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ABSTRACT Wood moisture content (WMC) is an important technical index used in the wood drying
process, and assessing its change accurately and reliably is the key to improving wood drying quality.
In order to improve the accuracy and reliability of WMC forecasting, a modeling method is proposed
that uses a modified ant colony algorithm (MACA) to optimize the least square support vector machine
(LSSVM). The MACA combines the large-step size global search with the small-step size local fine search
to obtain the optimal parameter combination automatically and are tested by five standard functions. Then
the MACA-LSSVM model is proposed to predict the WMC and compared with back propagation neural
network (BP-NN), LSSVM model, and ant colony optimization LSSVM (ACO-LSSVM). The drying data
from a small-sized wood drying kiln independently developed by Northeast Forestry University are taken as
the samples for analyzing. The results indicate that the root mean square relative error (RMSRE) obtained by
the proposed method (MACA-LSSVM) is only 1.82%, which is 0.77%, 0.50%, and 0.20% less than those of
the BP-NN, LSSVM, and ACO-LSSVM models. The forecasting time are 0.0070 s, 0.0030 s, and 0.0010 s
shorter, respectively. The relative error (RE) and the mean absolute error (MAE) are also lower than those
of the latter three models. The MACA-LSSVM shows the characteristics of low computational complexity,
fast convergence speed, high prediction accuracy and strong generalization ability, and the prediction effect
is ideal. This model can provide the theoretical support for intelligent control of the wood drying process.

INDEX TERMS Ant colony algorithm, least square support vector machine, parameter optimization, wood
moisture content.

I. INTRODUCTION
Wood is a kind of green material which is renewable and
recyclable. Wood products belong to a basic industry in
national economy and occupy an important position. In recent
years, the deterioration of environment leads to the gradual
decrease of forest resources, environmental and ecological
problems becomemore and more obvious. How to protect the
existing forest resources, improve the wood product quality
and reduce the energy loss of wood drying process becomes
quite important.

Wood drying is the most important process in wood
processing and comprehensive utilization. Correct and
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reasonable drying treatment of wood is not only the key
to improving the utilization rate of wood and ensuring the
quality of wood product, but also an important method of
saving energy and reducing costs [1]. As one of the important
indexes for the selection of drying schedule and the evaluation
of drying stage, the accurate forecasting of wood moisture
content (WMC) in drying process is a necessary condition
for the regulation of drying control parameters and for the
guarantee of drying quality [2]. In order to improve the pre-
cision and reliability of WMC forecasting, it is of great prac-
tical significance to establish an effective forecasting model
of WMC for improving the technical level of intelligent
control of wood drying.

In recent years, scholars at home and abroad have done lots
of studies on the forecasting model of wood drying process.
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Cronin et al. [3] gave the theoretical formulas for the mean
and standard deviation of water content of board versus time.
At the same time, they compared it with the Monte Carlo
model and determined an optimum double set point schedule.
Fortin et al. [4] proposed the concept of water potential
in wood drying process and established a two-dimensional
model of wood drying. The model was useful for optimiz-
ing the kiln schedules according to the drying time, energy
consumption, and wood quality. Carlsson and Tinnsten [5]
established a two-dimensional anisotropic drying benchmark
model and optimized it with a gradient-based program.
Ding et al. [6] studied the multiple regression prediction
model of wood drying quality and realized the prediction of
WMC and stress. Fan et al. [7] studied the soft measurement
modeling method of SVM and realized the soft measurement
of water content in the timber drying process. Liu et al. [8]
established an online prediction model for WMC by using
BS-PLS regression model. In this method, the temperature
and the humidity values are taken as the model inputs,
and the WMC is taken as the model output. The experi-
ment results indicated that the model had better generaliza-
tion ability and higher forecasting accuracy. In recent years,
the artificial neural network (ANN) has a widespread appli-
cation on nonlinear prediction, and some achievements have
been made in the prediction of moisture content [9], [10].
Zhang et al. [11] used the neural network method to iden-
tify the wood drying system and established the neural net-
work model of the wood drying process. However, ANN,
based on the assumption of infinite amount of sample and
empirical risk minimization principle, has some defects such
as difficult to determine the network structure, over learn-
ing, easy to fall into the local optimal value, unsuitable
for high dimension and small sample prediction, which
seriously affect its application effect [12]. Based on the
statistical learning theory and the principle of structural
risk minimization, support vector machine (SVM) effec-
tively avoids the defects of ANN [13]. It can approximate
any function with arbitrary accuracy and has been widely
used in the fields such as regression analysis and pattern
recognition [14].

The least square support vector machine (LSSVM) is an
improvement and extension of SVM. It has low compu-
tational complexity and strong robustness. The prediction
accuracy and generalization ability of the LSSVM model
largely depend on the penalty factor and kernel function
parameter [15]–[17]. Therefore, determining the appropri-
ate parameters is the key to the modeling and forecasting
by LSSVM. Jiang et al. [18] employed LSSVM to establish a
soft measurement model of moisture content in wood drying
process and used PSO algorithm to optimize its parameters.
The PSO algorithm converges fast, but it is easy to fall
into the local optimal solution [19]. Chappelle et al. [20]
proposed the method of gradient descent to solve the opti-
mal value of the SVM model parameters. The running effi-
ciency of the algorithm has been improved obviously, but
the initial point is strictly required and it’s easy to fall

into local optimization. Fernandez-Lozano et al. [21] pro-
posed the genetic algorithm to optimize the LSSVM parame-
ters. Although it is independent of the mathematical model
of the problem, its genetic operation is relatively complex
and the late convergence speed is slow [22]. Ant colony
optimization (ACO) algorithm has the features of heuristic
search, distributed computing, information positive feedback,
etc., [23]. It has high solution precision and strong robustness
and is very suitable for combinatorial optimization prob-
lems [24]. However, ACO is an intelligent algorithm for
discrete optimization problems at the beginning, and some
details of the algorithm must be improved when solving
continuous optimization problems by it [25]. In view of this,
on the basis of previous researches, a modified ant colony
algorithm (MACA) is proposed to optimize the penalty factor
and the kernel function parameter of LSSVM, it combines
the large-step size global search with the small-step size
local fine search to obtain the optimal parameter combina-
tion. A nonlinear relationship model between the tempera-
ture, humidity and WMC is built in the wood drying kiln
with the best parameter combination. The MACA-LSSVM
is applied to forecast the WMC to improve the predic-
tion accuracy and operation efficiency, which can ensure
the quality of wood product, save energy, and reduce the
cost.

The specific objectives are as below: (1) Five test functions
are selected to test the optimization ability of the algorithms
in the contrast literatures and the MACA proposed in the
paper, the convergence accuracy and convergence stability
are compared among the algorithms. (2) TheMACA-LSSVM
model is constructed and the prediction accuracy and the
prediction stability are verified. (3) The BP-NN, LSSVM,
ACO-LSSVM, and MACA-LSSVM models are tested by
using the actual data of Fraxinus mandshurica drying pro-
cess. The prediction effects are compared among the four
models.

The main contributions of the paper are as below: (1) The
MACA-LSSVM model is put forward to forecast the WMC.
The results show that the model can well fit the nonlin-
ear relationship between the drying medium and the WMC.
(2) The MACA-LSSVM model has a higher forecast-
ing accuracy than other three models (BP-NN, LSSVM,
and ACO-LSSVM) and can meet the actual needs. (3) This
model can provide the accurate and reliable data for the wood
drying process. It is beneficial to improve the wood drying
quality and the intelligent control technology level of wood
drying process.

The rest of this paper is organized as follows. Section II
introduces the principle and the parameters of LSSVM
model. Section III mainly completes the optimization abil-
ity test of MACA. Section IV mainly establishes the
WMC forecasting model based on MACA-LSSVM and
discusses the forecasting results of the BP-NN, LSSVM,
ACO-LSSVM, and the MACA-LSSVMmodels. The conclu-
sion, contributions, limitations, and future studies are given
in Section V.
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II. LEAST SQUARE SUPPORT VECTOR MACHINE
A. PRINCIPLE OF LSSVM
The SVM algorithm is an important part of statistical learning
theory. Its basic idea is to map the input space samples to
a high-dimensional feature space and transform the problem
into a quadratic programming problem with inequality con-
straints through a nonlinear mapping function. It can be well
used to solve the actual problems of small samples, high
dimensionality and complex nonlinear systems [13], [26].
The model has a high precision but its speed is low [27].

The LSSVM is an improvement and expansion of the
standard SVM. It can change the inequality constraints
of a standard SVM into equality constraints, taking the
loss function and error square as empirical losses of train-
ing samples. At the same time, the quadratic planning
problem is transformed into a problem for solving linear
equations [28]. When solving problems, compared with the
original method, the complexity of the model is reduced
effectively, and the operation efficiency and convergence
accuracy are improved [29].

For a given training sample set S = {(xi, yi) , i = 1,
2, · · · , l}, xi ∈ Rn and yi ∈ R are the n-dimensional input
vector and one-dimensional output vector of the system,
respectively, and l is the size of the sample set. In the LSSVM
regression algorithm, the nonlinear function ϕ (·) is used to
map the sample to a high-dimensional feature space (Hibert).
In this way, we transform the nonlinear function estimation
problem in the input sample space into a linear function
estimation problem in the high-dimensional feature space.
The regression estimation expression is (1):

f (x) = ωTϕ (x)+ b (1)

where ω = [ω1, ω2, · · · , ωl]T ∈ H is the vector of weight
coefficient; b ∈ R is the offset quantity; and
ϕ (·) =

[
ϕ (·)1 , ϕ (·)2 , · · · , ϕ (·)l

]T is the nonlinear map-
ping from the input space (Rn) to the feature space (H).
The optimization problem of function estimation using the
LSSVM is as follows [30]:

min J (ω, e) =
1
2
‖ω‖2 +

C
2

l∑
i=1

e2i

s.t.yi = ωTϕ (xi)+ b+ ei (i = 1, 2, · · · l)

(2)

where J is the loss function; e = [e1, e2, · · · , el]T ∈ Rl is the
error vector; and C ∈ R+ is the penalty factor.
To solve the above constraint optimization function (2),

the Lagrange polynomial function is established for dual
problems, as shown in (3):

L (ω, b, e, α)=J (ω, e)−
l∑
i=1

αi

[
ωTϕ (xi)+ b+ ei − yi

]
(3)

where α = [α1, α2, · · · , αl]T ∈ Rl is the Lagrangian multi-
plier. According to the KKT condition, equation set (4) can

be obtained by optimizing (3):

∂L
∂ω
= 0→ ω =

l∑
i=1

αiϕ (xi)

∂L
∂b
= 0→

l∑
i=1

αi = 0

∂L
∂ei
= 0→ αi = Cei

∂L
∂αi
= 0→ ωTϕ (xi)+ b+ ei − yi = 0

(4)

The kernel function is defined according to theMercer con-
dition: k

(
xi, yj

)
= ϕT (xi) · ϕ

(
xj
)
= �ij, (i, j = 1, 2, · · · , l).

Equation (5) is obtained by eliminating ω and ei of equation
set (4):

0 1 · · · 1
1 k (x1, x1)+ 1

γ
· · · k (x1, xl)

...
...

. . .
...

1 k (xl, x1) · · · k (xl, xl)+ 1
γ

×

b
α1
...

αl

=


0
y1
...

yl


(5)

Equation (5) is abbreviated as follows:[
0 QTl
Ql �+C−1I

]
×

[
b
α

]
=

[
0
y

]
(6)

where Ql = [1, · · · , l]T , y = [y1, · · · , yl]T , and Il is an l × l
dimensional unit matrix.

The estimation of parameters
[
b, αT

]T can be obtained
by the LS method. There are multiple kernel functions of
the LSSVM that satisfy the Mercer condition, including the
polynomial kernel function, linear kernel function, sigmoid
kernel function and radial basis function (RBF). In this paper,
the RBF is selected as the kernel function of the LSSVM
model because of its fewer parameters, stronger generaliza-
tion ability, and learning ability [31].

k
(
xi, xj

)
= exp

(
−

∥∥xi − xj∥∥2
2σ 2

)
(7)

The decision function of the LSSVM can be obtained by
solving (6):

f (x) =
l∑
i=1

αi × k
(
xi, xj

)
+ b (8)

where xi, xj and α are the input sample vector, the kernel
function centre of RBF, and the width parameter of the RBF
kernel function, respectively.

B. PARAMETERS OF LSSVM
The parameter values of the LSSVM have a great impact on
its learning ability and generalization ability, so determining
the parameter values is a key problem of the LSSVM [32].
The LSSVM regression algorithm with the RBF kernel func-
tion includes two parameters: penalty factor (C) and kernel
function width (σ ). C is a compromise between the sample
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error and the structural risk. The value of C is related to
the tolerable error. A smaller value allows a larger error,
whereas a larger value allows a smaller error. The value
of σ is related to the input space width or range of the
learning samples. If the input space width of the sample is
smaller, the value will be smaller. In contrast, if the input
space width of the sample is larger, the value will be also
larger [33]. To improve the optimality of parameter selection,
the modified ant colony algorithm is adopted in this paper to
search for the optimal combination of C and σ in a certain
area. To some extent, it can avoid the blindness based on the
subjective experience selection so as to improve its prediction
accuracy.

III. PARAMETER COMBINATION OPTIMIZATION OF
LSSVM BASED ON MACA
The ant colony optimization (ACO) algorithm was proposed
by Italian scholar Dorigo et al. [34] in the 1990s. It is
a type of simulated evolutionary algorithm based on the
bionics principle—a global search algorithm with advan-
tages such as a good positive information feedback mecha-
nism, distributed computing and greedy heuristic searching.
However, the ACO is proposed originally for discrete opti-
mization problem, if the continuous optimization problem
of (9) is considered, some details of the algorithm need to
be improved [35]. The pheromones of ants are distributed
on the paths between discrete points in the basic ant colony
algorithm. In the MACA, each ant in the population selects
the next travelling mode according to the influence of the
pheromones of a certain region on it. The pheromones are
attached to the population individual, and represent the attrac-
tion degree of the individual to the ants. After the individual
optimization guided by the ants, a local fine search in the
optimal ant neighbourhood is performed to avoid skipping
over a better solution, and then the pheromone is released on
the optimal ant individual.

In this paper, the parameter selection process of the
LSSVM model is regarded as a combination optimization
problem of parameters. The objective function is constructed
according to the random combination of parameters, and then
the MACA is applied to search for the optimal objective
function value. Finally, the optimal value of the combined
parameters is output.

A. SELECTION OF OBJECTIVE FUNCTION
The minimummean square error (MSE) is taken as the objec-
tive function (F) of the optimization problem in the paper.
The optimal F value is searched for by MACA iteration to
gain the optimal set of parameter combination (C, σ ), and
the objective function is established as follows [36]:

minF = minMSE =
1
l

l∑
i=1

(
yi − ŷi

)2
s.t. Cmin ≤ C ≤ Cmax

σmin ≤ σ ≤ σmax (9)

where yi and ŷi are the actual values of the training samples
and the predicted values estimated by the LSSVM model
regression, respectively.

B. OPERATING STEPS OF MODIFIED ANT COLONY
SEARCH
The idea of the parameter optimization of LSSVM is to search
for a set of parameters (C, σ ) iteratively through MACA
to minimize the F value. In this paper, a set of parameter
sequences (C, σ ) in the domain is defined as the position
vector of the ants in the MACA. Then, the dynamic ran-
dom extraction method is employed to determine the target
individual, guide the ant colony for global search, and then
perform a small-step local fine search in the neighbourhood
of the optimal ant to find the optimal parameter of the model.
After multiple iterations, the optimal forecasting model based
on the MACA for optimizing the LSSVM (MACA-LSSVM)
is obtained. The specific steps are as follows:
Step 1: Initialize the parameters. Setting the problem scale

as l, the number of ants is n, the pheromone volatilization
coefficient ρ ∈ [0, 1], and tmax is the maximum number
of cycles. Within the range of C ∈ [Cmin,Cmax] and σ ∈
[σmin, σmax], taking a set of parameter sequences (C, σ ) as
the initial position vector Xi = (Xi1,Xi2, · · · ,Xid ) of the ants
in the algorithm, i = 1, 2, · · · , l. n ants are placed randomly
at position i of question l at the initial moment.
Step 2: The LSSVM model is learned and trained by the

training sample set, the F value of each ant individual is
calculated by (9), and the pheromone density of each ant is
calculated by (10) [37]. If the F value is smaller, the σ value
is larger; conversely, if the F value is larger, the σ value is
smaller.

τ (i) = e−F(Xi) (10)

where e is the base number of the natural logarithm.
Step 3: p ants are extracted from ant colony n at random,

the ant with the smallest F value is selected as the head
ant Xobj and whose position is Xbest . The random extraction
rules are as follows:

p = [r · n] (11)

r =
tter + tmax

2tmax
(12)

where tter is the current iteration number, and r is the extrac-
tion rate of dynamic change.
Step 4: Other ants in the ant colony move to the position

of the Xobj according to (13) and perform a large step global
search [38].

Xi = (1− λ)Xi + λXobj λ ∈ (0, 1) (13)

where λ is the adjustable coefficient and Xobj is the position
of the head ant with the smallest F value.
Step 5: The head ant Xbest generated during the last

iteration performs a local fine search in its neighbourhood
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according to (14) and (15).

Xbest =

{
X ′i F

(
X ′i
)
< F (Xbest)

Xbest others
(14)

X ′i = Xbest ± δ · h (15)

where X ′i is the position after local search of the head
ant Xbest . δ = 0.1rand (), and the choice of ‘‘±’’ can be
explained by the idea of ‘‘exploration’’ in pattern searching,
as determined by (16):

X ′best = Xbest ± (Xbest · 0.01) (16)

When F
(
X ′best

)
≤ F (Xbest + Xbest · 0.01), ‘‘+’’ is taken

in (16); otherwise, ‘‘-’’ is taken.
h is the dynamic search step size, updated by (17):

h =
(
hmax −

tter (hmax − hmin)

tmax

)
(17)

where hmax and hmin are the initial constants; generally,
hmax = 10hmin is taken. tmax is the maximum number of
iterations. As the iterations increase, the search step will be
adjusted dynamically to make the search process much more
detailed so as not to skip the global optimal solution.
Step 6: During the iterative process, the concentration of

the ant pheromone at each location is updated. The updating
rule is as follows [39]:

τ (i) = (1− ρ) τ (i)+1τ (i) (18)

where ρ is the pheromone volatilization coefficient,
ρ ∈ (0, 1).
Step 7: Determining whether the termination condition

of iteration is satisfied. If yes, terminate the iteration and
output the optimal parameter combination (C, σ ), other-
wise, go back to Step 4 and continue. A flow chart of
the LSSVM parameter optimization based on the MACA is
shown in Fig. 1.

C. MACA PERFORMANCE TEST
In this section, the experimental method is proposed for
evaluating the performance of MACA. In order to com-
pare the parameter optimization performance with the other
algorithms, we select five typical standard test functions
commonly used in the literatures [40]–[44] to show the
performance of each algorithm. The algorithm parameter
settings in this paper are the same as those in the com-
parison literatures. The ant colony size is 20; convergence
accuracy is 1.0×10−4. In the proposed algorithm, pheromone
volatilization coefficient ρ is 0.9; the minimum search step
size hmin is 1 and the maximum search step size hmax is 10,
respectively; adjustable coefficient λ is 0.1. Five test func-
tions are all minimum value optimization, and the specific
expressions are shown in Table 1.

We perform each test function 50 times by using the algo-
rithm presented in the paper, the results are shown in Table 2.
Where G% represents the proportion of the experimental
results that satisfying the convergence accuracy to all the

FIGURE 1. Flow chart of LSSVM parameter optimization based on MACA.

experimental results. The convergence accuracy is the abso-
lute value of the difference between the actual solution value
and the theoretical optimal value. Err is the solution error;
Time represents the running time; Ave/Max/Min represents
the average value, maximumvalue, andminimumvalue of the
evaluation number; iter is the number of iterations, which is
determined by the allowable error range in formula (19) [40].
As the number of iterations in the algorithm proposed in
this paper is proportional to the evaluation number (Evals),
the Evals is calculated according to the number of iterations:
Evals = iter × n, where n is the number of ants.∣∣να − ν∗∣∣ < ε1 · ν

∗
+ ε2 (19)

where να is the global optimal value found by the algorithm;
ν∗ is the theoretical global optimal value of the objective
function; ε1 and ε2 are the accuracy parameters, in all tests
discussed in this paper, ε1 = ε2 = 1.0× 10−4.
As shown in Table 2, each test function repeats 50 times,

the optimization ratios of five test functions for MACA are
all 100%. For the f5 test function, the MACA can’t reach
the minimum value (0); for the other four test functions, the
MACA can all reach the minimum value (0), but the solution
accuracy for the f5 test function is still high. The evaluation
numbers of five test functions are mainly within 1000 times,
and the average running time is less than 0.07s.

Table 3 represents the comparison of experimental results
between the algorithm proposed in the paper and the algo-
rithms mentioned in the comparison literatures, where the
meaning of G% is the same as in Table 2; OMIN represents
the minimum value of Err ; OAVE represents the average
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TABLE 1. Test function.

TABLE 2. Test results of the MACA.

TABLE 3. Test results of different algorithms on five functions.

value of Err ; EAVE represents the average value of Evals.
We repeat each function 10 times which is the same as
the comparison literatures so as to compare with the CIAC,

ACO, NFCACO, DMCACO, and API algorithms. Each func-
tion takes the corresponding dimension in the comparison
literature.
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As shown in Table 3, the optimization ratios of five test
functions for MACA are all 100%. The f2 and f4 are multi-
modal functions, there are about 10n local minima in defini-
tion domain. For the f2 test function, the evaluation number
of MACA reduces greatly compared with those of CIAC and
DMCACO, and the solution accuracy is obviously better than
that of CIAC and DMCACO. Although MACA has the same
solution accuracy as ACO, the evaluation number of MACA
is less than ACO. For the f4 test function, the average value
of error and the evaluation number of MACA are slightly
worse than DMCACO. However, the MACA itself can reach
a higher solution accuracy, and which is higher than those of
ACO and NFCACO.

For the f1, f3 and f5 test functions, the solution accuracy of
MACA is better than those of the comparison algorithms, and
the evaluation numbers are relatively little. Although the test
result of f5 test function can’t reach the minimum value (0),
the solution accuracy is still high.

On the basis of above analysis, the test results of theMACA
algorithm for five functions show high solution accuracy and
excellent global optimization ability, and the test results are
satisfactory.

IV. FORECASTING OF WMC BASED ON MACA-LSSVM
A. ESTABLISHMENT OF WMC FORECASTING MODEL
BASED ON MACA-LSSVM
During the wood drying process, due to the influences of
temperature, humidity and air velocity on the wood surface,
the WMC is a non-stationary data sequence that changes
with time and decreases nonlinearly. In the wood drying
experiment of this paper, the fan will keep running at full
speed after starting, and the air velocity on thewood surface in
the drying kiln is approximately constant. Therefore, the state
data of the fan are not taken into account when establishing
the forecasting model. The structure of the WMC forecasting
model of the optimized LSSVM based on MACA in the
drying process is shown in Fig. 2.

The input sample data are mapped to a high-dimensional
feature space by the LSSVM through nonlinear functions,
so the data sequence needs phase space reconstruction pro-
cessing to construct suitable input and output vectors [18].
The structure of the moisture content forecasting model dur-
ing the wood drying process based on the MACA-LSSVM is
shown in formula (20), where T (t) is the current temperature
input in the wood drying kiln; T (t − 1) · · · T (t − p) are
the temperature inputs in the historical state of the system;
H (t) is the current humidity input; H (t − 1) · · ·H (t − p)
are the humidity inputs in the historical state; y (t) is
the current system output of WMC; y (t − 1) · · · y (t − q)
are the system outputs of WMC in the historical state;
and y∗ (t) is the current predicted output value of the
model.

y∗ (t) = f [T (t)− T (t − p) ,H (t) · · ·H (t − p) ,

y (t) · · · y (t − q) , θ] (20)

FIGURE 2. Structure of forecasting model of WMC.

where p and q represent the time delay and θ is the parameter
set of the forecasting model. It is very important to determine
the time delay. If the time delay is too large, the model struc-
ture will become complex and the computation amount will
increase; however, if the time delay is too small, the dynamic
characteristics of the system can’t be reflected, and the pre-
cision of the model will become poor. In this paper, the time
delay can be determined on the basis of the fitting precision
of the model in simulation experiments.

The specific implementation steps of establishing a mois-
ture content forecasting model (MACA-LSSVM) for the
wood drying process are as follows:
Step 1: Select the data of the wood drying process to form

the training samples and predicting samples. Set a delay time
and reconstruct a phase space with q groups of data.
Step 2: Initialize the LSSVM parameters and MACA

parameters, then construct the LSSVM forecasting model
with the training samples.
Step 3: Adopt the MACA for automatic search; then,

the best parameter combination (C, σ ) of LSSVM is selected.
Step 4: C and σ are substituted into (6); then, b and αi are

solved.
Step 5: Substitute σ , b, and αi into (8), and the func-

tion expression of LSSVM regression estimation is obtained;
then, the WMC is predicted, and the result is output.

B. EVALUATION INDEX OF THE FORECASTING MODEL
In this paper, we choose the root mean square error (RMSE),
the relative error (RE), the root mean square relative error
(RMSRE), and the mean absolute error (MAE) as evaluation
indexes and use them to evaluate the performance of the
WMC forecasting model. The calculation methods are shown
in formulas (21)-(24).

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2 (21)

RE =
yi − ŷi
yi
× 100% (22)

RMSRE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2

y2i
(23)

MAE =
1
N

N∑
i=1

|(yi − ŷi)| (24)
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where N is the number of forecasting samples; yi is the actual
value; and ŷi is the forecasting value.

The RMSE is used to evaluate the prediction accuracy of
MACA-LSSVM model. The smaller the error, the higher the
prediction accuracy.

In order to better evaluate the performance of the prediction
models, reasonable and comprehensive error analyses are
necessary. Among the comparison of the prediction perfor-
mance of the models (BP-NN, LSSVM, ACO-LSSVM, and
MACA-LSSVM), the RE is used to evaluate the prediction
stability; the RMSRE and the MAE are selected to evaluate
the accuracy of the prediction model.

C. SIMULATION RESEARCH AND PREDICTED RESULTS
ANALYSIS
In the study, Fraxinus mandshurica is used as the experimen-
tal tree specie. During the decreasing drying phase of the
actual drying process of Fraxinus mandshurica, we collect
123 sets of data as simulation experiment samples, including
the temperature and humidity in the drying kiln and theWMC
under the corresponding states. Each set of data is measured
under the same condition and has the same composition
structure.

In the 123 samples, the temperature ranges from 49.4◦C to
64.7◦C, the humidity ranges from 10.9% to 15.8%, theWMC
ranges from 33% to 7.3%, and there is a nonlinear and strong
coupling relationship among them. Using the first three sets
of data to reconstruct the phase space of the LSSVM model
and then using the middle 100 sets of data to establish the
WMC forecasting model, the penalty factor C and the kernel
function parameter σ of the LSSVM are automatically opti-
mized through theMACA algorithm. Finally, the temperature
and humidity of the last 20 groups of data are input to the
forecasting model, and the predicted values of the WMC are
obtained, which are compared with the corresponding actual
values. Then, the deviations are obtained.

MATLAB 2017b and the LSSVM labv1_8 toolbox
are used to write the WMC forecasting program of
the MACA-LSSVM. The algorithm is initialized as follows:
ant colony size n = 20; pheromone volatilization coefficient
ρ = 0.9; the minimum and maximum search step sizes are
hmin = 1 and hmax = 10, respectively; adjustable coefficient
λ = 0.1; and maximum iteration number tmax = 100;
1≤ C ≤10000, 1≤ σ ≤1000. The optimal parameter
combination of the LSSVM is searched by the MACA and
is substituted into the MACA-LSSVM model to predict the
WMC. The convergence process of F is shown in Fig. 3.
From Fig. 3, we can see that the objective function F of

the MACA converges rapidly with the increase of iterations;
at the 36th iteration, F = 0.0200, which tends to be stable.
Finally, the optimal parameter combination of LSSVM is
obtained at C = 3110.2429, σ = 717.9204. The results indi-
cate that the MACA is suitable for the optimization selection
of LSSVM model parameters with fast convergence speed
and high computational efficiency.

FIGURE 3. Convergent curve of F .

FIGURE 4. Training process curve of MACA-LSSVM.

FIGURE 5. Training process error curve of MACA-LSSVM.

The building process curve and error curve of the mois-
ture content forecasting model of Fraxinus mandshurica are
shown in Fig. 4-Fig. 7. The training process curve and the
error curve are shown in Fig. 4 and Fig. 5, respectively;
Fig. 6 and Fig. 7 are the forecasting process curve and
the error curve, respectively; the abscissas from Fig. 4 to
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FIGURE 6. Forecasting process curve of MACA-LSSVM.

FIGURE 7. Forecasting process error curve of MACA-LSSVM.

Fig. 7 represent the number of samples; and the ordinates of
Fig. 5 and Fig. 7 represent the errors between the forecasting
values and the actual values of WMC during the drying of
Fraxinus mandshurica.
As can be seen from Fig. 4 and Fig. 6 that the output

curves of the training process and the prediction process
can better approximate the actual values. For the discontin-
uous sample point (No. 67) in the training process which is
shown in Fig. 4 and Fig. 5, its forecasting error of WMC
is larger. This is because the output disturbance appears
in the temperature and humidity of the wood drying kiln,
and the historical data before the current forecasting time
of the system should be considered in the modeling of the
MACA-LSSVMmethod. This disturbance is still included in
the subsequent sample training, which affects the forecasting
accuracy and makes the model have a large error near the
discontinuous point. However, it can be seen from Fig. 5 that
after several steps of trainingwith disturbance, the forecasting
error is significantly reduced, the model gradually tends to be
stable, and the WMC variation in the drying process is better
predicted. The forecasting model based on MACA-LSSVM

FIGURE 8. Forecasting process curves of BP-NN, LSSVM, ACO-LSSVM and
MACA-LSSVM.

of the wood drying process has strong generalization ability
and certain robustness.

The total running time of theMACA-LSSVM is 16.1940 s,
RMSE = 0.4586; the training time of the middle 100 groups
is 0.0040 s, RMSE = 0.4984; the forecasting time of the
last 20 sets of samples is 0.0020 s, RMSE = 0.1415; and
the error of the forecasting process is within ±0.5. The
simulation results show that the MACA-LSSVM has small
RMSE and high prediction accuracy. It can accurately predict
the WMC in the drying process and meet the actual process
requirements.

To verify the prediction performance of the model in
this paper, the forecasting results of the MACA-LSSVM
model are compared with those of the BP-NN, LSSVM, and
ACO-LSSVM models. The model structure of the BP-NN
is 5-7-1; the learning factor is µ = 0.9; and the maximal
allowable error is ε = 1.0 × 10−4. The penalty factor of
the LSSVM model is C = 10000; and the kernel function
parameter is σ = 1000; ant colony size n is 20; M is the
maximum number of iterations; h is the dynamic search step
size; p is the number of ants extracted randomly from ant
colony n; r is the extraction rate of dynamic change. The
parameters of each model are set in Table 4.

Fig. 8 shows the simulation results of the BP-NN, LSSVM,
ACO-LSSVM, and MACA-LSSVM models for the predic-
tion of the moisture content of the last 20 groups of sam-
ples. It can be found that the WMC forecasting model based
on MACA-LSSVM can well fit the nonlinear relationship
between drying medium and WMC. The fitting effect of the
forecasting curve and the actual value is better than that of the
other three forecasting models.

TheRE curves between the forecasting value and the actual
value of the fourmodels are shown in Fig. 9. TheRE,RMSRE,
MAE, and the forecasting time of four models are shown
in Table 5. The actual values and forecasting values of mois-
ture content are expressed in AV and FV, respectively.

Table 5 shows that the RE between the forecasting value
and the actual value of WMC fluctuates between -2.44% and
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TABLE 4. Model parameter settings.

TABLE 5. Simulation results and relative errors.

FIGURE 9. Relative error of each model.

7.32% of the BP-NN model; the RE between the forecasting
value and the actual value of the LSSVM model fluctuates
between -4.62% and 3.97%; the RE between the forecasting

value and the actual value of the ACO-LSSVMmodel fluctu-
ates between -3.92% and 4.13%; theRE between the forecast-
ing value and the actual value of the MACA-LSSVM model
fluctuates between -3.05% and 4.91%. The RE between the
forecasting value and the actual value of the BP-NN model
fluctuates greatly, which shows that the prediction stability
of the BP-NN model for WMC is poor and the prediction
stability of the MACA-LSSVM model is relatively good.

In addition, as shown in Table 5 the RMSRE obtained by
the MACA-LSSVM method is only 1.82%, which is 0.77%,
0.50%, and 0.20% lower than those obtained by the BP-NN,
LSSVM, and ACO-LSSVM models, respectively. The MAE
of the MACA-LSSVM is 0.1097, which is also lower than
those of the other three models. The forecasting time of
the MACA-LSSVM is 0.0070 s, 0.0030 s, and 0.0010 s
shorter than that of the BP-NN, LSSVM, and ACO-LSSVM,
respectively. The results indicate that the running speed of the
MACA-LSSVM model improves effectively. According to
the above analysis, we can see that the MACA-LSSVM fore-
casting model proposed in this paper has higher prediction
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accuracy and operation efficiency than the BP-NN, LSSVM,
and ACO- LSSVM models.

V. CONCLUSION
With the decrease of global forest resources and the contin-
uous emergence of environmental protection and ecological
problems, great attention has been brought on how to effec-
tively use the existing wood resources, improve the utilization
rate of wood and improve the quality of wood products.
Wood drying is the most important part in processing and
comprehensive utilization. Wood drying quality can impact
on the utilization ratio of wood and the quality of wood
products directly. Wood moisture content is an important
parameter to judge the wood drying degree and the qual-
ity of wood products. Exploring a scientific and effective
method to predict the wood moisture content accurately is
helpful to adjust the drying process and improve the dry-
ing level. Therefore, the research combines the MACA with
the LSSVM model, and puts forward the MACA-LSSVM
model to predict the water content of wood drying process.
The purpose of this study is to provide the accurate data of
wood drying process by improving the prediction accuracy of
forecasting model, so as to implement the accurate regulation
and improve the intelligent control level of wood drying
system.

The main findings are as follows:
a) The MACA algorithm is proposed to optimize the

LSSVM model parameters and get the optimal parameter
combination (C, σ ) automatically.

b) For continuous domain optimization problem, in order
to test the optimization ability of MACA, five standard
test functions are selected to test MACA algorithm, respec-
tively. Then we compared the results with CIAC, API, ACO,
NFCACO, and DMCACO algorithms and the test results
show that the optimization rate of MACA is 100%, the solu-
tion accuracy is higher than the comparison algorithms.

c) Based on the actual data of the wood drying process
of Fraxinus mandshurica, the MACA-LSSVM forecasting
model of wood moisture content is built. In the process of
training and prediction, the convergence race of the objective
function is fast, the RMSE and theMAE values are small, and
the prediction error is of within ±0.5. Moreover, the model
could restore the stability quickly after the discontinuous
sample point and show a better prediction effect.

d) In this study, the BP-NN, LSSVM, ACO-LSSVM, and
MACA-LSSVM models are used to predict the moisture
content of Fraxinus mandshurica, respectively. The results
show that the RMSRE of MACA-LSSVM is only 1.82%,
which is 0.77%, 0.50%, and 0.20% lower than that of BP-NN,
LSSVM, and ACO-LSSVM; the MAE is only 0.1097, which
is 0.0140, 0.0300, and 0.0140 lower than that of BP-NN,
LSSVM, and ACO-LSSVM, respectively. The running time
is also shorter than the other three models. The experimental
results indicate that the prediction accuracy and the running
speed of MACA-LSSVM are all better than the other three
models.

The main contributions of the paper are as follows:
(1) The MACA-LSSVM model is proposed to forecast the
moisture content of wood drying process. The results indicate
that the model can satisfy the actual needs; (2) Compared
with the BP-NN, LSSVM, and ACO-LSSVM models, the
MACA-LSSVM model has a higher prediction accuracy and
computational efficiency. (3) By improving the prediction
accuracy and prediction stability of the forecasting model,
the intelligent control level of the wood drying system is
improved.

In this study, despite the MACA-LSSVM model has a
high prediction accuracy, certain research work is required
to be supplemented and perfected. For example, the
MACA-LSSVM model belongs to the offline modeling.
In the future, we will study the online pre-processing of
sample data to realize the online modeling and forecasting
of wood drying process. In addition, the forecasting of water
content in the drying process of multiple tree species should
be carried out to improve the generalization performance of
the forecasting model.
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