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ABSTRACT Web search engines (e.g., Google, Bing, Qwant, and DuckDuckGo) may process a myriad of
search queries per second. According to Internet Live Stats, Google handles more than two hundred million
queries per hour, i.e., about two trillion queries per year. For monetization purposes, the queries can be stored
and complemented with additional data, referred to as query logs. Together, they can correlate valuable
information to build accurate user profiles. Before releasing the query logs to third parties (e.g., for profit
purposes), the personal information contained in the query logs must be properly protected by the web search
engines. Current regulations establish strict control, and require from provable anonymization processing
(e.g., in terms of statistical disclosure) of any personally identifiable information. In this paper, we tackle
this challenge. We propose a real-time anonymization solution to protect streams of unstructured data at the
server side. Our approach is based on the use of a probabilistic k-anonymity technique. It allows probabilistic
processing of personally identifiable attributes contained in the query logs, with provable privacy properties.
Our solution handles limitations of traditional k-anonymity approaches with respect to unstructured data
and real-time processing. We present the implementation of our solution and report experimental evaluation
results. The evaluation is conducted in terms of privacy, utility, and scalability achievement. Results validate
the feasibility of our proposal.

INDEX TERMS Anonymization, data streams, privacy, query logs, web search engines.

I. INTRODUCTION
People use Web Search Engines (WSEs) for research, shop-
ping, and entertainment [1]. Due to the large number of
Websites (over 1.7 billion in 2020, according to Internet
Live Stats and NetCraft [2]), it would be inconceivable to
conduct such activities manually, without the help of a WSE.
The usability of WSEs is, moreover, constantly improving.
By simply querying the WSE with a few keywords, one may
obtain several URLs with the desired contents. However,
WSEs are not simply limited to return a list of URLs. When a
search is conducted, a query (unstructured data) is processed
and stored by the WSE. Together with the query, the WSE
will store a timestamp, the URL selected by the user, and any
other potential information collected about the user during the
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search. All this additional meta data, together with the query,
is denoted hereinafter as query log. Streams of query logs
are processed and analyzed by the WSEs, in order to build
and improve users’ profiles. This is expected to improve the
service offered to users, as follows:
• Personalization. The query terms can have multiple
meanings. Identifying the sense required by the user rep-
resents a challenge. Previous queries submitted by a user
in the past can be used to contextualize and disambiguate
terms in the future [3], [4]. This way, the WSE can
prioritize relevant results (e.g., URLs) for the user and
show them in the initial positions of the search results.

• Usability. The frequencies and selected results of the
most submitted queries are used by WSEs to improve
their ranking algorithms [5]. This can also be used
to suggest alternative queries [6]. Such suggestions
can show how to correct mistakes when typing, add
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specificity to the initial query, or provide similar queries
with more results.

Search data can also be exploited for other purposes
because it reveals powerful insights about customer intent-
to-purchase and other factors [7]. This new exploitation can
be conducted by the WSE itself or by a third party, for the
following purposes:

• Marketing. The results of an advertising campaign can
be studied and improved by means of the query logs.
For example, the user can be characterized by their
query logs (gender, age, income, education, etc.) and
afterwards verify if the advertisements have had an
impact on the intended audience (interests and behavior)
[8], [9]. Besides this, it is possible to extract market
tendencies [10].

• Research. It may be centered on the study and test of
new Information Retrieval (IR) algorithms [11], to learn
about user’s information needs and query formula-
tion approaches [10]. It can also revolve around the
use of language in queries [12], among other research
topics [13]–[17].

The use of query logs can lead to some problems, related
to user’s privacy. Each query log can contain a user identifier,
a text about what the user is looking for, the time when
the search was conducted, and the URLs selected by the
user. Any party with access to the query logs can obtain
information about a user’s behavior, habits, interest and more
sensitive information, such as religion or sexual orientation.
Even more, some query keywords may contain identifiers
and quasi-identifiers [18], which may allow to link queries
with real people. This is specially feasible, given current ten-
dencies such as vanity search and egosurfing [19], in which
people look for their own names over the Internet.

Query logs can be efficiently protected before being
released to third parties. However, faulty or weak protection
can lead to serious anonymity issues. The combination of
modified data can disclose enough information to re-identify
users [9], [20]. There is one well-known case, the AOL
case, in which around thirty six million records related to
query logs from AOL users were publicly released by AOL.
Although the records were previously anonymized, it was
later shown that it was still possible to identify some of the
AOL users via traditional log correlation techniques [21].
As a result, sensitive information about AOL users was
exposed publicly, without their express consent. The case
ended up with an important damage to AOL users’ privacy
and to AOL’s reputation, as well as several class action suits
and complaints against AOL [22]–[24].

In this paper, we address the aforementioned problems.
We present an anonymization technique to protect query
logs at the server side. We assume WSEs seeking to mon-
etize query logs by making them available to third parties,
while respecting privacy regulations. A valid approach is to
anonymize the logs prior releasing them to the third par-
ties. Just concealing the user identifiers, or replacing them

by random information, is not enough [25]. A provable
anonymization method based on, e.g., Statistical Disclosure
Control (SDC) techniques [18], must be conducted to guaran-
tee bounded disclosure risks [26]. Traditional approaches can
solve this situation by conducting a k-anonymity process at
the server-side, before releasing the query logs. The release of
data will satisfy the k-anonymity privacy property whenever
user data contained within the query logs cannot be distin-
guished from at least k − 1 other users — whose data also
appear in the release [27].

An important issue of traditional k-anonymity approaches
is the difficulty of using unstructured streams of data while
satisfying the aforementioned privacy properties. This poses
an additional problem to WSEs requiring, moreover, real-
time processing. This issue is addressed in our proposal.
Our solution relies on the use of probabilistic k-anonymity
to bound disclosure risk of personally identifiable user
attributes. Our solution can handle unstructured data, allow-
ing real-time processing of query streams. It provides a
probabilistic method to blend streams of queries with high
similarity to those requiring protection, but coming from
different users. More precisely, it ensures that individuals are
not identified with a probability exceeding 1

k , being k the total
number of users sharing similar interests to the one meant
to be protected (who is also counted in k). By using our
solution, a WSE can keep the raw query logs and release the
anonymized versions to third party organizations. The WSE
can also decide to erase the raw query logs and keep only
the anonymized versions. This way, and with low utility loss,
theWSEwill reduce the risk of information disclosure in case
of intrusions.
Paper Organization: Section II presents our proposal.

Section III provides architectural components and require-
ments. Section IV provides experimentation results validating
our approach. Section V surveys related work. Section VI
concludes the paper.

TABLE 1. Notations used in this paper.

II. OUR PROPOSAL
We present in this section our anonymization proposal.
Table 1 introduces the notation used along this section. Next,
we provide a formal definition of the expected data we aim
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to anonymize, the way how the data is structured, a formal
analysis about the privacy properties of the proposal, and the
algorithmic version of our anonymization process.

A. DATA STRUCTURES
We assume a stream of query logs, formed by m registers,
where rm corresponds to the last received query log:

R = {r0, . . . , rm} (1)

Each register is of the form:

rj = {ui, qj, cg} (2)

where ui is a unique identifier that represents the user who
sent the query qj to the WSE. Each query qj is composed of
a set of unstructured terms, which we previously provided to
a categorizer (cf. Section III) to obtain the classification of
the query, denoted as cg. This classification cg is represented
as the path from a general category γ 1

s to a more specific
category γ hs∗ , with the form:

cg = {γ 1
s , γ

2
s′ , . . . , γ

h
s∗} (3)

The path is created according to a hierarchical ontology
structure by means of a tree structure τ , which is formed by a
set of edges ef ∈ E and vertices vhx ∈ V , where h is the depth
and x the width. Each vertex vhx of τ represents a category
γ hx , and is related to other categories through the edges. The
vertices or categories are more generic the closer they are to
the roots {v11 . . . v

1
x}, andmore specific the closer to the leaves.

Thus, every query is classified by assigning it to one of the
vertices of the tree. As mentioned, the classification is the
path between the root and the vertex, and it is composed by
all the γ categories of the nodes that are in the path.

τ = < V ,E >

V = {v11, . . . , v
`
z}

E = {e1, . . . , eg}

vhx = {U
h
x ,Q

h
x , γ

h
x }

ef = {vhx , v
h+1
x ′ } (4)

The maximum depth of the hierarchy τ is `max , defined as
the distance orminimumpath between the root and its farthest
leaf. The number of terms or depth for each classificationmay
be `max or lower, but we will use limited versions at depths
up to `, where ` goes from 1 to `max .

Each vertex vhx contains a set of users Uh
x , and a set of

queries Qhx . The size of U
h
x will be k , but the size of Qhx may

be larger. This is because U is defined using arity, but Q is
defined without the need of using arity

max | Uh
x | = k (5)

max | Qhx | ≥ k (6)

Therefore, we call τ ∗`,k the tree τ with a depth ` and a value
of |U | = k .

B. RESTRICTIONS
To properly explain why Uh

x and Qhx may have different size,
we introduce two additional restrictions that we impose to our
proposal (cf. Restrictions 1 to 2).
Restriction 1: A given query associated to an anonymized

logmust not be assigned to the same user that issued the query
on the unanonymized log.
Restriction 2: When creating an anonymized query log,

user must be selected randomly between at least k different
user values.

Restriction 1 ensures that outputs do not contain
unanonymized pairs of user and query. Restriction 2 imposes
probabilistic k-anonymity, setting at least k distinct val-
ues for users in each category when randomly creating an
anonymized log.

C. ANONYMIZATION PROCESS
We define our anonymization process as the method that
generates the probabilistic k-anonymous stream of logs R′:

R′ = {r ′0, . . . , r
′
m} (7)

We assume that each record rj = {ui, qj, cg} in R is
assigned to the corresponding vhx using its categorization cg.
The record rj is then separated in two parts: ui which is
assigned to Uh

x , and qj which is assigned to Qhx . Records in
R′ are obtained by applying a random match between one
element of Uh

x and one element of Qhx , once | U
h
x |= k:

r ′j = {u
′
i, qj, cg} (8)

where qj ∈ Qhx is matched with a u′i ∈ U
h
x 6= ui.

The Id function is assumed to be a correct identifica-
tion function, which given r ′j responds with the original ui.
The function Re is a re-identification function used over the
records in R′, which given a r ′j responds with:

Re(r ′j ) = ui ∈ Uh
x , uj 6= u′i (9)

The goal of probabilistic k-anonymity is to limit the prob-
ability of performing the right re-identification to at most 1

k
for all ui ∈ R and for all the values of Re(r ′j ):

P(Re(r ′j ) = Id(r ′j )) ≤
1
k

(10)

The stream of logs R′ is said to satisfy probabilistic
k-anonymity if, by knowing R′ and the anonymization pro-
cess, the probability to link any record r ′j ∈ R′ and its
corresponding record rj ∈ R is, at most, 1

k .
We show next that our proposal satisfies the property

defined in Eq. (10). For each vertex vhx of τ , the random
selection of an element (Restriction 2) guarantees that all
outcomes are equally likely to be selected. Therefore, we can
state maximum probability of re-identification of a r ′j over τ
using:

P(Re(r ′j ) = Id(r ′j )) ≤ max
∀x,h

|Uh
x ∩ Id(r

′
j )|

|Uh
x |

(11)
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As Uh
x sets are defined using arity, we know that:

∀x, h, Id(r ′j )→ |U
h
x ∩ Id(r

′
j )| ∈ 0, 1 (12)

Someone could argue that Restriction 1 leads to a value of
k − 1. However, since Restriction 2 establishes this value
to k (Restriction 2 also assures that |Uh

x | ≥ k), the upper
bound of our proposal for P(Re(r ′j ) = Id(r ′j )) is strictly lower
or equal to 1

k , hence satisfying probabilistic k-anonymity.
A more formal analysis about this result is provided next.

D. PRIVACY ANALYSIS
Given k (anonymity parameter) in Z+, a set of users U equal
to u1, . . . , un (such that n ≥ k), a set of query logs Q
equal to (uij , qj)

j
j=1 up to the processing iteration j, where

qk 6= ql∀k, l ∈ [j], (k 6= l), uij ∈ U . We also assume that
users repeat (i.e. uik = uil ).
We assume that given a query in R′, the whole R′ and k ,

an arbitrary PPT (Probabilistic Polynomial-Time) adversary
A has at most 1

k chance of guessing the user the given query
was attached to in R.
Now, with the notation above, and let j0 ∈ [j] define and

experiment ExpRe(k,R), in which:

R′ ← Anon(k,R)

R∗ ← Re(k,R′)

let b =

{
1, if R = R∗

0, otherwise

return b (13)

Theorem 1: Anon (cf. Eq.(13)) is probabilistic
k-anonymous if, for every user set, for every query log R and
every index j0 ∈ [j], any PPT adversary A has a bounded
advantage up to 1

k , i.e.,

AdvA(k,R) = P[ExpRe(k,R)] ≤
1
k

Proof: Let R′ = (u′ij , q
′
j)
j′

j=1 and j the iteration at which
the first log entry is released by the anonymizer after (u, q)
has been read by itself. Let UR′

j = (uij1 , . . . , uiJ ) be the
users presents at R′ at iteration j and Uj = (ui1 , . . . , uik ) be
the user set used internally in the anonymizer at iteration j
(i.e., we know u ∈ Uj ∈ UR′

j and Uj has at least k different
users).

P(A(R′, q) = u)

=

∑
u′∈U

P(A(R′, q) = u|(u′, q) ∈ R) · P((u′, q) ∈ R)

If Uj and Qj are the users and queries stored by the
anonymizer after reading query q, where Uj has at least k
different users, permute users from the queries of Qj to R (all
in Uj) has no effect on the anonymizer output, i.e.:

P(A(R′, q) = u|R = Re(R′))

=

∑
u∈Uj

P(A(R′, q) = u|[R = Re(R′)] ∩ [Uj = U ])

· P(Uj = U )

where Uj contains the users that can appear in step j, hence
u ∈ U . If Uj is fixed and u ∈ Uj, we can consider an R where
the query q is paired with each of the users u′ of Uj, and one
of the queries q′ whence the entries of u′ from Uj are now
paired with U .

If we have read ju times the user u, ∀i : ji ≥ 1, we obtain
that the ratio of R∗s, being R∗ = Re(R′) and Uj = U , which
contain the original pair (u, q) is:

P(A(R′, q) = u|R = Re(R′)) =
(ju2 + . . .+ juk + ju−1)!
(ju2 + . . .+ juk + ju)!

=
1

(ju2 + . . .+ juk + ju)
≤

1
k

(14)

hence satisfying Theorem 1. �

Algorithm 1 Anonymization Process
Input : R, k, `
Output: R’

1 foreach rj ∈ R do
2 // Get current user, query text and full query

categorization
3 u, q, c← rj;
4 // Truncate categorization to level `
5 cat ← {γ 1

s , . . . , γ
`
s∗} ∈ c;

6 // Add current user to users’ category set
7 users[cat]← u;
8 // Add current query and full categorization to

queries’ category set
9 query[cat]← {q, c};

10 // While there are more than k distinct users on the
current category

11 while distinct(users[cat]) > k do
12 // Select and remove a random query and

categorization from the category’s set
13 pop random {q′, c′} ∈ query[cat];
14 // Select and remove a random user from the

category’s set, distinct from the original user
related to the query

15 pop random u′ ∈ users[cat], u′ 6= Id(q);
16 // Send to the output the selected user, query and

category
17 send u′, q′, c′;
18 end
19 end

E. ALGORITHMIC VERSION OF OUR PROPOSAL
An algorithmic version of our anonymization process is pre-
sented in Algorithm 1. Algorithm 2 presents the anonymiza-
tion process counterpart, assumed to be implemented by
a PPT adversary. Algorithm 1 receives three main inputs:
desired k , ` values, and R as a stream of hierarchically cat-
egorized query logs.
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Algorithm 2 De-Anonymization Process
Input : R’, k, `
Output: R*

1 foreach r ′j ∈ R
′ do

2 // Get current user, query text and full query
categorization

3 u, q, c← r ′j ;
4 // Truncate categorization to level `
5 cat ← {γ 1

s , . . . , γ
`
s∗} ∈ c;

6 // Add current user to users’ category set
7 users[cat]← u;
8 // Add current query and full categorization to

queries’ category set
9 query[cat]← {q, c};

10 // While there are more than k distinct users on the
current category

11 while distinct(users[cat]) > k do
12 // Select and remove a query and categorization

from the category’s set, using one of the record
linkage algorithms

13 record_linkage {q′, c′} ∈ query[cat];
14 // Select and remove a user from the category’s

set, using one of the record linkage algorithms
15 record_linkage u ∈ users[cat];
16 // Send to the output the selected user, query and

category
17 send u, q, c;
18 end
19 end

Even if all the sets are initialized empty, our proposed
algorithm guarantees that Uh

x is of size k every time a new
anonymized log is generated from that category. It also tries
to keep the Qhx size as close as possible to the k value.
As it always chooses between k different users and at least
k different queries, probabilistic k-anonymity is guaranteed.
Qhx size may be bigger than k in the following situation:

each time a new log enters a category and the log’s user was
already present on that category, user’s arity is increased by
one inUh

x and the query is added toQhx . Therefore, |U
h
x | stays

the same but |Qhx | is increased by one. If Restriction 2 is not
met, there is no anonymized log release (i.e., the size of Qhx
can be bigger than k).
If Restriction 2 is met, and some user’s arity is greater than

one, then Algorithm 1 releases an additional log to reduce
the size of Q and user arity, also enforcing Restriction 1. This
extra step is only done once per log, therefore at most two logs
are generated each time a new record enters the category, until
all users’ arities are equal to one.

System performance remains stable whenever variations of
the set size is proportionally conducted [28]. Hence, we mod-
ify the size of each set in incremental unitary steps. This
allows the most efficient memory usage. In addition to the
k parameter, the depth of categories’ tree must be specified

TABLE 2. Applying Algorithm 1 with k = 2 and ` = 1.
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FIGURE 1. Contents of R, τ and R′ in the example provided in Table 2.

using the ` parameter. Both k and ` remain fixed to the
specified value throughout the entire execution.

Table 2 provides a full example of our anonymization
process, using k = 2 and ` = 1 as main values. These
values have been chosen to facilitate the understanding of the
example, but they are inferior to desirable values in a real
application of the algorithm (cf. Section IV). The example
starts with an empty system, receiving a stream R of query
logs classified in two distinct categories. Figure 1 depicts the
used R, and the contents of τ and R’ at the end of the afore-
mentioned example. Figure 2 depicts the deanonymization
counterpart, leading to faulty re-identification.

III. PRACTICAL IMPLEMENTATION
We present in this section a practical implementation of
our proposal. We describe the architecture and requirements,
before moving to the presentation of the experimental results.

A. INITIAL ARCHITECTURE
We aim at implementing an anonymization method that
can be used by Web Search Engines (WSEs) to anonymize
query logs in a streaming environment, and at server-side
(cf. Figure 3). The input data of the anonymization algorithm
is a continuous stream of categorized query logs. The outputs
are a continuous stream of anonymized logs and a database
of user profiles. To meet the goals of our proposal, we must
ensure that those outputs meet a set of requirements detailed
below.

FIGURE 2. Contents of τ ′ and R∗ when trying to deanonymize R′ from the
example provided in Table 2.

FIGURE 3. Our proposal defines a WSE query logs anonymization method
in a streaming environment. The input of the algorithm is a stream of
query logs. The outputs are a stream of anonymized logs and a database
of user profiles.

B. FUNCTIONAL REQUIREMENTS
In addition to the restrictions and properties already defined
in Section II, we report next some functional requirements for
the practical implementation of our proposal.

1) SCALABILITY
It refers to the capability of a system to handle a growing
amount of work, or its potential to be enlarged in order to
accommodate that growth [29]. In our system, the objective is
to achieve load scalability, defined as the ability to accommo-
date heavier or lighter loads. Those methods can be classified
in two main categories [30]:

• Horizontal Scalability is related to the ability of a
system to add more working nodes, such as a new com-
puter. Hundreds of small computers may be configured
in a cluster to obtain aggregate computing power. This
approach demands an architecture that allows efficient
management and maintenance of multiple nodes.

• Vertical Scalability is related to the ability of adding
resources to a single node in a system, typically
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involving the addition of CPUs or memory. Such
approach could be interesting in a virtualized environ-
ment, as it could providemore resources according to the
virtual node needs. This approach demands an architec-
ture that allows efficient management of used processes
and memory.

The two models have their own particular benefits and
limitations. If necessary, our proposal should use all possible
assets. In such a case, the design should be integrated into
existing systems on a WSE architecture. Ideally, our system
can take advantage of underused resources.

2) RESOURCE CONSUMPTION
In order to take advantage of underused resources on exist-
ing architectures, and minimize system deployment costs,
we want a minimal resource consumption. If the designed
system is able to use a limited amount of resources, all neces-
sary data could be kept and processed in memory, obtaining
better execution times.

3) SPEED
We need a fast processing speed to be able to process all
received logs in real time. Otherwise, some kind of memory
buffer will be necessary to keep incoming logs until pro-
cessed. That buffer will increment our resource consumption.
An additional requirement, in terms of processing speed,
must be defined and only use small buffers at specific over-
load times. Nowadays, a WSE receives millions of user
queries each hour. Therefore, our system should handle that
load, to be able to integrate it in a existing WSE architecture.

4) EFFICIENCY
Beyond reduced resource consumption and fast processing
time, we aim at assuring the algorithmic efficiency of the
proposal. We consider that this requirement will be achieved
if the algorithmic time complexity of our proposal is linear
according to the inputs.

5) TRANSPARENCY
We want a straightforward integration of our approach into
an existing architecture. Having a transparent system implies
that no component of the existing WSE should be modified.
For this purpose, our module is expected to be encapsulated
within the WSE. It should also be able to interact to the
existing interfaces of the WSE, without forcing any changes.
It should also be able to generate anonymized logs, while
complying with all the previous requirements.

6) MODULARITY
Wewant to have low coupling and high cohesion to achieve a
fully transparent component. Modularity has the added ben-
efit that modifications to the proposal could be implemented
with minimal effort, as well as to carry out tests with different
alternatives for the treatment of the data.

FIGURE 4. Full Architecture: WSE Anonymizer takes a stream of query
logs and anonymizes them, also generating a database of user profiles.
It implements Algorithm 1 (cf. Section II). De-anonymizer implements
Algorithm 2 and simulates adversarial actions over the anonymized logs.
It tries to recreate the original logs and user profiles. Profile matcher,
responsible of benchmarking anonymization, de-anonymization and
performance, also generates a profile utility metric.

C. EXPANDED ARCHITECTURE
The initial proposal depicted in Figure 3 is expanded with
two additional parts: Attacker and Researcher. This allows a
proper empirical evaluation, in addition to the analysis con-
ducted in Section II. The proposed system is designed using
a micro-service architecture pattern as presented in Figure 4.
For the current study, all the defined systems are used. In a
real WSE environment, only the parts marked asWSE should
be deployed.

Within the expanded architecture, we find two main
components: anonymizer and profiler. The anonymizer is
a component implementing Algorithm 1. The profiler cre-
ates protected user profiles, using the categories of each log
assigned to that user by the anonymizer. Those categories are
added to a user profile database in real-time. Each profile
on the database contains a frequency distribution of those
categories queried by the user. They can be seen as user
interests that could be released to third parties, for profit.

1) ACTORS
Three actors are defined in our current test architecture:

• WSE— has the responsibility of query logs anonymiza-
tion and publication.

• Attacker — has access to the anonymized stream of
logs, tries to recover the original relationship between
the log and the user who made the original query.

• Researcher— can check all the data, but can not modify
anything, to test the validity of the proposal.
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2) PHASES
Our study is divided into three main phases:

• Anonymization and profile creation — this phase
represents the normal execution of the system on the
WSE environment. It takes the query logs generated and
anonymizes them, also generating a database of user
profiles.

• De-anonymization — it simulates attacks, trying to
link as much of the anonymized logs with the user that
originally made the query.

• Analysis — it conducts anonymization,
de-anonymization and performance benchmarking, tak-
ing into account original and generated data, time and
resource usage.

3) INTERACTIONS
In a real WSE environment, the WSE will anonymize the
query logs and release the anonymized ones to its clients as
the main interaction. In our tests, the attacker is acting as a
normal client from the WSE point of view. The attacker pro-
cess the anonymized output of theWSE and generates another
log stream, trying to reconstruct original query logs. Only
during the tests, secondary interactions occur between those
actors and the researcher, who receives original, anonymized
and de-anonymized query logs. Some further information
about it is presented in the sequel.

IV. EXPERIMENTAL RESULTS
We report in this section a practical implementation of our
approach, and report experimental tests and results, to vali-
date our approach in terms of privacy, data utility and other
functional requirements.

Experiments were conducted using a Dell notebook run-
ning Ubuntu Linux 16.04 LTS, with a 1.8 GHz Intel
CoreTMi7-4500U CPU and 8GB of RAM. System hard disk
was a Seagate ST1000LM014, whose performance profile is
skewed strongly towards small file I/O, and a below average
overall performance. All algorithms were implemented and
executed in Python 2.7.12.

A. IMPLEMENTATION
Algorithm 1, described in Section II, has been implemented
using the Python language. Input query logs used to test our
system were downloaded from the public available AOL log
repository, in form of plain text files. In order to respect our
transparency functional requirement, we chose to make this
file the main input of our system. However, other methods to
feed logs to the system, such as a real time input via sockets,
could be used. The same applies to system output and we also
decided to store them in plain text files, preserving original
logs’ format. Additionally, a No-SQL database was used to
store generated user profiles.

Because AOL’s released files do not have any classifica-
tion, they need to be categorized by an external categorizer
before any of the proposed algorithms could be applied.

We used a slightly modified version of the deterministic
classifier proposed in previous work [28]. The use of a
deterministic classifier guarantees that the same query will
always provide the same unique category. In case a query
triggers multiple categories, the classifier will always take
the most probable one. Other families of classifiers can be
adapted and integrated in our approach thanks to the proposed
micro-service architecture. Classifier modifications allow us
to obtain a query categorization organized in several hierar-
chical levels. Some queries contain letters or symbols without
any meaning, and some contain no text at all. Our classifier
was not able to resolve those logs, and they were left out of
data used to test the proposal. However, some changes made
to natural language processing algorithms on the classifier
lead to categorize 98% of original logs, an improvement of
over the 85% categorized in [28]. As it is out of the scope of
the current proposal, implementation of the classifierwill not
be evaluated. Priority will be given to allow interoperability
between our proposal and different classifiers. Usually, clas-
sification process needs more specific data, related to WSE
environment or desired output categories. Thus, we leave
freedom to each WSE to choose the strategy that best suits
their needs.

We also validate the possible record linkage of the
anonymized stream, implementing three different record
linkage algorithms, and evaluate for each algorithm whose
requirements are fulfilled. In addition, some other changes
that have been made to the initial architecture described in
Section III are discussed below.

B. EVALUATION METHODOLOGY
The algorithmic solution proposed in Section II, and all the
architectural components, requirements and implementation
details defined in Sections III and IV-A, have been used to
conduct an experimental evaluation and comparison to previ-
ous work in [28]. In particular, one version of the anonymizer,
and three versions of the de-anonymizer are implemented
and evaluated in terms of utility, privacy and functional
requirements.

1) EXPERIMENTAL DATASETS
For our experiments, we use plain datasets (i.e., text files),
containing query logs released by AOL [31]. The released
AOL data contains up to thirty six million query logs. Such
query logs correspond to a three-month period of real web
search activity conducted by AOL users, and released by AOL
for research purposes. Figure 5 provides a brief sample of the
used logs.

The Classifier (cf. Section IV-A), adds to each log record
an additional column with a hierarchical classification in
form of a list with n elements. In our case, nwas between one
and 13, and each element of the list represents a subcategory
of the previous element. This classification is generated inde-
pendently of the anonymizer. Therefore, this list contains all
the subcategories which the Classifier is able to generate for
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FIGURE 5. AOL log format. Each row represents a query log. Columns
contain, from left to right: user identifier, query submitted, time
submitted, result selected and result URL.

a given query, regardless of the ` used by the anonymization
process.

2) CONDUCTED TESTS
Proposed system could be configured using two parameters:
k and `, being k the desired number of different users on each
category and ` the maximum depth of categories and subcat-
egories used for each record. Several tests were conducted to
determine its effects.

Anonymizer — to generate anonymized data, proposed
anonymizer was executed on all available AOL logs multiple
times, to cover different k and ` values. k has taken values
between 3 and 200 to be able to compare obtained results with
previous ones [28]. To do this, Algorithm 1 needs to be tested
at least using ` = 1. We decided to test all available ` values,
that with our classification correspond to values between one
and 13, but we found that from 11 onwards, differences were
not significant: few logs have more than 11 categories of
depth. Our privacy, functional and utility requirements are
checked for every combination of k and `.
Profiler— specific tests were conducted with the profiler,

to determine the amount of data utility that could be lost
with anonymized profiles creation respect to unanonymized
profiles. For those tests, we used k values between three and
90 and ` values between one and 13.

De-anonymizer — a de-anonymization has been
attempted against all anonymized data. All anonymized data
was tested against three different record-linkage algorithms:

• Record-linkage 1— This is the simplest record-linkage
algorithm we tested. It tries to apply an inverse transfor-
mation to anonymized query logs by applying a similar
algorithm to the one used in the anonymization process
(cf. Algorithm 1 in Section II). In short, it tries to recreate
original logs by randomly matching users and queries
from the same category. Attacker also takes advantage
of both restrictions 1, 2 to achieve higher levels of
de-anonymization.

• Record-linkage 2 — It improves the performance over
Record-linkage 1. Instead of randomly matching users
and queries, it assigns the user that appears more times
on a category to the selected query. Just like other algo-
rithms, both restrictions are respected.

• Record-linkage 3 — It keeps track of how many times
a user issued a query on each category, constantly updat-
ing a simplified user profile. When the algorithm needs
to assign a user to a query, the user with more issued
queries on that category will be chosen. If a user appears
more than one time, the result will be multiplied by the
number of appearances of that user, balancing the impor-
tance between current state of the system and historical
values.

C. PRIVACY STUDY
Our privacy test compares original query logs data with the
anonymized ones. Results for this base case show that none
of the original pairs of user/query appear on the anonymized
query log. Notwithstanding, that result did not guarantee
full user privacy, since some attacks are possible over the
output data flow, and some user logs may be re-identified.
Three different record-linkage algorithms were applied to the
anonymized query logs (cf. Algorithm 2). Resulting logswere
compared to the original ones, counting the percentage of
matching records.

Our de-anonymization algorithms proposal is based on
Algorithm 2, that is similar to Algorithm 1 used in
anonymization. It uses the stream of anonymized logs gen-
erated by the WSE as the main input. It also needs k and `
parameters (explained in Section II). The smaller the differ-
ence between k and ` values used in both algorithms, the bet-
ter the results obtained from de-anonymization. In other
words, the attacker will be able to re-identify the original data
more easily.

The stream of anonymized logs is classified in the same
way as the original one, since we assume that categoriza-
tion is public and the attacker can use it. Therefore, the de-
anonymization process uses the same categorization, which
enables this algorithm to obtain the best de-anonymization
rate when trying to recover the original logs.

The main difference with the anonymizer algorithm is the
use of record_linkage function, different for each implemen-
tation of the de-anonymizer algorithms. The most complex
de-anonymizers also use additional data structures to improve
de-anonymization performance. Differences of each algo-
rithm are fully explained in Section IV-B2.

For analysis purposes, we need to evaluate the amount of
memory and time used in each algorithm execution, therefore,
previous algorithms were modified to calculate those values.
An additional algorithm must be defined to find the number
of logs that are identical comparing two log streams.

Figure 6 shows percentage of matching records, executing
the three algorithms with values of k between three and
200 and values of ` between one and 13. With ` = 1, only
one level of the tree structure was used, which results in a data
structure equivalent to the one used in our former paper [28].
` = 13 is the maximum depth that our classifier was able
to generate. Thus, there is no need to use higher ` values.
We also picked out k values to be able to compare results
between our current and former evaluation.
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FIGURE 6. Record linkage (%). Percentage of matching records, executing the three de-anonymization algorithms with values of k between three and
200 and values of ` between one and 13).

FIGURE 7. Comparison between cumulative fraction functions of the
theoretical k-anonymity (dashed) and experimental results (solid). Used
for the Kolmogorov-Smirnov test (D = 0.08, p-value = 0.9977).

In all cases, results are under the theoretical maxi-
mum probability 1

k of being re-identified [32]. We ran
the Kolmogorov-Smirnov goodness-of-fit statistical test
[33], [34] to compare the k-anonymity probability with the
experimental results, Figure 7. The maximum difference
between the cumulative distributions, D, is 0.08 with a cor-
responding p-value of 0.9977. Therefore, the statistical test
yields to acceptance of the null hypothesis that our results
follow k-anonymity’s probability of re-identification (at the
5% level of significance).

Each record-linkage version improves re-identification
rate, being the third version the one that obtains better results
overall. k value was highly correlated with privacy, because
when the value of k increases, record linkage decreases. ` also
affects privacy. With a higher number of levels (high ` value)
users were matched with more specific queries, therefore,
it was also more probable to obtain a correct re-identification
of the original user. Here, we face a trade-off between privacy
and data utility.

FIGURE 8. Final | Q |-value, as the mean size of queries’ sets. For low `

values, final | Q | is higher due to more user coincidences on the same
category. With higher ` values, final | Q | tend to match the specified k .

Results obtained this way, are close to the ones obtained
in our previous article using the proposed algorithm with-
out restriction, since now the effective size of the category
sets are closer to the k value specified as a parameter.
However, on average a better anonymization is obtained,
since the size of Qmust be temporarily increased to meet the
restrictions 1 and 2.

Figure 8 shows mean final | Q | values, related to ` and
initial k value. For low ` values, mean final | Q | values are
higher because they have less categories results andmore user
coincidences on the same category. However, with small k
and ` values, the high number of queries that passes through
each category counter this effect. With higher ` values, final
| Q | values tend to match up with specified k .
The highest record linkage is obtained with highest ` and

lowest k values. Our best de-anonymizer algorithm was able
to link 23.18% records to the original user. De-anonymization
tests were conducted knowing exactly all algorithms, cat-
egories and variables used for anonymization. This ratio
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decreases quickly when initial k value is increased, obtaining
a record linkage lower than 1% from k values greater than 90.
In conclusion, desired record linkage level could be adjusted
by modifying the k value, even offsetting the effect of `
variations on the record linkage.

D. UTILITY STUDY
We proceed to analyze the utility of the proposed anonymizer.
This analysis has been focused on two different aspects:
• Percentage of logs that the system can generate as an
output.

• Preservation of original user’s interest in anonymized
user’s profiles.

First, we want to analyze the percentage of logs that can be
generated by the system over the total number of logs that
it gets. The proposed system uses sets, and each set must
have at least k different users before being able to release an
anonymized log. A possible drawback to this approach is that
some sets do not reach k users and, therefore, the logs con-
tained in this set do not end up leaving the system. As we can
see in Figure 9, this effect exists and it is directly proportional
to the depth of the category tree. This is consistent, since with
more depth, more categories are created and the minimum of
k users on these categories is reached more slowly. However,
we see that as more queries enter the system, all categories
become filled with queries and the percentage of log output
increases, tending to a 100% rate for any depth of the tree.

FIGURE 9. Output queries vs. total queries (%). Some sets take a while to
fill. This effect is directly proportional to the depth of the category tree as
more sets need to get k different users.

Secondly, to measure the preservation of original user’s
interest in anonymized user’s profiles, we will measure
the distance between them, using a metric known as Earth
Mover’s Distance (EMD) [35]. We calculate the distance
between the categories of queries assigned to the original
profile and the anonymized profile. As our classification of

categories is stored in a tree graph, this distance is defined as
the minimum length of the path that connects the categories
assigned to the original and anonymized query. Once we have
calculated the distance between individual queries, we add
all the distances of that profile and, thus, we obtain the total
distance between profiles.

Notice that if two queries are classified and anonymized
with the same category, there is no distance between the two
queries and there is no utility loss. This happens to all the
queries when the depth of the tree is set to 13. However, other
tree depths can lead to utility loss. For instance, in the exam-
ple of Table 2, ‘‘piano’’ is classified as ‘‘Arts/Music’’ but the
anonymizer is just using ‘‘Arts’’, since the value of ` is equal
to 1. Queries classified as ‘‘Arts/Music’’ and ‘‘Arts/Painting’’
are mixed in ‘‘Arts’’ and assigned to different users. A third
party could think that Alice is interested in ‘‘Painting’’, when
she is just interested in ‘‘Music’’. i.e., there is a certain degree
of utility loss. Since the third party still knows that Alice
is interested in ‘‘Art’’, we can see the previous case as an
example of partial utility loss. Therefore EMD represents the
distance between the original user’s interests, and the ones
that are deducted from the anonymized queries.

In Figure 10, we can see the average value of the EMD dis-
tances, as well as the maximum theoretical distance between
profiles using the chosen categorization. This theoretical
maximum distance is constant, regardless of which ` and
k values we use. The real distance we get is not affected
by k , but is inversely proportional to `. This means that
the more levels we use in our anonymizer, the closer the
anonymized queries get to their original category and we
obtain a better data utility. In Figure 10, we can see the loss of
utility expressed as a percentage. Using this metric, it can be
seen that with ` = 1, loss of utility is over 40% on average.
With ` = 6, the loss of utility is near to 0%, according to our
definition of utility.

E. FUNCTIONAL STUDY
Next, we detail the accomplishment of proposed functional
requirements.

1) MODULARITY
To allow a modular system, this has been designed as a set
of micro-services. As our proposal uses micro-service archi-
tecture, it will be easier to modify and adapt when applied
to different environments. In addition, this design helps each
service to focus only on a specific process. By doing so,
we achieve a system with low coupling and high cohesion.
The anonymization service has been thoroughly explained.
This service can be connected to other modules such as
categorization and profile creation.

2) SCALABILITY
The proposed system can be scaled, both vertically and
horizontally. Vertical scalability is achieved by varying the
number of resources assigned to the system. These resources
can be added either in form of memory or CPU cycles.
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FIGURE 10. (a) Maximum theoretical distance between profiles, constant, and average EMD
distances, inversely proportional to `. (b) Loss of utility (%), the more levels we use in our
anonymizer, the better data utility.

Horizontal scalability can also be achieved by activating or
deactivating different instances in parallel. In addition, with
the proposed anonymizer, the value of k could be dynamically
adjusted, which also allows to improve the scalability of the
system using it in a wider range of situations.

3) SPEED
Speed of the anonymizer and deanonymizers was tested.
All the results that are shown correspond to the time required
to completely treat a query using a single thread of execution
on a single core. All the proposed algorithms can be used in
parallel, achieving a better system throughput.

The fastest execution was achieved with k = 3 and ` = 1,
where on average a query was processed in 18.99 µs. There-
fore, the system can handle up to 52659 queries per second,
on average.

Average processing time per query was 33.68µs, or 29691
queries per second. It includes executions with all the k and
` values we have tested. Compared to our previous proposal
where we obtained 22 µs per query, we see that the system
is slower on average, but with greater data utility. However,
depending on which parameter values are used, the system is
faster than our previous proposal, as described below.

Speed of the anonymizer is affected by k and `. If we
look at Figure 11, we can see that changes in the value of
` have little effect on required time. Contrarily, changes in
the value of k have an important effect. For example, for
k = 3 the system can process a log in about 18.99 µs. This
value reaches 49.71 µs with a a value of k = 190. Taking
into account that Google treats an average of 40000 queries
per second (cf. Ref. [36] and citations thereof), a thread of our
algorithm could handle all real-time queries, using k-values
up to 50 with any value of `, according to our test results.

The same analysis has also been done with proposed de-
anonymization algorithms. Results can be seen in Figure 12.
The first de-anonymizer approach obtained results compa-
rable to the anonymizer. This was expected since in both
cases the same base algorithm was used. Second and third de-
anonymizers, which perform more complex operations, are
also slower and more affected by increases in k-values. In all
cases, we see that variations of `-values are less important.

FIGURE 11. Anonymizer mean time per query (µs). `-value has little
effect on required time, k-value has a greater effect.

4) DELAY
Another factor that we consider important to evaluate is the
average delay of queries between entering and leaving the
system in form of anonymized query logs. Figure 13 shows
this delay as the mean number of other queries that enter the
system during the period between the entry and the release
of a given query. As we can see, this delay is increased pro-
portionally to the chosen `-value, but it ends up stabilizing.
This is reasonable, since the system needs to fill categories
initially and once this happens, the output stabilizes.

Taking as reference the 40000 queries per second that
Google receives (according to Ref. [36]), we see that our
system’s output stabilizes in a few minutes for larger values
of `. Once the delay is stable, our system takes less than
one second for values ` ≤ 6, and does not reach two seconds
for larger values of `.

5) RESOURCE CONSUMPTION
Notice that our algorithms do not use any disk space, there-
fore only memory consumption needs to be evaluated.
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FIGURE 12. De-anonymizer mean time per query (µs). First de-anonymizer obtained comparable results to the anonymizer. Second and third
de-anonymizers, which are more complex, are also slower and are more affected by increases in k-value.

FIGURE 13. Queries delay, as the mean number of other queries that
enter the system during the period between the entry and the leave of a
given query. Once the categories are full, the output stabilizes.

We have identified the variations in `-value as the main
parameter that affects resource consumption. Memory con-
sumption increases when a new level of depth is added to the
tree, in proportion to the number of effective categories that
are added (cf. Table 3). Categories were created dynamically,
depending on query’s classification, therefore a different data
set will generate different categories. At the end of our tests,
we used amaximumof 194505 categories, in a treewith depth
thirteen.

With our test data, we see that most records are classi-
fied at depths between five and seven, although we found
a maximum depth of thirteen. As we increase depth, there
are fewer queries that can be classified at the last levels,
using the same data and the same classifier. Although we
increase the value of ` the effective number of categories
created is marginally increased from this point. This also
causes memory consumption to stabilize. Let us illustrate
the previous observation with an example. Given a query

TABLE 3. Number of categories added with each increase in `-value and
total categories of a tree with ` depth. Although we found a maximum
depth of thirteen, we see that most records are classified at depths
between five and seven.

classified as ‘‘a:b:c:d:e’’ if we use an ` equal to 4, the level 4
vertex ‘‘a:b:c:d’’ is used for anonymization. If we increase `
to 5, or a higher value, we use for anonymization the complete
category, i.e. level 5 vertex ‘‘a:b:c:d:e’’, even if we use an
` = 13.
On the other hand, we can see that k adds a multiplica-

tive factor in the consumption of resources, depending on
the number of existing effective categories. The results in
Figure 14, only show the maximum memory consumption.

Regarding different algorithms set forth, both anonymizer
and de-anonymizer 1 show the same memory consumption
profile. De-anonymizer 3 is the algorithm with higher mem-
ory consumption. This is because that algorithm creates user
profiles in memory and therefore is reasonable that it uses
more resources. Anonymizer and de-anonymizers 1 and 2
should not use more memory than the reported, regardless
of the volume of logs they deal with. However, this is not the
case of deanonymizer 3, as when it creates new user profiles,
it increases the memory consumption.

6) EFFICIENCY
As we have seen in the previous sections, a lightweight
method has been defined. It allows the logs to be quickly
processed with reduced resource consumption.
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FIGURE 14. The value of ` is the main parameter that affects memory consumption. The value of k adds a multiplicative factor. Both the anonymizer and
de-anonymizer 1 show the same memory profile. De-anonymizer 3 is the algorithm with higher memory consumption, because it creates user profiles in
memory.

FIGURE 15. Classification of web search Privacy Enhancing Technologies (PETs).

Studying the anonymizer we see that both delay and mem-
ory consumption vary initially, because the system starts
empty and the sets must be filled. As we have seen, once the
sets achieve k elements, these values stabilize. On the other
hand, the processing speed of a log depends on the value of k
and `, but it remains constant throughout each test set.
Analyzing the proposed algorithm, we can see that each log

is only treated once. This allows us to equate its efficiency
with well known singly-linked list traversal algorithms.
Therefore, the algorithmic time complexity of our proposal is
linear regarding to the input and could be established asO(n).

7) TRANSPARENCY
The input of the system should be a stream of classified query
logs that can be obtained from the WSE. In case that only
unclassified logs are available, a classification micro-service
could be implemented and added to the WSE architecture,
as we previously showed in Ref. [28]. In case that classified

logs are available, those logs could be used without further
modifications. Our system generates an anonymized stream
of logs, preserving the existing structure. From the point of
view of an existing client, generated output will be completely
indistinguishable of the original one. Therefore, total trans-
parency is reached.

V. RELATED WORK
Ourwork relates to the use of privacy-enhancing technologies
(PETs) applied to the web search paradigm. Figure 15 shows
and positions a classification of PET proposals designed
to protect the users’ privacy in front of WSEs — on the
basis of previous classifications [37]–[39]. The classifica-
tion identifies two main actors: users and WSEs. The first
group contains proposals that protect users’ privacy at the
WSE side, without the need for users’ participation. They
are asynchronous and transparent to the users. Our proposal
falls under this first category. The second group includes
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approaches that protect users’ privacy without any help from
the WSE, i.e., when users do not require any changes at
the server side of the WSE. The third group comprises
approaches that require a certain level of cooperation between
users and WSEs. The latter are not considered as server-side,
since users actively participate in the process — when WSEs
do not cooperate, it is assumed that users immediately detect
them. In the sequel, we report related work under all three
categories.

A. SURVEY ON SERVER SIDE PROPOSALS
WSEs aim at anonymizing data while minimizing informa-
tion loss, for profit purposes. Our work is focused on this
assumption. The goal is to commercialize releases of the
protected set of query logs to third-parties. Anonymization
solutions to reach such a goal can get classified according to
anonymizaiton inputs. Most solutions are either processing
fixed-length (e.g., block-based) or data-stream inputs.

1) FIXED-LENGTH INPUTS
In the case of fixed-length inputs, existing proposals consider
a set of finite and static data structures. Each set contains all
the elements to be anonymized. The protection of the whole
dataset is conducted as a two-step process, first analyzing all
the dataset elements, then processing them. Some represen-
tative solutions under this category are presented next.

a: SUPPRESSION
The anonymization of the dataset is conducted by eliminating
those elements which, in isolation or combination, may reveal
sensible information. The analysis of the dataset assumes
either statistic or semantic methods, to identify which ele-
ments require suppression.

Examples of suppression under the context of query logs
anonymization exist in the related literature [40]. The dele-
tion of identifiers such as social security numbers, physical
addresses, bank accounts or any another identification data
related to the user, are traditional examples of suppression in
the literature [41]. Nevertheless, the AOL incident reveals the
limitations of this approach [22]–[24]. The existence of quasi-
identifiers in the AOL dataset, and the complexity of identi-
fying their combinations, were proven enough to re-identify
AOL users via traditional log correlation techniques [21].

The suppression of infrequent queries is another
approach [13]. It aims at suppressing those queries that are
likely to contain identifying or quasi-identifying information.
The approach requires the definition and accomplishment of
thresholds. Since queries may appear only a limited num-
ber of times [14], the elimination of a significant number
of non-identifying queries becomes a complex and error-
prone task. The approach can be complemented by selecting
those queries resulting from clicking on common URLs,
i.e., by establishing a correlation between clicking and quasi-
identifiers [10]. Another possibility is the representation of
query logs using graph theory [9]. Nodes are seen as user
queries. A query is connected to other user queries whenever

the intersection of their clicked URLs sets is non empty.
The anonymization process is done by iteratively suppressing
those queries that return less than k documents. Those queries
that considerably contribute to the query graph (i.e., queries
with partial or full target URLs) are considered vulnerable
and suppressed.

b: GENERALIZATION
Another approach used to provide anonymity is based on
the generalization of domain relationships, i.e., by analyzing
the values that the associated attributes can assume. The
concept of minimal generalization seeks to maintain the low-
est possible distortion levels of the processed datasets [42].
Top-down approaches, using lexical and semantic databases
to conduct general-purpose generalizations have also been
proposed [43], [44]. The idea is to transform groups of input
queries to common conceptual abstractions (e.g. football and
tennis as sports), in order to make users who performed simi-
lar queries indistinguishable. The main limitations associated
to these approaches rely on the construction of generic dic-
tionaries associated to those words or concepts to anonymize.
This may require, moreover, specific adaptations based on the
language used on the original datasets.

c: K-ANONYMITY
The property of k-anonymity [27] was proposed to mini-
mize the risk of record-linkage. A k-anonymized dataset has
the property that each record is indistinguishable from at
least k − 1 other records. This way, no individual can be
re-identified with probability exceeding 1

k through linking
attacks.

Current approaches propose methods of Statistical Disclo-
sure Control (SDC) to transform query records into anony-
mous logs, while reducing the amount of query deletion
[45], [46]. Logs of similar queries are used to group users,
and later their queries are rewritten by a prototype query. This
makes them indistinguishable [47]–[51]. Users and queries
are conserved, although queries are transformed to reduce
the risk of disclosure. Similar approaches propose the gen-
eration of fake messages to mix them with the legitimate
ones [52] or masking infrequent queries using a more general
frequent query [53] to achieve levels of privacy comparable
to k-anonymity.

d: DIFFERENTIAL PRIVACY
Initially described as a solution to manage the risk of iden-
tifying users participating in a given dataset [54], interactive
scenarios of the same approach do also exist [55]. The initial
scenarios associated to differential privacy expect queries
accessing partial information of the dataset. However, when
intelligently conducted, such queries may end up revealing
information from the original users. For that reason, interac-
tive improvements are expected to evaluate how far queries
get through, to deny responding whenever a limit is bypassed.
Since the protected outputs may still preserve some statistics
(e.g., query suggestions and spelling corrections), extended
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proposals aim at further limiting the risk of information dis-
closure in such returned statistics [10].

Authors in [56] propose a technique in which samples
with high utility are selected to become the representative
records in each cluster, i.e., to achieve the objective of leaking
less privacy and releasing more useful information. Other
proposals [57], [58] pose the addition of Laplacian noise to
the logs, to preserve privacy. However, the more noise is
added, the more data utility gets reduced.

2) DATA-STREAM INPUTS
This approach allows to treat data partially. The system does
not need all the data to start dealing with. It also makes
possible a partial treatment of the data. This approach is able
to generate data outputs with a minimum delay [59]. In addi-
tion, it also opens the doors to deal with very large datasets,
even infinite ones. Still, protecting the privacy of very large
data streams continues to have some difficulties [60]. Next,
we survey some representative solutions under this category.

a: RANK SWAPPING
The method was first described for numerical variables [61],
although initial ideas associated to swapping data exist in
other previous areas [62]. We can also find other approxima-
tions [63], [64]. In all such cases, the proposals only consider
structured data. This is because the data is sorted by the value
of an attribute and then exchanged with a randomly selected
value (the nearest ones in the rank) [65].

b: DIFFERENTIAL PRIVACY
The differential privacy approach can also be applied to
anonymize data-streams [66]. In this case, there is no release
of the original query, but a synthetic one, obtained using
semantic similarity. The lack of structure in query logs,
combined with new terms which may not be present into
the semantic database, could represent a challenge for this
approach. Another limitation using differential privacy in a
streaming environment is to maintain a fixed privacy level.
It is possible that no more data can be published in order to
preserve the privacy of users.

c: PROBABILISTIC K-ANONYMITY
The concept of probabilistic k-anonymity relaxes the indistin-
guishability requirement of k-anonymity [67]. It only requires
that the probability of re-identification is maintained, with
regard to the case of k-anonymity. By relaxing the indis-
tinguishability requirement, a better use of the data may be
accomplished. Moreover, logs can be released containing the
original queries. On the negative side, given the continuous
generalization of unstructured dataset elements, a certain
imprecision is added to the generated profiles. Existing lim-
itations in the related literature [28], [68] is in terms of clas-
sification methods, which are very basic. Hence, the number
of resulting categories is low, leading to higher degrees data
utility loss.

B. SURVEY ON CLIENT SIDE PROPOSALS
One may argue that WSEs have no motivation to protect
the privacy of users. Indeed, users may be seen as the only
interested party responsible to protect data privacy. Under
this assumption, we find some protection approaches which
do not expect any collaboration between WSEs and users.
Such approaches can be classified in two main categories:
i) obfuscation techniques and ii) anonymous channels.
Obfuscation techniques generate noise to distort the user’s
profile managed by the WSEs. Anonymous channels assume
an infrastructure between users and WSEs to handle the
profiling of activities. The use of client side techniques are
assumed to generate non-realistic profiles that may have an
adverse effect on the services provided by WSEs.

1) OBFUSCATION TECHNIQUES
Early techniques assume the introduction of random queries
(e.g., fake queries), in order to obscure users’ profiles.
Random queries must be indistinguishable from the real
queries. This property is known as unobservability. Repre-
sentative solutions based on obfuscation techniques can be
classified according to the number of users that participate
in the protocol. We have standalone solutions and distributed
solutions. Standalone solutions assume individual users han-
dling their own privacy in front of the WSEs. Distributed
solutions assume groups of users working together to protect
the privacy of each user. Next, we provide some examples for
each category.

a: STANDALONE SYSTEMS
These schemes generate synthetic queries that are used to
hide the real queries of the users [47], [69]–[76]. Synthetic
queries are submitted together with the real queries, obfus-
cating the profiles that the WSE owns for each user. If the
synthetic queries are in some way semantically related to
the user’s queries, the obfuscated profile will still be usable,
i.e., the WSE will be able to personalize the user’s results.
When the synthetic queries are semantically unrelated to
the user’s queries, the profile will be heterogenous and the
personalization will be less accurate. This does not mean
that one alternative is better than the other, since users may
have different preferences regarding of the trade-off between
privacy and utility. Some works show that it is possible to dis-
tinguish real queries from synthetic queries [73], [77]–[79].
These works rely on the idea that machine-generated queries
do not have the same features as human-generated queries.

b: DISTRIBUTED SYSTEMS
These schemes require the collaboration of a group of users
that work in partnership to protect their privacy, i.e., they
hide their actions within the actions of many others [80]–[86].
Typically, these schemes put users into a large group where
they submit requests on behalf of other members. Users
exchange their queries. Personalization is only possible if the
members of the group share the same interests [37]. In some
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proposals [80]–[82], there is a central node that poses a
bottleneck in the overall system performance. In other cases,
one type of path [80], [83]–[86] is created to submit the query
or a group of users must be created [80]–[82]. In both cases,
a significant delay is introduced [37].

2) ANONYMOUS CHANNELS
The proposals under this category use anonymous infrastruc-
tures [87], [88] in order to send users’ queries to the WSE.
By concealing users’ identity associated to the queries, WSEs
are assumed to be unable to profile users. However, this may
affect the quality of the service offered by the WSEs to the
users.

Chaum’s mix networks [89] are representative cases
of solutions under the category of anonymous channels.
Messages pass through several nodes. Each node disassoci-
ates the input messages from the output messages, by means
of cryptography [87], [88]. Evolved techniques assume the
use of proxies [90], relying connections (e.g., queries) from
users to the recipients (e.g., the WSEs). The key concept is
that proxy delivers the messages but does not disclose the
source (e.g., the user’ identity). DuckDuckGo,1 Start Page2

and Yippy3 are some significant examples using proxy-like
infrastructures. By using these solutions, users transfer their
trust from WSEs to the proxies (i.e., users must assume that
proxies do not monitor or log their traffic).

Web MIXes [91] provides anonymous and unobservable
real-time Internet access. It incorporates an authentication
mechanism in order to prevent flood attacks. Additionally,
it includes a feedback system with an interface that informs
users about their current level of protection. However, some
flaws in their authentication process may allow external
attackers to perform replay attacks [92]. The synchronous
nature ofWebMIXes may also end in problems when dealing
with asynchronous TCP/IP networks [93].

The use of onion routing [94] to establish anonymous
channels under the context of queries and WSEs has also
been proposed in the literature [95]. General purpose plugins,
and modified web-browsers4 using the Tor Project [96], are
user-friendly solutions based on the onion routing paradigm.
Nonetheless, several weaknesses have been reported [97].
Tor does not attempt to offer security against passive global
adversaries [88]. Similarly, the Invisible Internet Project
(I2P) [98] builds an anonymous network layer designed to
be used for anonymous communication.

C. SURVEY ON COLLABORATIVE WSE-CLIENT PROPOSALS
Solutions under this category assume that users and WSEs
work together in order to protect users’ privacy. Next,
we report solutions under this category in three main groups:

1https://duckduckgo.com/
2https://www.startpage.com/
3https://www.yippy.com/
4https://gitweb.torproject.org/tor-browser.git/

i) Private Information Retrieval; ii) Platform for Privacy Pref-
erences (P3P); and iii) Context-based Retrieval.

1) PRIVATE INFORMATION RETRIEVAL
Private Information Retrieval (PIR) schemes [99]–[102]
enable users to obtain information from a database privately,
i.e., the server cannot know what information was retrieved.
Through a PIR scheme, users can search the documents stored
in the database and recover those of their interest. The prob-
lem of submitting a query to a WSE while preserving the
user’s privacy is equivalent to the PIR problem. However, PIR
schemes suffer from two practical problems that make them
not appropriate for WSEs [81]: PIR schemes are not suitable
for large databases, and users are assumed to know the precise
location of the records to be recovered.

2) PLATFORM FOR PRIVACY PREFERENCES (P3P)
The Platform for Privacy Preferences (P3P) [103], [104] was
created by the World Wide Web Consortium (W3C) with the
objective of making easier for users to obtain information
about the privacy policies of the sites that they visit. P3P is a
framework through which users can automate the protection
of their privacy. They can define their privacy preferences
and, when a website does not conform to these preferences,
then P3P-enabled browsers may alert the user and even take
pre-established actions (e.g., deny access to cookies). The
Do-Not-Track initiative [105] is a policy-based P3P system
in which HTTP headers request web applications not to track
users. The web application must be P3P-complaint in order to
be effective. It has been studied in several works [106]–[108]
and standardized by W3C. However, it is considered as an
obsolete protocol nowadays. In fact, P3P-like solutions have
been criticized due to the impact that governmental laws may
have over users [109], the lack of follow-up from websites
w.r.t. privacy-protection mandates in their legal jurisdictions
(e.g., compliance difficulties of websites to enforce their
own privacy policies) [110], and low number of potential
adopters [111].

3) CONTEXT-BASED RETRIEVAL
Context-based retrieval proposals aim at storing user profiles
(e.g., search history) on the client’s machine. This informa-
tion allows to obtain users’ interests and re-rank search results
according to them. WSE and users participate together in the
searching process in order to obtain the final results, i.e., the
WSE receives the query and returns the results. Then, these
results are re-ranked at the client-side. The User-Centered
Adaptive Information Retrieval (UCAIR) project [112] col-
lects and exploits available user context from submitted
queries and clicked results. Similar schemes allows users to
choose the content and degree of details of their profiles
exposed to the WSE [4], [113], [114]. In the end, users deter-
mine the profile content that is revealed to the WSE when a
query is submitted. The adjustment of parameters associated
to the stored profiles is possible, in order to improve the qual-
ity of the results. Potential disadvantages of these proposals
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relate to performance and effectiveness limitations of results
ranked at the client (i.e., much less effective than ranking the
results at the server side) [112]. Moreover, it is expected that
WSEs can still profile users after several executions of the
approach.

VI. CONCLUSION
A formal approach for the anonymization of WSE query logs
has been presented. Our proposal allows to publish query logs
without any other modification than eliminating direct identi-
fiers and equivalent user re-assignment categories. This con-
trasts with existing approaches that release heavily modified
data, either distorted or generalized, to maintain anonymity.
In addition, our proposal allows some degree of configura-
tion, using two main parameters:
• k to adjust the level of diversity on each category.
• ` to adjust the amount of available categories.

This parameterization allows to adjust privacy and utility
levels of generated logs according to the needs of each
application.

Three algorithms have been evaluated performing an attack
to the anonymized data, using the most favorable scenario for
the attacker, i.e., when the attacker knows the algorithms used
by the WSE, all the parameters and the data. The attacker has
access to the anonymized log stream, but not to the original
logs. Tests with this context and several values of k and `were
conducted.

Our best record-linkage attempt re-identified 23.18% of
original logs with the lowest k-value, highest `-value and
using the most complex record-linkage algorithm, which is
also the one that needs more resources. With the same param-
eters, using the simplest record-linkage algorithm we get an
18.36%. These results are reduced rapidly, recovering less
than 1% of original logs when using values of k over 100.
Variations in the values of ` do not have a representative
impact in terms of record linkage, but they do offer a sig-
nificant improvement in terms of data utility.

Our proposed ideas were tested using the AOL released
logs, showing the feasibility of our solution over real envi-
ronments. The application of our work is sufficient to gen-
erate anonymized logs that meet representative criteria, e.g.,
release of anonymized data to third parties. Our solution can
handle the equivalent to Google’s average load, using only
one execution thread per testing environment. To evaluate
log’s utility after anonymization, we have measured distances
between user profiles using Earth Mover’s Distance. We have
found that using an `-value of one, a 42.03% of utility was
lost. Using `-values of six or more, less than 1% of utility
was lost.

There are several avenues for improving our work.
Additional categorizers may be proposed, for example using
artificial intelligence systems to perform query analysis.
Another improvement is to consider dynamic `-values, both
globally or for some specific category branches. System per-
formance could also be tested in a distributed node environ-
ment, where each node is responsible for processing a part

of the queries. A real-time record linkage analysis could be
added to ensure that we only publish records that meet a cer-
tain threshold of privacy. Finally, some experiments could be
conducted with queries’ time, both with anonymization and
de-anonymization algorithms, to improve their performance.
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