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ABSTRACT Design of modern antennas relies—for reliability reasons—on full-wave electromagnetic
simulation tools. In addition, increasingly stringent specifications pertaining to electrical and field perfor-
mance, growing complexity of antenna topologies, along with the necessity for handling multiple objectives,
make numerical optimization of antenna geometry parameters a highly recommended design procedure.
Conventional algorithms, particularly global ones, entail often-unmanageable computational costs, so alter-
native approaches are needed. This work proposes a novel method for cost-efficient globalized design
optimization of multi-band antennas incorporating the response feature technology into the trust-region
framework. It allows for unequivocal allocation of the antenna resonances even for poor initial designs,
where conventional local algorithms fail. Furthermore, the algorithm is accelerated by means of Jacobian
variability tracking, which reduces the number of expensive finite-differentiation updates. Two real-world
antenna design cases are used for demonstration purposes. The optimization cost is comparable to that of
local routines while ensuring nearly global search capabilities.

INDEX TERMS Antenna design, input characteristics, EM-driven design, trust-region methods, response
features.

I. INTRODUCTION
Rapid development of cutting-edge technologies (e.g., 5G [1],
internet of things [2], or wearable devices [3], including
those for tele-medicine purposes [4]), leads to increasingly
exacting requirements imposed on contemporary antenna
structures. Among these, demands for miniaturization [5],
multi-functionality [6], or multi-band operation [7] can be
listed. In consequence, the complexity of the antenna geome-
tries grows steadily, along with the number of design vari-
ables required for their parameterization. Satisfying stringent
specifications pertaining to electrical and field performance
while maintaining small antenna footprints makes the design
closure task a truly challenging endeavor. Because simpler
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models, such as equivalent networks, are either unavailable
or unreliable, full-wave electromagnetic (EM) tools have
become mandatory.

Unfortunately, EM-driven design optimization in multi-
dimensional parameter spaces is inevitably associated with
massive EM simulations generating considerable CPU costs.
This is the case even for local methods (gradient [8] or pattern
search algorithms [9]), let alone global algorithms, nowa-
days extensively utilizing population-based metaheuristics
(genetic algorithms [10], differential evolution [11], or par-
ticle swarm optimizers [12]).

To lessen the computational overhead, various approaches
have evolved in the recent years. In the context of gradient-
based algorithms, adjoint sensitivities constitute an attrac-
tive way of accelerating the design process [13], [14]. Yet,
for the time being, only a few high-frequency simulation
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packages (e.g., CST Microwave Studio 2018 [15]; ANSYS
HFSS 2019 [16]) support this technology. Another approach
includes surrogate-based optimization (SBO) techniques,
widely applied in antenna design [17]. The SBO routines
exploit fast replacement models (surrogates) that can be
of one of the two types: data-driven and physics based.
The numerous examples of the data-driven surrogates (also
referred to as approximation models) comprise polynomial
regression [18], artificial neural networks [19], radial basis
functions [20], kriging [21], support vector regression [22],
Gaussian Process regression [23], or multidimensional ratio-
nal approximation [24].

The primary advantages of the approximation models are
their versatility and low evaluation cost. The surrogate is set
up with the sole usage of the sampled data acquired from the
system of interest; virtually no physical insight is required.
Unfortunately, a usable predictive power of the surrogate
can only be secured if the design space is sampled with
sufficient density, necessary to account for the system output
variations within the model domain. For this reason, usually
large training data sets are required to construct functional
surrogates, rapidly increasing with the number of antenna
parameters (so called curse of dimensionality [25]). In prac-
tice, construction of the surrogates in parameter spaces of
high dimensions can be successfully conducted only if the
system outputs are weakly nonlinear. This is not the case for,
e.g., multi-band antennas of sharp, resonant-like responses.
Even more importantly, in real-world engineering applica-
tions, for the model to be truly useful for design purposes,
it has to cover wide ranges of parameters [26], [27]. Satisfying
this demand is challenging as the characteristic features of
the responses, such as frequency allocation of the resonances,
change rapidly across the design space [28], [29].

Whereas, in the construction of the physics-based surro-
gates, a system-specific knowledge is exploited [30], usually
in the form of a simplified physical description of the system
at hand. SBO techniques involving physics-based surrogates
encompass, among others, space mapping [31], response
correction algorithms [32], feature-based optimization [33],
or adaptive response scaling [34]. In the case of antennas,
the main disadvantage of the physics-based surrogates is
that—due to the lack of alternatives—they are primarily
obtained through coarse-mesh EM analysis and are therefore
quite expensive. As a result, computational efficiency may be
more problematic to secure even for SBO processes.

Here, a novel framework for expedited EM-driven design
closure of multi-band antennas is proposed. The key concept
is an application of the two mechanisms: (i) cost-effective
trust-region (TR) gradient search with tracking of Jacobian
variation throughout the optimization run, along with (ii) the
response feature technology [35]. In the former procedure,
the response gradient changes are monitored. Upon discov-
ering stable sensitivity patterns, CPU-intensive finite dif-
ferentiation (FD)-based gradient updates are omitted for a
specific number of iterations proportional to the magnitude
of the gradient difference. The response feature technology

globalizes the search process by exploiting the frequency and
level coordinates of the selected characteristics points rather
than the entire antenna responses. This has an effect of ‘‘flat-
tening’’ the functional landscape handled by the optimiza-
tion process. The proposed framework is demonstrated using
the dual- and triple-band uniplanar antennas. The results
confirm that positioning of the antenna resonances can be
achieved in a numerically effective manner even starting
from poor initial designs where conventional local optimizers
are prone to failure. The major contributions of this paper
include: (i) incorporation of the response feature technol-
ogy into trust-region gradient-based optimization framework,
(ii) development of reduced-cost trust-region algorithm based
on Jacobian variability monitoring, (iii) comprehensively
demonstrated quasi-global search capabilities for multi-band
antennas, (iv) demonstrated computational efficiency of the
proposed framework, which is comparable to that of local
search procedures (thus, dramatically lower than for routinely
used population-based metaheuristics).

II. QUASI-GLOBALIZED FEATURE-BASED ANTENNA
OPTIMIZATION WITH JACOBIAN
CHANGE TRACKING
This section describes the two major components of the pro-
posed framework, i.e., the response feature technology and
the accelerated trust-region gradient algorithm with Jacobian
change monitoring. The combination of the two techniques
allows for a cost-efficient and quasi-global optimization of
multi-band antennas as demonstrated by the numerical stud-
ies of Section III.

A. FEATURE-BASED OPTIMIZATION OF
MULTI-BAND ANTENNAS
Fulfilling stringent specifications imposed on electrical and
field antenna characteristics requires careful tuning of its
geometry parameters. This process is referred to as the design
closure and its ultimate goal is to improve the performance
of the device at hand according to the selected quality metric,
typically being a scalar function of the parameters. In the case
of multiple performance figures, the objectives may be aggre-
gated or handled through explicit or implicit constraints [36]
(genuine multi-objective design, as in [37], is not considered
here). A design closure problem is formulated as

x∗ = arg min
x
U (R(x)) , (1)

where R denotes the EM-simulated antenna response,
with x ∈ Rn being a vector of geometry parameters.
In antenna design, R(x) usually refers to antenna character-
istics (e.g., reflection coefficient, gain, axial ratio, or radia-
tion pattern) that are of interest in a given design context.
For multi-band antennas considered in this paper, a typical
design problem is a frequency allocation of the antenna res-
onances and/or maximization of the fractional bandwidth at
the desired operating frequencies. Here, the former case is
considered and the adopted scalar objective function U is
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formulated as follows

U (R(x)) = max
f ∈F
|S11(x, f )|, (2)

where S11(x, f ) denotes the antenna reflection being a func-
tion of x and frequency f , whereas F stands for the frequency
range of interest. Local optimization routines with the objec-
tive function U formulated as in (2), may or may not succeed
in finding the optimal solution depending on the quality of
the initial design. In particular, due to high nonlinearity of
antenna responses, especially for multi-band structures, the
allocation of resonances at the initial design is critical for the
success of the local search. Some typical scenarios have been
illustrated in Fig. 1.

FIGURE 1. Exemplary reflection characteristics of (a) dual- [39]) and
(b) triple-band antenna [40] at three different designs; characteristic
points corresponding to the coordinates of the antenna resonances
marked with (o); intended operating frequencies marked with vertical
lines. Local (gradient-based) optimization routines starting from the
designs (- - -) and (—) fail in the case of minimax formulation of the
objective function as in (2). Local optimization involving response
features finds satisfactory design starting from all the presented designs:
(- - -), (—) and (...).

Employing global optimization routines to solve the
antenna design closure task is associated with a high
computational cost that can be conveniently reduced with
the response feature approach [35]. Let us consider, for
the illustration purposes and without losing generality, the
feature points corresponding to the antenna resonances,
i.e., RF (x) = [f1(x) f2(x) . . . fp(x) l1(x) l2(x) . . . lp(x)]T , where
fk and lk refer to the frequency and level coordinates of
the respective p antenna resonances. The dependence of the
feature point coordinates on the design variables is notably
less nonlinear than for the responses themselves [35].

This is the reason for which, in most cases, a local search
brings satisfactory designs even starting from poor initial
ones, where the routines solving the problem (1) and (2) may
fail. It should be emphasized that for the response-feature
approach towork, it is sufficient that the initial design exhibits
all the necessary features (i.e., clearly distinguished reso-
nances in the case of amulti-band antenna), regardless of their
specific frequency allocation or the levels.

The antenna design problem may be reformulated for
the objective function UF (RF (x)) defined in terms of the
response features RF (x) in the following manner

x∗ = argmin
x
UF (RF (x)) . (3)

In the case of relocating the resonances to the target fre-
quencies of choice f0.k , k = 1, . . . , p, the objective function
UF is defined as

UF (RF (x)) = max{l1(x), . . . , lp(x)} +

+β||[f1(x) . . . fp(x)]− [f0.1 . . . f0.p]||2, (4)

with β being the scalar penalty factor. In this paper, the
antenna reflection is considered as the system output of inter-
est and the level coordinates are lk (x) = S11(x,fk ), k = 1,
. . . , p. In (4), minimization of the antenna reflection is the
primary objective, whereas the second (penalty) term permits
the control of the resonant frequencies of the antenna. The
penalty factor β controls the ‘hardness’ of the constraint,
i.e., it allows us to balance the contribution of the penalty
term (measuring the discrepancies between the target and the
actual operating frequencies of the antenna) and the primary
objective. In the numerical experiments of Section III, we use
β = 100 (note that frequencies are in GHz). This means
that noticeable contribution from the penalty term can be
observed for frequency deviations larger than 0.05 GHz or so.
It should also be noted that the particular value of the penalty
factor is not critical and the values from the range 10 to
500 could be used as well. If the bandwidth maximization
is of interest, the design task can be formulated similarly,
however, the response features corresponding to −10 dB
levels of the reflection characteristic have to be used.

B. TRUST-REGION SEARCH EXPLOITING JACOBIAN
CHANGES TRACKING
Here, the optimization procedure of choice to solve the
problem (3) is the trust-region gradient search algorithm
(e.g., [38]) that iteratively yields approximations x(i), i = 0, 1,
. . . , to the optimum design x∗. The flow diagram of the TR
procedure is shown in Fig. 2. In each i-th iteration, a linear
expansion model R(i)

lin of RF (x) is defined x
(i) as

R(i)
lin(x, f ) = RF (x(i))+ JF (x(i)) · (x− x(i)). (5)

FIGURE 2. Flow diagram of the trust region (TR) algorithm. The grey
boxes refer to the operations that are dissimilar for the conventional and
feature-based versions of the algorithm; both with and without Jacobian
change tracking.

Subsequently, the following sub-problem is solved

x(i+1) = arg min
x; −d (i)≤x−x(i)≤d (i)

UF (R
(i)
lin(x)). (6)
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In (5), JF (x(i)) = [∇f1(x(i)) . . .∇fp(x(i))∇l1(x(i)) . . .∇lp(x(i))]T

refers to the response feature vector Jacobian.
In addition, d(i) stands for the search region size

vector adjusted in conformance with the standard rules
(e.g., [38], based on the gain ratio ρ = (UF (RF (xtmp)) –
UF (RF (x(i))))/(UF (R

(i)
lin(xtmp)) – UF (R

(i)
lin(x

(i)))), where xtmp
is the candidate design obtained in the (i + 1)th iteration.
The inequalities –d(i) ≤ x – x(i) ≤ d(i) in (6) are to be inter-
preted component-wise. This is to ensure similar handling of
the variables with significantly different ranges, commonly
occurring in the antenna design.

Unless adjoint sensitivities [13] are readily available,
the Jacobian JR has to be estimated through finite differenti-
ation (FD) at the expense of n additional antenna EM model
simulations. In this paper, in order to lessen this cost, an expe-
dited procedure is utilized where some of the FD-based
Jacobian updates are omitted for the variables that exhibit
stable sensitivity pattern. The variations of the Jacobian JF
columns J (i)k = [g(i)k.1 . . .g(i)k.n]

T , k = 1, . . . , p, between
iterations are assessed by the following metric:

1
(i+1)
k =

1
2p

2p∑
j=1

(
2 ·

g(i)j.k − g
(i−1)
j.k

g(i)j.k + g
(i−1)
j.k

)
. (7)

In (7), averaging is performed over both the frequency and
level coordinates of all relevant feature points. Let us define
the following quantities:

• 1(i)
= [1(i)

1 . . .1(i)
n ]T – a vector of Jacobian change

factors at the i-th iteration;
• 1

(i)
min = min{1(i)

1 ,. . . , 1(i)
n }, 1(i)

max = max{1(i)
1 ,. . . ,

1
(i)
n };

N(i)
= [N (i)

1 . . .N (i)
n ]T – a vector of the numbers of upcom-

ing iterations without FD, calculated in the i-th iteration with
the use of the conversion function

N (i)
k =

[[
Nmax + a(i)(1

(i)
k −1

(i)
min)

]]
. (8)

with Nmin and Nmax being the algorithm control parameters
that refer to the minimum and the maximum number of
iterations without FD; and a(i) = (Nmax – Nmin)/(1

(i)
min –

1
(i)
max); where the nearest integer function is denoted as [[.]].

The flow diagram of the gradient update procedure has been
shown in Fig. 3.

In the proposed algorithm, the following rules apply:

1) Factors 1(i)
k are preserved throughout all iterations

without FD and employed to establish 1
(i)
minand

1
(i)
max(i.e., they affect N

(i)
k for other parameters);

2) N (i)
k is proportional to the magnitude of the gradi-

ent variation as assessed by the factors 1(i)
k . For

the variables featuring the smallest Jacobian changes
between subsequent iterations (1(i)

k = 1
(i)
min), the high-

est number of the suppressed updates is appointed
i.e.,N (i)

k = Nmax. Furthermore, following the definition
of the conversion function (8), the FD-based updates
are performed at least once per Nmax iterations;

FIGURE 3. Flow diagram of the gradient update procedure utilized for
both the conventional and feature-based optimization.

3) For the variables with the FD update, the components
N (i+1)
k of the vector N(i+1) are determined through the

conversion function (8); otherwise the previous number

of iterations is decremented, i.e., N (i+1)
k = N (i)

k – 1.

TABLE 1. Taxonomy of considered optimization procedures.

In Table 1, a comparison of the main properties of
the four algorithms considered in the paper is provided.
Algorithms 1 and 2 are the conventional (with full FD
Jacobian update) and the expedited TR routines, respectively,
both solving a conventionally formulated problem (1). Algo-
rithms 3 and 4 are, respectively, the conventional and the
expedited versions solving the design task formulated in
terms of the response features. Algorithms 1 through 3 are
used for benchmarking purposes. The principal differences
in operation of the fours algorithms include (see also Fig. 2):

1. Calculation of the Jacobian: either in terms of the entire
response (Algorithms 1 and 2) or the response features
(Algorithms 3 and 4);

2. Jacobian update procedure: either solely FD-based
(Algorithms 1 and 3) or performed according to the
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gradient change tracking procedure (Algorithms 2
and 4).

The proposed algorithm involving the gradient change con-
trol (this pertains to both Algorithm 2 and 4) operates as the
reference algorithm merely in the first two iterations, when
the Jacobian is estimated through FD. Full Jacobian data is
required to determine the initial values of the factors 1(i)

k .
Subsequently, FD is only applied to the components Jk of JF
selected according to the sensitivity patternmeasure; for other
parameters, the former values of the factors 1(i)

k are retained
(cf. Fig. 3). The numerical results gathered in Section III con-
firm that the proposed procedure secures considerable CPU
cost savings. At the same time, a global search capability is
maintained.

FIGURE 4. Benchmark uniplanar dipole antenna structures used for
verification of the proposed algorithm: (a) dual- [39] and
(b) triple-band [40] antenna.

III. VERIFICATION CASE STUDIES
This section provides a numerical verification of the proposed
optimization framework and comparisons with convention-
ally formulated (not feature-based) procedures. The perfor-
mance of the adopted approach is verified by analyzing the
results obtained formultiple independent algorithm runs from
random initial designs. Our benchmark set comprises two
antenna structures: dual- [39] and triple-band [40] uniplanar
dipoles shown in Fig. 4. Both structures are implemented
on the RO4350 substrate (εr = 3.48, h = 0.762 mm)
and fed by a coplanar waveguide. The geometry of the
dual-band antenna (Antenna I) is described by the parameters
x = [l1 l2l3w1w2 w3]T , with the following variables fixed
l0 = 30, w0 = 3, s0 = 0.18 and o = 5 (all dimensions
in mm). The antenna is supposed to operate at the center
frequencies of 3 GHz and 5.5 GHz. The triple-band antenna
(Antenna II) is described by the design variable vector x =
[l1l2l3l4 l5w1w2w3 w4w5]T ; with l0 = 30, w0 = 3, s0 =
0.15 and o = 5 being fixed (all dimensions in mm). The
antenna is supposed to operate at the center frequencies
of 2.45 GHz, 3.6 GHZ and 5.3 GHz. The EM antenna models
are implemented in CST Microwave Studio and simulated

TABLE 2. Optimization results for antenna I.

TABLE 3. Optimization results for antenna II.

using its time-domain solver. Here, both antennas have been
merely used for verification of the proposed framework, and
no novel topology is introduced. The experimental validation
of dual- and triple-band antenna structures can be found
in [41]–[44].

Both antennas have been optimized using the algorithms
of Table 1: conventional and expedited procedures solv-
ing a traditionally formulated problem (1) (Algorithms 1
and 2, respectively) and conventional and expedited proce-
dures solving problem (3) reformulated in terms of response
features (Algorithms 3 and 4, respectively). The expedited
Algorithms 2 and 4 were executed with the following values
of the control parameters: Nmin = 1, Nmax = 5. These
parameters refer to the minimum and the maximum number
of iterations without FD, respectively. They decide upon the
frequency of performing FD-based sensitivity updates: not
more than once per Nmin iterations and at least once per
Nmax iterations. The adopted values allow us to achieve a
substantial acceleration of the optimization process without
compromising the solution quality in a significant manner.

In order to verify the robustness of the optimization pro-
cess, each of the algorithms were executed twenty times from
the same set of random initial designs. In Tables 2 and 3,
the averaged performance measures for Antennas I and II
across the set have been presented, and the antenna
responses for the representative algorithm runs are shown in
Figs. 5 and 6.

It should be emphasized that the values of the objec-
tive functions for the algorithms using conventional
(Algorithms 1 and 2) and feature-based formulation
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FIGURE 5. Operation of conventional routines for a dual-band
antenna [39] (Algorithms 1 and 2), as well as their feature-based
counterparts (Algorithms 3 and 4) for the representative algorithm runs
starting from various initial designs: (1) reference TR algorithm with full
FD Jacobian update, (2) expedited TR routine with Jacobian variability
tracking, (3) basic version of the feature-based algorithm, and
(4) expedited feature-based routine with Jacobian variability tracking.
In each panel, the initial design (. . . ) and the designs optimized with the
use of conventional Algorithms 1 (- - -) and 2 (-.-.) are marked gray.
Whereas the designs found within the response feature frameworks
Algorithms 3 (—-) and 4 (- - -) are marked black. Vertical lines mark the
target operating frequencies. The conventional routines
(Algorithms 1 and 2) fail to find satisfactory designs in most cases.

(Algorithms 3 and 4) of the problem cannot be compared
directly. Therefore, the comparison is carried out based
on the feature point coordinates, which, for Algorithms 1

and 2, are extracted from the optimum responses obtained
with these procedures.

As a measure of the results quality, Tables 2 and 3 report
the standard deviation of the resonant frequencies obtained
for the twenty algorithm runs executed. The computational
cost in the form of total number of EM simulations required
by the procedure to converge is also given in Tables 2 and 3.

The presented results (Tables 2 and 3, Figs. 5 and 6)
allow us to draw certain conclusions concerning the
algorithm performance. It can be observed that the
feature-based algorithms (Algorithms 3 and 4) are superior
over those solving a conventionally formulated design prob-
lem (Algorithms 1 and 2), both in terms of reliability and
design quality.

For Antenna I, the reference conventional TR algorithm
(Algorithm 1) fails to find satisfactory designs for a majority
(14 out of 20) of the initial designs (cf. Fig. 5(a) through (h)).
This is consistent with the results obtained for Antenna II,
where Algorithm 1 fails to adequately allocate the antenna
resonances for 18 out of 20 the considered starting points.

In the response features setup, however, Algorithm 3 accu-
rately allocates the resonances for Antenna I and II in all
cases (see Fig. 6). As far as the accelerated Algorithm 4 is
concerned, for Antenna I, inadequate allocation of the res-
onant frequencies only occurs in four cases. For Antenna II,
the designs satisfying the specifications are found in all cases.

Detailed scrutiny of the gathered results indicates that in
the response feature framework, satisfactory designs can be
found for a wide range of initial allocation of the antenna
resonances. This is also the case for Antenna II, where for all
the initial designs the feature-based algorithm yields excellent
solutions.

In fact, as illustrated in Fig. 6, for Antenna II, the resonant
frequencies of the initial design have to be close to the target
ones (cf. Fig. 6(j)), for the conventional procedure to find
an acceptable solution. The aforementioned variety of initial
resonant frequency configurations as well as a comprehensive
validation using a large number of random starting points
demonstrates the quasi-global capabilities of both feature-
based algorithms. The accelerated feature-based procedure
(Algorithm 4) also exhibits a considerably improved compu-
tational efficiency.

The resonance depths in the conventional optimization
setup for both antennas are poor. For Antenna I and Algo-
rithm 1, the value −9 dB on average (for two resonances) is
obtained; it is even worse for Antenna II (around −5.5 dB
for three resonances). This is partially related to inadequate
allocation of the resonant frequencies. It should be empha-
sized that the maximum acceptable level of antenna reflection
at its operating frequencies is −10 dB. On the other hand,
in the feature-based setup, the design quality is significantly
better. For Antenna I, the reflection level is around −40 dB
for the non-accelerated routine (Algorithm 3), and −27.5 dB
on average for the accelerated one (Algorithm 4). Whereas
for Antenna II, the obtained average values are −30 dB and
−27 dB for Algorithms 3 and 4, respectively.
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FIGURE 6. Operation of conventional routines for a triple-band
antenna [40] (Algorithms 1 and 2), as well as their feature-based
counterparts (Algorithms 3 and 4) for the representative algorithm runs
starting from various initial designs: (1) reference TR algorithm with full
FD Jacobian update, (2) expedited TR routine with Jacobian variability
tracking, (3) basic version of the feature-based algorithm, and
(4) expedited feature-based routine with Jacobian variability tracking.
In each panel, the initial design (. . . ) and the designs optimized with the
use of conventional Algorithms 1 (- - -) and 2 (-.-.) are marked gray.
Whereas the designs found within the response feature frameworks
Algorithms 3 (—-) and 4 (- - -) are marked black. Vertical lines mark the
target operating frequencies. The conventional routines (Algorithms 1
and 2) fail to find satisfactory designs in most cases. The conventional
routines (Algorithms 1 and 2) fail to find satisfactory designs in most
cases. Furthermore, the accelerated version of the feature-based
optimization procedure finds satisfactory designs as effectively as its
conventional, non-accelerated version.

The most important aspect of the optimization process for
multi-band antennas is a proper allocation of the resonant
frequencies. As indicated in Tables 2 and 3, the feature-based

algorithms (Algorithms 3 and 4) are far superior over the
conventional ones with this respect.

In particular, the frequencies obtained in the proposed
approach are almost equal to the target frequencies (within
the resolution important for practical purposes) for both
considered antenna structures. This is not the case for the
conventional frameworks.

In order to assess the computational speedup provided by
the procedures involving smart Jacobian updates, one has
to compare the conventional procedures with their accel-
erated counterparts, i.e., Algorithm 1 versus 2 (formulated
in the entire response sense), as well as Algorithm 3 ver-
sus 4 (feature-based ones). For Antenna I, the savings of
around 32 and 37 percent are obtained, respectively. As for
Antenna II, the savings are even more pronounced: 49%
(Algorithm 2 w.r.t. Algorithm 1), and 45% (Algorithm 4 w.r.t.
Algorithm 1). At this point it should become clear that the
computational cost of the proposed approach is dramati-
cally lower than the cost of population-based metaheuristics,
routinely used for global search purposes, e.g., [45]–[48].
The latter, given any imaginable setup (population size and
the number of iterations) would well exceed 1,000 antenna
evaluations, which is one of the reasons why these meth-
ods are most often applied to handle analytical representa-
tions (e.g., array factor models [49]–[51], etc.). It is also
well known that metaheuristics require careful tuning of
control parameters and exhibit poor solution repeatability.
Therefore, these sort of methods were not included in the
benchmark pool.

IV. CONCLUSION
The paper proposed a computationally efficient algorithm for
quasi-global optimization of input characteristics of multi-
band antennas. In the presented framework, the antenna
design closure task is handled by employing the response
feature technique in conjunction with the Jacobian change
monitoring procedure. The reliability of the framework has
been comprehensively validated using uniplanar dual- and
triple-band dipole antennas. It has been demonstrated to be
significantly more reliable than the conventional gradient-
based algorithms. In particular, the proposed algorithm yields
satisfactory designs for a wide range of initial designs,
where the local routines fail. Another advantage of the
approach is a high precision of allocating the resonant fre-
quencies of the antenna. Apart from reliability, exploitation
of the Jacobian variability tracking technique permits sig-
nificant computational savings, which are as high as forty
percent (on average) as compared to the standard (non-
accelerated) algorithm. The optimization cost is therefore
comparable to that of local search routines. At the same
time, nearly global search capabilities are secured. In sum-
mary, the relevance of the incorporated algorithmic solutions
in the proposed framework has been verified, along with
suitability of the approach for solving real-world antenna
design problems. In the future work, antenna optimiza-
tion for other performance figures, including, among others,

VOLUME 8, 2020 83913



S. Koziel, A. Pietrenko-Dabrowska: Expedited Feature-Based Quasi-Global Optimization

bandwidth maximization and realized gain improvement will
be considered.

ACKNOWLEDGMENT
The authors would like to thank Dassault Systemes, France,
for making CST Microwave Studio available.

REFERENCES
[1] H. Huang, X. Li, and Y. Liu, ‘‘5G MIMO antenna based on vector syn-

thetic mechanism,’’ IEEE Antennas Wireless Propag. Lett., vol. 17, no. 6,
pp. 1052–1055, Jun. 2018.

[2] H. Liu, Y. Cheng, and M. Yan, ‘‘Electrically small loop antenna standing
on compact ground in wireless sensor package,’’ IEEE Antennas Wireless
Propag. Lett., vol. 15, pp. 76–79, 2016.

[3] A. Kavitha and J. N. Swaminathan, ‘‘Design of flexible textile antenna
using FR4, jeans cotton and teflon substrates,’’Microsyst. Technol., vol. 25,
no. 4, pp. 1311–1320, Apr. 2019.

[4] R. Pei, J. Wang, M. Leach, Z. Wang, S. Lee, and E. G. Lim, ‘‘Wearable
antenna design for bioinformation,’’ in Proc. IEEE Conf. Comput. Intell.
Bioinf. Comput. Biol. (CIBCB), Chiang Mai, Thailand, Oct. 2016, pp. 1–4.

[5] A. A. Omar and Z. Shen, ‘‘A compact and wideband vertically polar-
ized monopole antenna,’’ IEEE Trans. Antennas Propag., vol. 67, no. 1,
pp. 626–631, Jan. 2019.

[6] J. Zhang, S. Yan, and G. A. E. Vandenbosch, ‘‘Metamaterial-inspired
dual-band frequency-reconfigurable antenna with pattern diversity,’’ Elec-
tron. Lett., vol. 55, no. 10, pp. 573–574, May 2019.

[7] M. A. Antoniades, A. Dadgarpour, A. R. Razali, A. Abbosh, and
T. A. Denidni, ‘‘Planar antennas for compact multiband transceivers using
a microstrip feedline and multiple open-ended ground slots,’’ IET Microw.,
Antennas Propag., vol. 9, no. 5, pp. 486–494, Apr. 2015.

[8] J. Nocedal and S. J. Wright, Numerical Optimization. 2nd ed. New York,
NY, USA: Springer, 2006.

[9] L. M. Rios and N. V. Sahinidis, ‘‘Derivative-free optimization: A review
of algorithms and comparison of software implementations,’’ J. Global
Optim., vol. 56, no. 3, pp. 1247–1293, Jul. 2013.

[10] J. S. Smith and M. E. Baginski, ‘‘Thin-wire antenna design using a
novel branching scheme and genetic algorithm optimization,’’ IEEE Trans.
Antennas Propag., vol. 67, no. 5, pp. 2934–2941, May 2019.

[11] M. Li, Y. Liu, and Y. J. Guo, ‘‘Shaped power pattern synthesis of a linear
dipole array by element rotation and phase optimization using dynamic
differential evolution,’’ IEEE Antennas Wireless Propag. Lett., vol. 17,
no. 4, pp. 697–701, Apr. 2018.

[12] Z. Medina, A. Reyna, M. A. Panduro, and O. Elizarraras, ‘‘Dual-band
performance evaluation of time-modulated circular geometry array with
microstrip-fed slot antennas,’’ IEEE Access, vol. 7, pp. 28625–28634,
2019.

[13] A. Khalatpour, R. K. Amineh, Q. S. Cheng, M. H. Bakr, N. K. Nikolova,
and J. W. Bandler, ‘‘Accelerating space mapping optimization with adjoint
sensitivities,’’ IEEE Microw. Wireless Compon. Lett., vol. 21, no. 6,
pp. 280–282, Jun. 2011.

[14] S. Koziel, F. Mosler, S. Reitzinger, and P. Thoma, ‘‘Robust microwave
design optimization using adjoint sensitivity and trust regions,’’ Int. J.
RF Microw. Comput.-Aided Eng., vol. 22, no. 1, pp. 10–19, Jan. 2012.

[15] CST Microwave Studio, Comput. Simul. Technol. AG, Darmstadt,
Germany, 2018.

[16] HFSS Release 19.0, ANSYS, Canonsburg, PA, USA, 2019.
[17] S. Koziel and S. Ogurtsov, Antenna Design by Simulation-Driven Opti-

mization. New York, NY, USA: Springer, 2014.
[18] R. Jin, W. Chen, and T. W. Simpson, ‘‘Comparative studies of metamod-

elling techniques under multiple modelling criteria,’’ Struct. Multidisci-
plinary Optim., vol. 23, no. 1, pp. 1–13, Dec. 2001.

[19] A. Rawat, R. N. Yadav, and S. C. Shrivastava, ‘‘Neural network applica-
tions in smart antenna arrays: A review,’’ AEU-Int. J. Electron. Commun.,
vol. 66, no. 11, pp. 903–912, Nov. 2012.

[20] M. Li, A. Abubakar, and T. M. Habashy, ‘‘A three-dimensional
model-based inversion algorithm using radial basis functions for
microwave data,’’ IEEE Trans. Antennas Propag., vol. 60, no. 7,
pp. 3361–3372, Jul. 2012.

[21] J. Gong, F. Gillon, J. T. Canh, and Y. Xu, ‘‘Proposal of a kriging output
space mapping technique for electromagnetic design optimization,’’ IEEE
Trans. Magn., vol. 53, no. 6, pp. 1–4, Jun. 2017.

[22] J. P. Jacobs, ‘‘Bayesian support vector regression with automatic relevance
determination kernel for modeling of antenna input characteristics,’’ IEEE
Trans. Antennas Propag., vol. 60, no. 4, pp. 2114–2118, Apr. 2012.

[23] J. P. Jacobs, ‘‘Efficient resonant frequency modeling for dual-band
microstrip antennas by Gaussian process regression,’’ IEEE Antennas
Wireless Propag. Lett., vol. 14, pp. 337–341, 2015.

[24] G. S. A. Shaker, M. H. Bakr, N. Sangary, and S. Safavi-Naeini, ‘‘Acceler-
ated antenna design methodology exploiting parameterized cauchy mod-
els,’’ Prog. Electromagn. Res., vol. 18, pp. 279–309, 2009.

[25] X. Wu, X. Peng, W. Chen, and W. Zhang, ‘‘A developed surrogate-based
optimization framework combining HDMR-basedmodeling technique and
TLBO algorithm for high-dimensional engineering problems,’’ Struct.
Multidisciplinary Optim., vol. 60, no. 2, pp. 663–680, Aug. 2019.

[26] F. Feng, C. Zhang, W. Na, J. Zhang, W. Zhang, and Q.-J. Zhang, ‘‘Adaptive
feature zero assisted surrogate-based EM optimization for microwave filter
design,’’ IEEE Microw. Wireless Compon. Lett., vol. 29, no. 1, pp. 2–4,
Jan. 2019.

[27] M. B. Yelten, T. Zhu, S. Koziel, P. D. Franzon, and M. B. Steer, ‘‘Demys-
tifying surrogate modeling for circuits and systems,’’ IEEE Circuits Syst.
Mag., vol. 12, no. 1, pp. 45–63, 1st Quart., 2012.

[28] S. Koziel and A. Bekasiewicz, ‘‘Sequential approximate optimisation for
statistical analysis and yield optimisation of circularly polarised antennas,’’
IETMicrow., Antennas Propag., vol. 12, no. 13, pp. 2060–2064, Oct. 2018.

[29] U. Ullah and S. Koziel, ‘‘A broadband circularly polarized wide-slot
antenna with a miniaturized footprint,’’ IEEE Antennas Wireless Propag.
Lett., vol. 17, no. 12, pp. 2454–2458, Dec. 2018.

[30] T. K. Sarkar, H. Chen, M. Salazar-Palma, and M. Zhu, ‘‘Lessons learned
using a physics-based macromodel for analysis of radio wave propagation
in wireless transmission,’’ IEEE Trans. Antennas Propag., vol. 67, no. 4,
pp. 2150–2157, Apr. 2019.

[31] J. C. Cervantes-González, J. E. Rayas-Sánchez, C. A. López,
J. R. Camacho-Pérez, Z. Brito-Brito, and J. L. Chávez-Hurtado,
‘‘Space mapping optimization of handset antennas considering EM
effects of mobile phone components and human body,’’ Int. J. RF Microw.
Comput.-Aided Eng., vol. 26, no. 2, pp. 121–128, Feb. 2016.

[32] S. Koziel and L. Leifsson, Simulation-Driven Design by Knowledge-Based
Response Correction Techniques. Cham, Switzerland: Springer, 2016.

[33] S. Koziel, ‘‘Fast simulation-driven antenna design using response-feature
surrogates,’’ Int. J. RF Microw. Comput.-Aided Eng., vol. 25, no. 5,
pp. 394–402, Jun. 2015.

[34] S. Koziel and S. D. Unnsteinsson, ‘‘Expedited design closure of antennas
bymeans of trust-region-based adaptive response scaling,’’ IEEE Antennas
Wireless Propag. Lett., vol. 17, no. 6, pp. 1099–1103, Jun. 2018.

[35] S. Koziel and A. Bekasiewicz, ‘‘Simulation-driven size-reduction-oriented
design of multi-band antennas by means of response features,’’ IET
Microw., Antennas Propag., vol. 12, no. 7, pp. 1093–1098, Jun. 2018.

[36] H. Wang, M. Olhofer, and Y. Jin, ‘‘A mini-review on preference modeling
and articulation in multi-objective optimization: Current status and chal-
lenges,’’ Complex Intell. Syst., vol. 3, no. 4, pp. 233–245, Dec. 2017.

[37] S. Koziel and A. Bekasiewicz, Multi-Objective Design of Antennas Using
Surrogate Models. Singapore: World Scientific, 2016.

[38] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods
(MPS-SIAM Series on Optimization), Philadelphia, PA, USA: Society
Industrial Applied Mathematics, 2000.

[39] Y.-C. Chen, S.-Y. Chen, and P. Hsu, ‘‘Dual-band slot dipole antenna fed by
a coplanar waveguide,’’ in Proc. IEEE Antennas Propag. Soc. Int. Symp.,
Albuquerque, NM, USA, Jul. 2006, pp. 3589–3592.

[40] S. Koziel and A. Bekasiewicz, ‘‘Fast redesign and geometry scaling
of multiband antennas using inverse surrogate modeling techniques,’’
Int. J. Numer. Model., Electron. Netw., Devices Fields, vol. 31, no. 3,
p. e2287, May 2018.

[41] S. Koziel and A. Pietrenko-Dabrowska, ‘‘Reduced-cost design closure of
antennas by means of gradient search with restricted sensitivity update,’’
Metrol. Meas. Syst., vol. 26, no. 4, pp. 595–605, 2019.

[42] S. Koziel and A. Pietrenko-Dabrowska, ‘‘Performance-based nested sur-
rogate modeling of antenna input characteristics,’’ IEEE Trans. Antennas
Propag., vol. 67, no. 5, pp. 2904–2912, May 2019.

[43] J. A. Tomasson, S. Koziel, and A. Pietrenko-Dabrowska, ‘‘Quasi-global
optimization of antenna structures using principal components and affine
subspace-spanned surrogates,’’ IEEE Access, vol. 8, pp. 50078–50084,
2020.

[44] S. Kozieł and A. Bekasiewicz, ‘‘Rapid design optimization of multi-band
antennas by means of response features,’’ Metrol. Meas. Syst., vol. 24,
no. 2, pp. 337–346, Jun. 2017.

83914 VOLUME 8, 2020



S. Koziel, A. Pietrenko-Dabrowska: Expedited Feature-Based Quasi-Global Optimization

[45] E. BouDaher and A. Hoorfar, ‘‘Electromagnetic optimization using
mixed-parameter and multiobjective covariance matrix adaptation evo-
lution strategy,’’ IEEE Trans. Antennas Propag., vol. 63, no. 4,
pp. 1712–1724, Apr. 2015.

[46] E. BouDaher and A. Hoorfar, ‘‘Fireworks algorithm: A new swarm intel-
ligence technique for electromagnetic optimization,’’ in Proc. IEEE Int.
Symp. Antennas Propag. (APSURSI), Fajardo, Puerto Rico, Jun. 2016,
pp. 575–576.

[47] M. Kovaleva, D. Bulger, B. A. Zeb, and K. P. Esselle, ‘‘Cross-entropy
method for electromagnetic optimization with constraints and mixed vari-
ables,’’ IEEE Trans. Antennas Propag., vol. 65, no. 10, pp. 5532–5540,
Oct. 2017.

[48] A. Lalbakhsh, M. U. Afzal, and K. P. Esselle, ‘‘Multiobjective
particle swarm optimization to design a time-delay equalizer
metasurface for an electromagnetic band-gap resonator antenna,’’
IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 912–915,
Sep. 2017.

[49] S. K. Goudos and J. N. Sahalos, ‘‘Design of large thinned arrays using
different biogeography-based optimization migration models,’’ Int. J. Ant.
Propag., vol. 2016, pp. 1–11, Sep. 2016.

[50] S. Banerjee and D. Mandal, ‘‘Array pattern optimization for steer-
able circular isotropic antenna array using cat swarm optimization
algorithm,’’ Wireless Pers. Commun., vol. 99, no. 3, pp. 1169–1194,
Apr. 2018.

[51] C.Wang, Y.Wang, Z.Wang,M.Wang, S. Yuan, andW.Wang, ‘‘Structural–
electrical coupling optimisation for radiating and scattering performances
of active phased array antenna?’’ Int. J. Electron., vol. 105, no. 4,
pp. 586–597, Apr. 2018.

SLAWOMIR KOZIEL (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in electronic
engineering from the Gdansk University of Tech-
nology, Poland, in 1995 and 2000, respectively,
the M.Sc. degrees in theoretical physics and in
mathematics, in 2000 and 2002, respectively, and
the Ph.D. degree in mathematics from the Uni-
versity of Gdansk, Poland, in 2003. He is cur-
rently a Professor with the School of Science and
Engineering, Reykjavik University, Iceland. His

research interests include CAD and modeling of microwave and antenna
structures, simulation-driven design, surrogate-based optimization, space
mapping, circuit theory, analog signal processing, evolutionary computation,
and numerical analysis.

ANNA PIETRENKO-DABROWSKA (Senior
Member, IEEE) received the M.Sc. and Ph.D.
degrees in electronic engineering from the Gdansk
University of Technology, Poland, in 1998 and
2007, respectively. She is currently an Asso-
ciate Professor with the Gdansk University
of Technology. Her research interests include
simulation-driven design, design optimization,
control theory, modeling of microwave and
antenna structures, and numerical analysis.

VOLUME 8, 2020 83915


	INTRODUCTION
	QUASI-GLOBALIZED FEATURE-BASED ANTENNA OPTIMIZATION WITH JACOBIAN CHANGE TRACKING
	FEATURE-BASED OPTIMIZATION OF MULTI-BAND ANTENNAS
	TRUST-REGION SEARCH EXPLOITING JACOBIAN CHANGES TRACKING

	VERIFICATION CASE STUDIES
	CONCLUSION
	REFERENCES
	Biographies
	SLAWOMIR KOZIEL
	ANNA PIETRENKO-DABROWSKA


