is the inertia weight, c1 and c2 is the cognition and
global weight, respectively. Typically, w, c1 and c2 are set to
constant values, where w+ c1 + c2 = 1.
Similar to [12], the operations in equation (15) and (16) are

redefined for discrete PSO as follows.
Operation ’’⊕’’: pivi ⊕ pjvj indicates that the particle keeps
the velocity vi with a probability pi and keeps vj with the
probability pj, where pi + pj = 1. For example,

0.2(1, 0, 0, 1, 1)⊕ 0.8(1, 0, 1, 1, 0) = (1, 0, ∗, 1, ∗)

where ‘‘∗′′ denotes that the value is either 0 or 1 with the
corresponding probability.
Operation ’’	’’: xi	 xj indicates the difference between the
two position xi and xj. The result value is 1, if xi and xj have
the same value; otherwise, it is 0. For example,

(1, 3, 5, 7, 9)	 (1, 2, 6, 7, 8) = (1, 0, 0, 1, 0)

Operation ’’�’’: xdi � vdj indicates the particle updates its
position xdi with velocity vdi . The result of this operation
indicates whether the position in each dimension needs to
be adjusted or not. If xdi = 1, then the value of xdi remains
unchanged; otherwise, it should reselect another substrate
node in its candidate list. For example, (1, 3, 4, 7, 9) �
(1, 0, 0, 1, 1) means that the solutions of second and third
virtual nodes need to be adjusted.

B. GREEDY-CSNR NODE SELECTION
In the traditional PSO, it is common to initialize and update
the positions of the particles randomly with equal probability
during the optimization process. Although some of the previ-
ous works provide measurements to decide the node ranking
of substrate nodes [7], [12], they depend on attributes of sub-
strate nodes, such as remaining CPU and bandwidth resource,
degree, load. A classic measurement of the resource of a node
is proposed, which is called Resource Availability (RA). This
measurement can be applied to measure the resource of a
substrate or virtual node. They are formulated as follows:

RA(ns) = C(ns)
∑

ls∈L(ns)

C(ls) (17)

RA(ns) = C(nv)
∑

lv∈L(nv)

D(lv) (18)

where L(ns) and L(nv) are the sets of all the adjacent links
of a substrate and virtual node, respectively. However, in our
scenario, only considering the resource availability is still
problematic. In order to take the resource availability and
delays into consideration, we propose a greedy comprehen-
sive node ranking algorithm, which is formulated as follow:

CSNR(ns) =
Ck (ns)

Dur(ns, k)+
∑

ls∈L(ns) Dur(ls)+ 1
(19)

The greedy-CSNR node selection algorithm is a greedy
algorithm, which selects substrate node according to CSNR
value. The algorithm makes the virtual node with a larger
RA value have a higher probability to be mapped on to the
substrate node with a larger CSNR value. The two time dura-
tion Dur(ns, k) and Dur(ls) are placed in the denominator,
which means that the smaller total waiting time duration is,
the larger the CSNR value is. The substrate node capacity
in the fraction means that the larger substrate node capacity
is, the larger the CSNR value is. We add 1 in the denominator
to ensure the CSNR is a rational number. The greedy-CSNR
node selection algorithm is presented in Algorithm 1. With
this algorithm, the resource requirement of each request is

84762 VOLUME 8, 2020



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

Algorithm 1 Greedy-CSNR Node Selection
1: Calculate the RA value for every virtual node (or the

virtual nodes that need to be remapped). Enqueue all
these virtual nodes according to their RA value to priority
queue Q in a non-increasing order. The virtual node with
higher RA value has priority to select substrate nodes.

2: while if Q is not empty do
3: Dequeue a virtual node nv form Q. Select the

substrate node according to it CSNR value. The
probability of a substrate node ns bee selected is
CSNR(ns)/

∑
ns∈N s CSNR(ns), The larger CSNR value

of a substrate node is, the higher probability it will be
selected.

4: Remove the substrate node that has just been selected
to ensure the virtual nodes in a VNR will not be
mapped on to the same substrate node.

5: end while

Algorithm 2 PSO-CSNR
Input: VNR
1: For each particle, adopt Algorithm 1 to initialize the

position vector X , and randomly initialize the velocity
vector V .

2: Get the fitness value of pBesti and gBest for each particle
and swarm, respectively according to the fitness function
(13).

3: while if the max iteration threshold is not satisfied do
4: for each particle i do
5: update the position vector X , and velocity vector

V according to equations (15) and (16). The nodes
which need to be remapped will selection their new
position according to Algorithm 1.

6: end for
7: compute the fitness value of each particle according to

the fitness function (13).
8: if f (Xi) > f (pBesti) then
9: update pBesti
10: end if
11: if f (pBesti) > f (gBest) then
12: update gBest
13: end if
14: end while
Output: VNE solution

more likely to be satisfied. Moreover, the processing schedul-
ing delay is considered as well, which helps to minimize the
overall delays of each request.

The whole PSO-CSNR contains a greedy-CSNR node
selection algorithm to do the node selection and a PSO based
update process to find the optimal solution. The detailed PSO-
CSNR algorithm is shown in Algorithm 2.

C. VNE-DSSO
After the VNRs are mapped on to the SN based on their
requirements and priorities with appropriate-optimal delays,

Algorithm 3 DSS
1: Embedding procedure ends
2: for each time slot t do
3: for each substrate node ns do
4: if available resources on processor ns Type-H not

equal to 0 then
5: calculate the number of available resources= ra
6: for each low priority virtual node nv on ns do
7: if virtual node nv still occupies CPU resources

on ns after t then
8: switch the instructions of nv to processor ns

Type-H
9: update the remaining ra
10: end if
11: end for
12: end if
13: end for
14: end for

the orchestrator updates the resource usage of the whole
network. The asymmetric processors reserve different types
of resources for low priority and high priority requests,
respectively. The low priority requests are mapped on Type-D
with less computing capacities, while high priority requests
are mapped on Type-H with more computing capacities to
ensure the priority requirement. However, if the arrival rate
of the high priority requests is less than that of the low
priority requests, the resources in the Type-H is seriously
wasted. Therefore, we propose the DSS algorithm to dynam-
ically switch the instruction sets on Type-D to Type-H. This
allows the InP to accept more low priority requests and
further increase revenue within the same amount of time.
As previously shown in Fig. 2, resource usage information
is exchanged between each role in the MEC architecture,
and the orchestrator has the view of the global resource
usage information. First, the orchestrator checks the resource
allocation scheduling table after all the VNE procedures end
in each time slot. The orchestrator runs the DSS algorithm
and will notice that whether the substrate nodes where the
virtual nodes are mapped on contains available resources in
the processors’ Type-H or not. If there are available resources,
the orchestrator will inform the control nodes to execute the
speed switching procedure, to migrate the instructions on
the Type-D to those processors’ Type-H. Then, the orches-
trator will update the scheduling table of the whole sub-
strate network so that it can calculate the solution for the
next arriving request. Fig. 6 shows the concept of how the
DSS algorithm works on the VNR1, which we previously
explained in Fig. 4. We assume that the substrate network
only serves VNR1 currently. Virtual node nva is mapped on
substrate node nSA’s Type-D, and it will take two time slots
to process due to the low processing capacity of Type-D.
The orchestrator detects available resources in nSA’s Type-H
based on DSS algorithm and informs the control node, which
manages this area. The five instruction sets, which nva requires

VOLUME 8, 2020 84763



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

FIGURE 6. An example of the DSS algorithm.

are moved from nsA’s Type-D to Type-H. More importantly,
the processing time reduces to one time slot due to sufficient
capacity in Type-H. We describe the online DSS algorithm in
Algorithm 3. Due to higher computing resources in Type-H,
the instructions of the low priority requests processes faster.
This makes the processing time of each virtual node shorter,
and releases the resources on Type-D at the same time. The
released Type-D resources can be used by the orchestrator to
map other low priority requests in the future. Based on this
algorithm, more low priority requests can be accepted due to
a great amount of Type-D resources are released. In a long run,
we believe that the InP can gainmore profit.We then combine
Algorithm 2 and 3 into VNE-DSSO algorithm, which runs
the whole VNE procedure from receiving a VNR to getting a
new solution. We describe the whole VNE-DSSO algorithm
in Algorithm 4.

Algorithm 4 VNE-DSSO
Input: VNR
1: Do PSO-CSNR
2: Get VNE solution
3: Do DSS

Output: New VNE solution

V. PERFORMANCE EVALUATION
In this section, we first describe the evaluation environment,
and then present our evaluation results. Several performance
metrics for evaluation purpose are used, including revenue,
acceptance ratio and cost. The acceptance ratio is defined as
the ratio of the number of accepted VNRs to the total number
of arrived VNRs during the measure duration [6]–[17].

A. SIMULATION SETTINGS
We implement a VNE simulator to evaluate the performance
of our algorithms. Similar to the previous works [7], [12],
we randomly generate two SN topologies with uniform distri-
bution around 20 to 50 nodes to represent two edge networks
and randomly select two nodes from each SN to connect
the two edges with a propagation delay of 10 time slots.
Each pair of substrate nodes in a SN is randomly connected

with probability of 0.5. The link capacities are real numbers
uniformly distributed between 50 and 100. For node capaci-
ties, as mentioned in section III, all the substrate nodes are
deployed with two operating speeds, as shown in Fig. 2.
Closer to reality, we also adopt a type of salable processor in
[20] in our simulation, where the node processing capacity
of Type-H is three times of Type-D. Therefore, the node
capacities of Type-D are real numbers uniformly distributed
between 50 and 100, and the node capacities of Type-H are
real numbers uniformly distributed between 150 and 300. For
each VNR, the number of virtual nodes is randomly deter-
mined by uniform distribution between 2 and 10. Since the
considered VNR is a function chain network, the generated
node is arranged in a chain and connected with a virtual
link. The node instruction requirements of the virtual nodes
are real numbers uniformly distributed between 1 to 20. The
link requirements are uniformly distributed between 1 to 20.
We assume that VN requests arrive in a Poisson process with
mean 5 and 1 requests per 10 time slots for low priority
requests and high priority requests, respectively. The high
priority VNR would be rejected if the latency is unable to be
satisfied. Note that here we set 10 time slots as the latency
constraint [26]. The results are derived from the average
of 30 simulations.

B. COMPARISON METHOD
In our evaluation, we re-implement three existing VNE algo-
rithms from the previous research [14], [29] to fit in our sce-
nario, and then compare with our PSO-CSNR VNE. More-
over, we compare the four algorithms with adding the VNE-
DSSO algorithm. The notations used to refer to different
algorithms are shown in Table 4. In [14], the substrate node
selection is based on greedy algorithm according to equation
(17), (18). The virtual node with a higher RA value has the
priority to select a substrate node. Here, we replace the greedy
algorithm with the greedy-CSNR node selection algorithm
proposed in Section IV. B. to fit in the same scenario. In [29],
an energy efficient VNE algorithm is proposed to minimize
the energy consumption. The idea is to switch off or to
hibernate as many network nodes and interfaces as possible.

84764 VOLUME 8, 2020



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

FIGURE 7. Performance comparison between VNE-DSSO and PSO-CSNR.

TABLE 4. Compared algorithm.

The node selection tends to select the substrate nodes which
are already mapped by other VNRs to minimize the active
nodes. Finally, the randomized node selection is done by
randomly selecting substrate nodes which satisfies the basic
VNE constrains.

C. EVALUATION RESULTS
We first compare VNE-DSSO with PSO-CSNR to find out
the effect of DSS algorithm. Then, we add the DSS algo-
rithm to the other three algorithms, and compare their per-
formances.

1) WITH AND WITHOUT THE DSS ALGORITHM
Here we compare the proposed PSO-CSNR algorithm against
VNE-DSSO. The long-term average generated revenue of
both algorithms is presented in Fig. 7a.When DSS is enabled,
the InP can generate about 30% more revenue than it is dis-
abled in a long run. The reason is that the orchestrator has the
global view of the resource usage of the SN. By switching the
instructions on the Type-D to Type-H, many Type-D resources
are released, so the scheduling table of these Type-D nodes
is spreaded with available resources. Although the resources
may be fragmented, it still allows InP to accept more low
priority requests in the future.

The embedding cost and revenue to cost ratio of VNRs are
shown in Fig. 7b, 7c. The embedding cost of VNE-DSSO has
decreased by about 15% compared with PSO-CSNR in terms
of the defined cost model (12). The VNE-DSSO algorithm
allows the idle Type-H resources to be used wisely by other
low priority VNRs. The reason is that the processing capacity
on the Type-H is higher than that on the Type-D. When
switching the instructions initially on the Type-D to Type-H,
the processing time of the instructions on each virtual node
may speed up, and further reduces the cost in terms of time
slots occupied by the VNR.

In Fig. 7d, we show the comparison of the acceptance
ratio. As we can see, the VNE-DSSO has a higher acceptance
ratio than PSO-CSNR about 13%, which means at every time
slot, the VNE-DSSO has a higher probability to accept more
requests. The reason is similar to the above. The scheduling

VOLUME 8, 2020 84765



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

FIGURE 8. The overall performance comparison with the other three algorithms.

delay of the low priority requests is lower if DSS algorithm is
added. Therefore, in the same amount of time, VNE-DSSO
has the ability to accept more requests. Moreover, having
higher revenue to cost ratio along with better acceptance ratio
implies that the VNE-DSSO actually embeds VNRs which
generate more revenue than small size VNRs just to increase
the acceptance ratio.

The average end-to-end service time for each VNR is
shown in Fig. 7e. The end-to-end service time is defined
by the time when the request arrives to the time when the
instruction sets on the last virtual node are completed. It could
be observed that by adding the DSS algorithm, the average
duration from a VNR arrives to all the instructions processing
ends has decreased by about 10%. By dividing the resource in
the substrate nodes into Type-H and Type-D, the high priority
VNRs can have the privilege to use high speed resources,
thus the latency requirement can be ensured. On the other
hand, by adopting the DSS algorithm, the low priority VNRs
can have the opportunity to use the high speed resources
when they are available. This means that we not only

minimize the high priority requests’ end-to-end service time
but also accelerate the low priority requests’ processing time
simultaneously.

2) THE PROPOSED VNE-DSSO ALGORITHM HAS A BETTER
OVERALL PERFORMANCE COMPARED WITH THE OTHER
THREE ALGORITHMS
In Fig. 8a, we illustrate the long-term average generated rev-
enue of each algorithm. The proposed VNE-DSSO generates
about 50%more revenue than the second highest algorithm in
a long run. We believe that it is because in VNE-DSSO algo-
rithm, the two critical factors, scheduling delay and substrate
node capacity, are taken into consideration when executing
node selection, which ensures that the scheduling table of
each substrate node is load balanced. In addition, VNE-DSSO
searches the solution space with an iteration update method in
a reasonable time. Each particle exchanges the current global
best solution with each other. Once a particle finds a solution
better than all the others, the rest of the particles will reference

84766 VOLUME 8, 2020



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

this solution and try to find an even better one. This kind of
self-learning method leads to finding an appropriate-optimal
solution.

The average embedding cost and revenue to cost ratio of
VNR over time are shown in Fig. 8b and 8c. We can see that
the proposed VNE-DSSO enhances the average embedding
cost compared with the other algorithms. It decreases the
embedding cost about 50% than the G-SP-DSS. The G-SP-
DSS selects the substrate nodes for each virtual node with a
greedy algorithm according to the present RA value; how-
ever, because of the lack of considering the whole VNR’s
requirement, including nodes and links, the G-SP-DSS algo-
rithm ends up with a higher cost. The cost of G-EE-SP-DSS
algorithm is even higher, because the node selection tends
to select the substrate nodes which are already mapped by
the others to minimize the active nodes. This causes both
the scheduling delay of each active node and the end-to-end
service time increase, and thus leads to higher cost. On the
other hand, our proposed algorithm increases the available
resources in the whole SN and allows more VNRs to map
on in the same amount of time. Therefore, it consumes fewer
resources and generates more revenue in the whole embed-
ding process. Moreover, VNE-DSSO’s average cost is nearly
constant throughout the simulation.

The acceptance ratio of the proposed VNE-DSSO outper-
forms the other algorithms, as shown in Fig. 8d. The VNE-
DSSO has not only a higher probability to accept a request
when it arrives but also the capability to accept more request
in a long run due to the self-learning method. It is worth not-
ing that G-EE-SP-DSS algorithm is lower than VNE-DSSO
and G-SP-DSS. The reason is that G-EE-SP-DSS tends to
map as many virtual nodes on to the active substrate nodes
as possible in order to decrease overall power consumption.
This makes the scheduling delay on these nodes increase
rapidly, and further causes that the InP cannot accept more
VNRs in a fixed amount of time. Additionally, it could be
seen that the acceptance ratio of the proposed VNE-DSSO is
around 0.8 throughout the simulation, which implies that the
variation of the arrival rate has little effect on theVNE-DSSO.

VI. CONCLUSION
Network virtualization and Fog/Edge computing are regarded
as two of the most promising technologies for the future
5G networks. This paper studies the VNE problem in an
MEC architecture, which follows the ETSI standards, when
the VNRs are AOV chain application networks. We enhance
the previous works and propose a PSO-CSNR algorithm
to optimize the virtual chain network embedding problem.
Moreover, we take the novel processor technologies into
consideration, where high priority workloads are able to
speed up, while lower the processing speed of the others.
According to these new technologies, we proposed a DSS
algorithm for these technologies to dynamically switch the
instructions to increase the virtual node’s processing speed.
We then combine the two proposed algorithms into the VNE-
DSSO algorithm. For comparison, we adopt three existing

VNE algorithms and add the DSS algorithm to each of them
for the sake of fairness. The simulation results show that the
VNE-DSSO outperforms the other algorithms in terms of
revenue, embedding cost, and acceptance ratio. Additionally,
it reduces the end-to-end processing delay, which allows the
operator to accept more requests in the same amount of
time. Last but not least, the DSS algorithm can be added to
any existing VNE algorithms. For the future work, we will
consider link failure in a Fog/Edge and cloud co-exist envi-
ronment for that cloud may be able to handle some of the low
priority requests when failure happens at the Fog/Edge area.

REFERENCES
[1] Cisco. (2014). Global Mobile Data Traffic Forecast Update,

2013–2018. [Online]. Available: https://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/white-paper-c11-
738429.pdf

[2] M. T. Beck and M. Maier, ‘‘Mobile edge computing: Challenges for future
virtual network embedding algorithms,’’ in Proc. 8th Int. Conf. Adv. Eng.
Comput. Appl. Sci. (ADVCOMP), 2014, vol. 1, no. 2, pp. 65–70.

[3] ETSIMEC ISG. (Apr. 2016).Mobile Edge Computing (MEC); Framework
and Reference Architecture. ETSI, DGS MEC 003. [Online]. Available:
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_
MEC003v010101p.pdf

[4] T.-Y. Kan, Y. Chiang, and H.-Y. Wei, ‘‘Task offloading and resource
allocation in mobile-edge computing system,’’ in Proc. 27th Wireless Opt.
Commun. Conf. (WOCC), Apr. 2018, pp. 1–4.

[5] J. Li, N. Zhang, Q. Ye, W. Shi, W. Zhuang, and X. Shen, ‘‘Joint resource
allocation and online virtual network embedding for 5G networks,’’ in
Proc. GLOBECOM IEEE Global Commun. Conf., Dec. 2017, pp. 1–6.

[6] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
‘‘Virtual network embedding: A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 15, no. 4, pp. 1888–1906, 4th Quart., 2013.

[7] M. Yu, Y. Yi, J. Rexford, and M. Chiang, ‘‘Rethinking virtual network
embedding: Substrate support for path splitting and migration,’’ ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, Mar. 2008.

[8] W.-H. Hsu, Y.-P. Shieh, C.-H. Wang, and S.-C. Yeh, ‘‘Virtual network
mapping through path splitting and migration,’’ in Proc. 26th Int. Conf.
Adv. Inf. Netw. Appl. Workshops, Mar. 2012, pp. 1095–1100.

[9] W.-H. Hsu and Y.-P. Shieh, ‘‘Virtual network mapping algorithm in
the cloud infrastructure,’’ J. Netw. Comput. Appl., vol. 36, no. 6,
pp. 1724–1734, Nov. 2013.

[10] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, ‘‘VNE-AC: Virtual
network embedding algorithm based on ant colony Metaheuristic,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2011, pp. 1–6.

[11] J.-B. Wang, W.-N. Chen, H. Cong, Z.-H. Zhan, and J. Zhang, ‘‘An ant
colony system based virtual network embedding algorithm,’’ in Proc. IEEE
Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2017, pp. 1805–1810.

[12] Z. Zhang, X. Cheng, S. Su, Y. Wang, K. Shuang, and Y. Luo, ‘‘A uni-
fied enhanced particle swarm optimization-based virtual network embed-
ding algorithm,’’ Int. J. Commun. Syst., vol. 26, no. 8, pp. 1054–1073,
Aug. 2013.

[13] X. Mi, X. Chang, J. Liu, L. Sun, and B. Xing, ‘‘Embedding virtual
infrastructure based on genetic algorithm,’’ in Proc. 13th Int. Conf. Parallel
Distrib. Comput., Appl. Technol., Dec. 2012, pp. 239–244.

[14] Y. Zhu and M. H. Ammar, ‘‘Algorithms for assigning substrate net-
work resources to virtual network components,’’ in Proc. 25th IEEE Int.
Conf. Comput. Commun. (INFOCOM), Barcelona, Spain, vol. 1200, 2006,
pp. 1–12.

[15] Y. Zhu and M. Ammar, ‘‘Algorithms for assigning substrate network
resources to virtual network components,’’ in Proc. IEEE INFOCOM .
25TH IEEE Int. Conf. Comput. Commun., vol. 1200, 2006, pp. 1–12.

[16] P. Zhang, S. Wu, M. Wang, H. Yao, and Y. Liu, ‘‘Topology based reliable
virtual network embedding from a QoE perspective,’’ China Commun.,
vol. 15, no. 10, pp. 38–50, Oct. 2018.

[17] T. Chen, J. Liu, Q. Tang, T. Huang, and R. Huo, ‘‘Virtual network embed-
ding algorithm for location-based identifier allocation,’’ IEEE Access,
vol. 7, pp. 31159–31169, 2019.

[18] Z. Yan, N. Wei, Q. Jin, and X. Zhou, ‘‘Latency-aware resource-efficient
virtual network embedding in software defined networking,’’ in Proc. 28th
Wireless Opt. Commun. Conf. (WOCC), May 2019, pp. 1–5.

VOLUME 8, 2020 84767



Y. Chiang et al.: VNE With Dynamic Speed Switching Orchestration in Fog/Edge Network

[19] D. Harutyunyan, N. Shahriar, R. Boutaba, and R. Riggio, ‘‘Latency-aware
service function chain placement in 5G mobile networks,’’ in Proc. IEEE
Conf. Netw. Softwarization (NetSoft), Jun. 2019, pp. 133–141.

[20] G. Sun, Z. Chen, H. Yu, X. Du, and M. Guizani, ‘‘Online parallelized ser-
vice function chain orchestration in data center networks,’’ IEEE Access,
vol. 7, pp. 100147–100161, 2019.

[21] Optimize Your NFVI Performance With Wiwynn EP100 and Intel Speed
Select Technology—Base Frequency, Intel, Santa Clara, CA, USA, 2019.

[22] T.-Y. Kan, Y. Chiang, and H.-Y. Wei, ‘‘QoS-aware mobile edge comput-
ing system: Multi-server multi-user scenario,’’ in Proc. IEEE Globecom
Workshops (GC Wkshps), Dec. 2018, pp. 1–6.

[23] G. Chochlidakis and V. Friderikos, ‘‘Low latency virtual network embed-
ding for mobile networks,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2016, pp. 1–6.

[24] M. T. Beck andC. Linnhoff-Popien, ‘‘On delay-aware embedding of virtual
networks,’’ in Proc. 6th Int. Conf. Adv. Future Internet (AFIN), 2014,
pp. 55–59.

[25] L. Qu, C. Assi, andK. Shaban, ‘‘Delay-aware scheduling and resource opti-
mization with network function virtualization,’’ IEEE Trans. Commun.,
vol. 64, no. 9, pp. 3746–3758, Sep. 2016.

[26] NGMN Alliance, ‘‘NGMN 5G white paper,’’ Next Gener. Mobile Netw.,
Frankfurt am Main, Germany, White Paper, 2015, pp. 1–125. [Online].
Available: https://www.ngmn.org/work-programme/5g-white-paper.html

[27] N. Shahriar, S. R. Chowdhury, R. Ahmed, A. Khan, S. Fathi, R. Boutaba,
J. Mitra, and L. Liu, ‘‘Virtual network survivability through joint spare
capacity allocation and embedding,’’ IEEE J. Sel. Areas Commun., vol. 36,
no. 3, pp. 502–518, Mar. 2018.

[28] M. R. Bonyadi and Z. Michalewicz, ‘‘Particle swarm optimization for
single objective continuous space problems: A review,’’ Evol. Comput.,
vol. 25, no. 1, pp. 1–54, Mar. 2017.

[29] J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H.
de Meer, ‘‘Energy efficient virtual network embedding,’’ IEEE Commun.
Lett., vol. 16, no. 5, pp. 756–759, May 2012.

YAO CHIANG (Student Member, IEEE) received
the B.S. degree and the M.S. degree in man-
agement information systems from the National
Pingtung University of Science and Technology
(NPUST), Pingtung, Taiwan, in 2014 and 2016,
respectively. He is currently pursuing the Ph.D.
degree in electrical engineering with National
Taiwan University (NTU). His research interests
include data mining, machine learning, and mobile
communications design for multiaccess edge
computing systems.

YU-HSIANG CHAO received the B.S. degree
in electronic and computer engineering from the
National Taiwan University of Science and Tech-
nology (Taiwan Tech), Taipei, Taiwan, in 2018.
He is currently pursuing the M.S. degree in
communication engineering with National Taiwan
University (NTU). His research interests include
virtual network embedding and mobile commu-
nications design for multiaccess edge computing
systems.

CHIH-HO HSU is currently pursuing the B.S.
degree in electrical engineering with National
Taiwan University (NTU). His research interests
include social networks and mobile communica-
tions design for multiaccess edge computing sys-
tems.

CHUN-TING CHOU (Member, IEEE) received
the B.S. and M.S. degrees from National Taiwan
University, in 1995 and 1997, respectively, and
the Ph.D. degree from the University of Michigan,
Ann Arbor, in 2004, all in electrical engineering.
From 2004 to 2007, he was a Senior Member
Research Staff with Philips Research North Amer-
ica, New York. He is currently an Associate Pro-
fessor with the Graduate Institute of Communica-
tion Engineering, National Taiwan University. His

research interests include dynamic spectrum access (DSA), medium access
control (MAC) design, wireless andmobile communications, and the Internet
of Things (IoT).

HUNG-YU WEI (Senior Member, IEEE) received
the B.S. degree in electrical engineering from
National Taiwan University, in 1999, and the M.S.
and Ph.D. degrees in electrical engineering from
Columbia University, in 2001 and 2005, respec-
tively.

He is currently a Professor with the Department
of Electrical Engineering and the Graduate Insti-
tute of Communications Engineering, National
Taiwan University. He also serves as the Associate

Chair with the Department of Electrical Engineering. He was a summer
intern at Telcordia Applied Research, in 2000 and 2001. He was with NEC
Labs America, from 2003 to 2005. He joined the Department of Electrical
Engineering, National Taiwan University, in July 2005. His research interests
include next-generation wireless broadband networks, the IoT, vehicular
networking, fog/edge computing, cross-layer design for wirelessmultimedia,
and game theoretical models for communications networks. He received
NTU Excellent Teaching Award, in 2008 and 2018. He also received the
Recruiting Outstanding Young Scholar Award from the Foundation for the
Advancement of Outstanding Scholarship, in 2006, the K. T. Li Young
Researcher Award from ACM Taipei/Taiwan Chapter and The Institute of
Information and Computing Machinery, in 2012, the Excellent Young Engi-
neer Award from the Chinese Institute of Electrical Engineering, in 2014,
the Wu Ta You Memorial Award from MOST, in 2015, and the Outstanding
Research Award from MOST, in 2020. He has been actively participating in
NGMN, IEEE 802.16, 3GPP, IEEE P1934, and IEEE P1935 standardization.
He serves as the Vice Chair of IEEE P1934WorkingGroup to standardize fog
computing and networking architecture. He serves as a Secretary for IEEE
Fog/Edge Industry Community. He also serves as an Associate Editor for the
IEEE INTERNET OF THINGS JOURNAL. He is an IEEE certifiedWireless Commu-
nications Professional. He was the Chair of the IEEE VTS Taipei Chapter,
from 2016 to 2017. He is currently the Chair of IEEE P1935 working group
for edge/fog management and orchestration standard.

84768 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORK
	REVENUE
	LATENCY

	NETWORK MODEL AND PROBLEM FORMULATION
	EDGE SYSTEM ARCHITECTURE
	ASYMMETRIC PROCESSING SPEED OF PROCESSORS
	SUBSTRATE NETWORK
	VIRTUAL NETWORK REQUEST
	SUBSTRATE NETWORK RESOURCE MEASUREMENT
	VNE
	DELAYS
	OBJECTIVE
	GOAL AND PERFORMANCE METRIC

	PROPOSED VNE-DSSO ALGORITHM
	PSO-CSNR
	GREEDY-CSNR NODE SELECTION
	VNE-DSSO

	PERFORMANCE EVALUATION
	SIMULATION SETTINGS
	COMPARISON METHOD
	EVALUATION RESULTS
	WITH AND WITHOUT THE DSS ALGORITHM
	THE PROPOSED VNE-DSSO ALGORITHM HAS A BETTER OVERALL PERFORMANCE COMPARED WITH THE OTHER THREE ALGORITHMS


	CONCLUSION
	REFERENCES
	Biographies
	YAO CHIANG
	YU-HSIANG CHAO
	CHIH-HO HSU
	CHUN-TING CHOU
	HUNG-YU WEI


