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ABSTRACT Computer networks become complex and dynamic structures. As a result of this fact,
the configuration and the managing of this whole structure is a challenging activity. Software-Defined
Networks(SDN) is a new network paradigm that, through an abstraction of network plans, seeks to separate
the control plane and data plane, and tends as an objective to overcome the limitations in terms of network
infrastructure configuration. As in the traditional network environment, the SDN environment is also liable
to security vulnerabilities. This work presents a system of detection and mitigation of Distributed Denial of
Service (DDoS) attacks and Portscan attacks in SDN environments (LSTM-FUZZY). The LSTM-FUZZY
system presented in this work has three distinct phases: characterization, anomaly detection, and mitigation.
The system was tested in two scenarios. In the first scenario, we applied IP flows collected from the
SDN Floodlight controllers through emulation on Mininet. On the other hand, in the second scenario,
the CICDDoS 2019 dataset was applied. The results gained show that the efficiency of the system to assist
in network management, detect and mitigate the occurrence of the attacks.

INDEX TERMS DDoS, deep learning, fuzzy, LSTM, portscan, SDN.

I. INTRODUCTION
Nowadays, the number of applications and services that use
the Internet has increased quickly. The network system has
become complex structures due to a large number of devices
that make them, for example, firewall, intrusion detection
system, load balancer, switches, routers, etc. In the traditional
network environment, each network asset uses complex pro-
tocols, and its configuration differs between makers. With the
advent of Cloud Computing and the increase in virtualization
technologies, the traditional management architecture of the
network is not adequate for these applications, particularly at
the current data centers [1].

Despite Software-Defined Networking (SDN) not hav-
ing been created with a specific objective for virtualization
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functions of the network, it is an emerging network archi-
tecture that projects future networks and that meets the new
demands of already existing applications [2], [3]. The main
characteristic of SDN architecture is the separation of the
control and data plane, which means that the control plane
is removed from the network device and centralized on a
controller [4], [5]. The centralization of the control plane
provides a global view of the network and allows the man-
agement of its components through an open and well-defined
software interface [6].

Along with the increased demand for web applications and
the popularization of new IoT (Internet of Things) devices,
issues related to security emerge, for example, attacks [7], [8].
The number of attacks has increased in numbers and in
the sophistication of how they are carried out by malicious
agents, especially the Distributed Denial of Services (DDoS).
The purpose of DDoS is to exhaust a resource, even at the
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server level where the attacker, through many solicitations,
tries to deprive some service or at the infrastructure level
where the attacker saturates a network link [9], [10].

Although the SDN networks have introduced program-
ming and centralization resources of the control logic, which
facilitate its management, these resources are the main
security vulnerabilities presented by the network architec-
ture [11], [12]. Due to the SDN network architecture, it is
known that the management of network flows is centralized
and executed by a controller, which is subject to security
threats, for example, DDoS attacks, Portscan, IP spoofing,
etc [10], [13]–[16]. During a DDoS attack, the network ser-
vices are overloaded due to the large number of requests sent
by the attackers. The controller is the central point of the
SDN network and is vulnerable to attacks. Besides, DDoS
attacks are followed by Portscan attacks, where the attacker
scans for open ports to perform intrusions. Thus, the SDN
network security remains undefined and it is necessary the
development of solutions related to detection and mitigation
of attacks.

In the last few years, with the increase of security threats
and the huge enormous volume of traffic, several approaches
have been proposed to detect anomalies [17]–[19].
Network anomaly detection consists of twomain approaches:
Signature-based and Profile-based. For the first one,
Signature-based, a database containing signatures of the most
diverse kinds of attacks is needed, and the detection of an
anomalous event occurs when there is a ‘‘math’’ between the
behavior of the network and the known pattern attack. On the
other hand, the profile-based approach, based on network
history data, a prediction of its usual behavior is made, and
an anomaly is detected when the predicted behavior and the
real behavior diverge from one another [20]. One of the main
advantages of this kind of methodology is the detection of
unknown anomalies, for the system does not require learning
the behavior of the many existing attacks. Furthermore,
the current attacks are dynamic, and new patterns emerge fre-
quently [7], [17].Thus, Signature-based approaches demand
that the signature of the attacks are updated each time a new
attack emerges, resulting in a drawback for the system.

Generally, the anomaly detection techniques intend to rec-
ognize sensitive traffic patterns through sudden changes in
the expected traffic volume or unexpected changes in the
distribution of specific network traffic characteristics, such
as IP addresses and ports. The implementation of Machine
Learning algorithms provides solutions for detecting and
classifying anomalies [21], [22]. These algorithms have the
capacity of learning patterns from a set of data and making
predictions based on these data. Usually, the Machine Learn-
ing techniques employed in anomaly detection systems are
divided into two approaches: Shallow Learning and Deep
Learning. Shallow Learning algorithms have some limita-
tions, such as largely depending on attributes used in the
process of training, and an intensive analysis is necessary in
order to capture the most relevant attributes and statistics of
the traffic [23], [24]. Besides, the models often need to be

retrained to learn new patterns of network behavior [25], [26].
Recently, the methods based on Deep Learning have been
applied in many works related to intrusion detection systems,
due to the learning capacity and generalization of employed
attributes [27]–[29].

Thus, we present a modular system for anomaly detec-
tion and mitigation applied on SDN networks environ-
ments. The developed system consists of three modules with
well-defined functions. The first module is the characteriza-
tion one, which employs a Deep Learning algorithm called
Long short-term memory (LSTM), an architecture of artifi-
cial recurrent neural network (RNN), to predict the normal
behavior of the network traffic. The second module is respon-
sible for detecting anomalous events, in which the Bienaymé-
Chebyshev inequality is applied to generate normality thresh-
old dynamically, and with that, the Fuzzy logic is applied to
identify the occurrence of an anomaly in a certain moment of
the analysis. The third module of the system is responsible for
the mitigation of detected anomalies, intending to minimalize
the damages caused by an attacker.

The main contributions of this work are:

• Network traffic characterization employing a Deep
Learning LSTM mechanism;

• DDoS and Portscan attacks detection using a Fuzzy
inference system;

• Analysis of the network traffic performed in near real-
time;

• Test with two datasets containing many kinds of DDoS
attacks;

• Comparison between the developed system and other
methods present in the literature.

The rest of this work is organized as the following:
Section II presents the related works; Section III presents
the fundamentals used in the development of the system;
Section IV we discuss the system performance results. Ulti-
mately, on Section V the conclusions obtained with the
development of this paper is presented.

II. RELATED WORKS
Nowadays, SDN networks are used broadly, however they
present many problems related to security [4], [6], [13], [30].
Thus, the SDN network security remains indefinite, and solu-
tions related to detection and mitigation of attacks have been
developed [14].

According to AlEroud and Alsmadi [31], when the packet
forwarding logic is centralized and allocated in the controller,
the malicious agents explore vulnerabilities on the controller,
on links of communication between controller and forward-
ing devices and on switches’ memory. A switch has a limited
memory, when it is under attack, the number of flows received
by the devices increase considerably, taking up all the storage
capacity from the forwarding table. Many studies have been
developed in order to create defense mechanisms to supply
these vulnerabilities present in SDN architecture [7], [32].
Silva et al. [33] introduced a framework called ATLANTIC
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(Anomaly deTection and machine LeArNing Traffic classifI-
cation for software-defined networking) for detecting, clas-
sifying and mitigating anomalous events in SDN networks.
Garg and Garg [34] present an adaptive mechanism to update
the policies dynamically to aggregate the flows inputs and to
detect anomalies, so that the monitoring overcharge can be
reduced and the anomalies can be detected more precisely.
Mousavi and St-Hilaire [35] applied a technique to DDoS
detection using entropy. The main goal of the authors is to
detect an attack on its first stage, for the detection made at
the beginning of the attack allows the application of mitiga-
tion policies before the controller is completely flooded with
malicious packets.

Carvalho et al. [36] presents a new ecosystem to detect
andmitigate DDoS attacks in SDN environments. The system
proposed by the authors is composed by four stages: the first
one is related to collection and storing of IP flow records;
the second stage is the generation of a normal network profile
based on the data collected using the ACODS method (Ants
Colony Optimization for Digital Signature); the third stage
corresponds to the detection of anomalies comparing the real
network behavior to the generated profile using multinomial
logistic regression (MLR) to detect suspicious events that
differ from the expected behavior; finally, in the fourth stage
mitigation policies are applied. The analysis of the traffic
behavior for anomaly detection is done every 30 seconds.
According to the results presented by the authors, the sys-
tem proves to be efficient at the detection and mitigation of
anomalous events stages.

Hamamoto et al. [37] proposed a system of anomalies
detection applied to large scale networks. The authors used
the DSNSF approach (Digital Signature of Network Seg-
ment using Flow Analysis) to generate behavior signatures
of normal network behavior, applying GA (Genetic Algo-
rithm). Furthermore, the Fuzzy logic was used along with
DSNSFs generated to anomalous behaviors in those analyzed
networks. It was used real data collected from the State Uni-
versity of Londrina by using sFlow to validate the proposed
system. Three different anomalies were injected into the
network’s real data, using tools for simulation of anomalous
events: DoS, DDoS, and Flash Crowd. The suggested system
showed to be efficient, with a prediction rate above 96%.
Different works also applied the DSNSF approach by using
different techniques. However, the traffic characterizations on
these works used an approach which analyses from two to
four weeks of data for recognizing patterns and generation of
normal profile in the network’s regular environment. More-
over, a limitation presented by these works is that the attacks
were detected in the period between 1 and 5 minutes. Unlike
these works, the model proposed in this paper performs the
prediction of normal traffic behavior by applying a sliding
window and detecting anomalous events every second.

With the increase of the applications of image recognition,
natural language processing, bioinformatics, the Deep Learn-
ing models had a fundamental role in solving these kinds of
problems. Due to its huge capacity to extract knowledge in

large scale from complex data, obtaining advantages on its
results if we compared them to the traditionalMachine Learn-
ing techniques [18], [21]. In Cybersecurity, the Deep Learn-
ing models are being applied in many different areas, for
example intrusion detection [38], malware detection, spam
detection [39], DDoS attacks detection [40], etc.

Li et al. [41] proposed a supervised Learning Machine
mechanism of defense and detection of DDoS attacks in
SDN network environments based on deep learning. The
model presented by the authors consists of the following
layers: input layer, forward recursive layer, reverse recur-
sive layer, fully connected hidden layer, and output layer.
At the construction of the model, it was employed Recurrent
Neural Network (RNN), Long Short-Term Memory (LSTM)
and Convolutional Neural Network (CNN). According to the
result gained by thismodel after detection, the SDN controller
generates discard policies and sends them to the switches.
For the test conduction, the ISCX dataset was employed to
train the detection and verification model of defense archi-
tecture through DDoS attacks in real-time. According to the
presented results, the defense method presented obtained an
accuracy rate of 98%. However, the supervised learning to
detect network attacks is a drawback, because the way the
attackers executed the attacks is constantly being updated.

Tuan A Tang et al. [42] employed Deep Learning to
detect anomalous flows in the SDN network. The authors
suggested a Deep Neural Network (DNN) for a system that
detects intruders, and the model was trained by using the
NSL-KDD dataset. The dataset is made of 41 attributes.
However, only a subset of 6 attributes were used. Through
experiments, the suggested model only obtained an accu-
racy of 75.75%. The low amount of attributes influenced
the low accuracy. Dey and Rahman [43] present a method
of anomalies detection based on flows on the OpenFlow
controller using DNN. The suggested model combined two
approachesGatedRecurrent Unit and Long Short TermMem-
ory (GRU-LSTM) to construct the intrusion detection sys-
tem. Two methods of feature selection were employed for
each anomaly analyzed to improve the model’s performance,
the NOVA F-Test and Recursive Feature Elimination. For the
experiment process, the NSL-KDD dataset was also used.
The experimental results demonstrated an accuracy of 87%.
Shone et al. [38] suggested a new DL ensemble model for
NIDS,which combines deep and shallow learning. Themodel
combines Non-symmetric Deep Auto-Encoder and Random
Forest. The data used for the test came from KDD CUP
99 and NSL-KDD datasets. The results showed an accuracy
of 97.85%.

Despite this, many works available in the literature [17],
[21], [25], [26], [28] for detecting DDoS attacks only evaluate
a few types of DDoS attacks. Unlike these works, one of
the main contributions presented by the system proposed in
this paper is the detection of 12 types of DDoS attacks (e.g.,
NTP, DNS, LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP,
UDP-Lag, WebD-DoS (ARME), SYN, and TFTP). In addi-
tion, the system proposed is capable of learning the normal
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FIGURE 1. The proposed system architecture using LSTM and Fuzzy logic for Anomaly Detection and Mitigation.

behavior of the network, which is an advantage for detecting
zero-day attacks.

III. THE SYSTEM PROPOSED
The system proposed in this paper has as its main goal the
network traffic characterization, detection, and mitigation of
DDoS attacks and Portscan in Software-defined networking
environment. The system used as a principal the concept of
Digital Signature of Network Segments (DSNS) introduced
by Proença [20]. This concept applies an efficient technique
to create a model that characterizes the network profile using
historical data. The characterization proposed by Proença
et al. was idealized for the traditional network environment
and used a historical base from past traffic weeks containing
MIB (Management Information Base) objects from manage-
ment protocol SNMP (Simple Network Management Proto-
col). On the other hand, the characterization suggested in
this paper uses IP flows attributes collected from the SDN
controller, and the prediction of the network signature is made

by employing a sliding window of the traffic. Consequently,
the suggested system discards the use of a database to gener-
ate a signature. It is possible to recognize behavior from the
normal profile of network that differs from the expected and
helps in the anomaly detection stage methodology presented
in this work.

The system of detection and mitigation of anomalies sug-
gested in this work is divided in three phases:

1) Prediction of the normal behavior of the network’s
traffic and the definition of normality thresholds;

2) Application of the Fuzzy logic to determine if there are
anomalies, using as a parameter the predicted traffic
and the defined thresholds on the last stage;

3) Application of mitigation policies with the intention
of taking countermeasures against the detected attacks,
guarantying the network operation.

Fig. 1 illustrates the schematic diagram for operation of
the anomaly detection and mitigation system suggested in
this paper. The system was developed on the application
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FIGURE 2. LSTM cell structure.

plane. The first stage is the traffic characterization, in which
the flows attributes are pre-processed to predict the network
traffic and the normal behavior signatures along with the nor-
mality thresholds. The next stage is the module of anomaly
detection, in which the Fuzzy Inference system takes deci-
sion dynamically to determine the occurrence of anomalous
events. When there is an anomaly, the IPs and ports that are
in the analysis interval are considered suspicious. The third
stage is responsible for the application of mitigation policies
and receives as input suspicious flows determined on the last
stage. In this set of flows, the mitigation module applies the
most appropriate countermeasure to minimize the effects of
an attack.

A. LONG SHORT-TERM MEMORY FOR NETWORK TRAFFIC
FORECASTING
1) LONG SHORT-TERM MEMORY
In this subsection, some concepts about LSTMwill be briefly
introduced to assist in the understanding of the characteriza-
tion module proposed in this work. Introduced by Hochre-
iter and Schmidhuber [44], LSTM a special architecture of
recurrent artificial neural networks, with the capacity to learn
long-term dependencies.

The structure of an LSTM cell is illustrated in Fig. 2.
As observed, at each t time instant, the cell is controlled
by various gates that can either maintain or reset the value
according to the state of the gate. Three gates are applied
on the cell, the forget gate (ft ), the input gate (it ), and the
output gate (ot ). Moreover, there is an entrance modulation
gate called candidate value. The gates can be described as the
following:

it = σ (Wx,ixt +Wi,hht−1 + bi) (1)

ft = σ (Wf ,ixt +Wf ,hht−1 + bf ) (2)

ot = σ (Wo,ixt +Wo,hht−1 + bo) (3)

c′t = tanh(Wc′,ixt +Wc′,hht−1 + bc′ ) (4)

where W means the matrix of synaptic weight, b means the
bias vectors, xt is the actual input, c′t is a vector with new

candidates to be added to the actual state of the cell, ht−1 is
the LSTMprevious output in the time of instant t−1, σ (·) and
tanh(·) are the respective activation functions, Sigmoid and
Tangent Hyperbolic. The first step on LSTM is to decide how
much of the previous memory value will be removed from the
state of the cell. This decision is made by the forget gate. The
next stage is to determine how much of the new information
will be stored, which is made by the input gate. Next, the state
of the cell is used and defined with the following expression:

ct = ft � ct−1 + it � c′t (5)

in which � denotes elementwise product. The LSTM output
ht is defined by:

ht = ot � tanh(ct ) (6)

2) NETWORK TRAFFIC FORECASTING PHASE
The traffic prediction aims to generate the network’s normal
behavior signature, which is essential for the management
and for the network security. The network characterization
makes the decision of management related to possible prob-
lems that may occur more reliable and safer. To obtain a
prediction close to the real behavior is an important step
towards the detection of anomalous traffic, for the generated
signature delimits the normality limits of a traffic sample at a
certain moment on the network segment that is observed.

The characterizations of the signatures are generated
from IP Flow data that are collected from the SDN net-
work switches by the controller using an OpenFlow proto-
col. Among the attributes collected by the controller, the fol-
lowing attributes were selected: bits/s, packets/s, source IP
address, destination IP address, source and destination ports.
These flows attributes were analyzed and employed to pre-
vious works in the network traffic characterization of high
speed and presented good results to describe and better under-
stand the network behavior [45], [46]. Bytes and packets
dimensions are quantitative attributes, which means volume
attributes that are capable of supplying information related to
the amount of information that is transported on the network.
The others are nominal attributes and supply qualitative infor-
mation that means these attributes allow to understand which
devices are communicating with one another and which ser-
vices are being accessed by them. The use of these attributes
is fundamental to identifying possible attacks and is indis-
pensable for the use of module mitigation to minimize the
damage caused by an attack.

The IP and port attributes are nominal data and to carry
out a quantitative analysis it is necessary to transform these
attributes through entropy calculus. So, the Shannon Entropy
was used in this work [47], it allows information from the
concentration to be extracted and the prediction of these flow
attributes. Ultimately, with the set of flow attributes x = {x1,
x2, . . . , xn} where xi represents the sample’s occurrence i
at the interval of time. The entropy H to X is defined in
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the Equation (7)

H (x) = −
N∑
i=1

(xi
S

)
log2

(xi
S

)
, (7)

in which S =
∑N

i=1 xi is the sum of all occurrences present
in the histogram.

It is possible to identify attacks by using entropy to charac-
terize traffic. For example, during a DDoS attack occurrence,
there is a concentration of the victim’s IP address and desti-
nation port entropy; dispersion of the entropy of the source
port due to multiple attackers using random source ports.

After guarantying that all flow attributes collected are pre-
sented in a quantitative way, a process of traffic signature
generation starts. The problem with the network traffic pre-
diction using LSTM could be defined as the following model.
Consider at the instant of time t , the set of data X = (x1,
x2, . . . , xd ), where each xi is a flow attribute vector defined
as:
• x1: bits/s
• x2: packets/s
• x3: source IP entropy
• x4: destination IP entropy
• x5: source Port entropy
• x6: destination Port Entropy
Long Short-Term Memory neural networks are designed

to handle with sequence due to their ability to maintain long
term memory. In recent years, LSTM is widely used in time
series prediction and has proven to be superior to traditional
mathematical algorithms [48]–[50]. Besides, LSTM is a pow-
erful technique that can represent the relationship between
current and previous events and enhance network traffic fore-
casting.

In the approach to this work, LSTM was applied to mold
the problem of univariate time series prediction. In this way,
LSTM predicts the signature of normal network behavior.
An LSTM was applied to each flow attribute defined previ-
ously, which means each LSTM will be responsible for pre-
dicting the signature of normal behavior for each attribute xi.
The LSTM model will learn a function that maps a sequence
of n observations of previous inputs to an output observation
[51]. For example, at the t instant, given an input sequence
of n past observations that consists of the bits vector x1 =
{xt−n, . . . , xt−3, xt−2, xt−1}, produces an output y1 = {yt}
which represents the behavior prediction to the flow bits
attribute. Fig. 3 illustrates the LSTM model For Digital
Signature (LSTM-DS) proposed in this paper.

Despite using 6 LSTM networks, one for each flow
attribute, the training process of the network is an offline task.
The computing cost for the training is high. However, it is not
critical to its application [52]. Being so, during the operation
stage with the trained LSTM networks, the prediction pro-
cess of traffic is immediate. The Algorithm 1 illustrates the
process of the LSTM-DS module operation.

The predicted traffic would not be the same as
the real traffic. However, it is necessary to determine

FIGURE 3. The proposed model for traffic forecasting using 6 LSTM.

Algorithm 1 LSTM-DS Operation Phase
Require: X = (x1, x2, . . . , xd )
Ensure: y = (y1, y2, . . . , yd )
1: y1 = LSTM-bits(x1)
2: y2 = LSTM-Packets(x2)
3: y3 = LSTM-SrcIPEntropy(x3)
4: y4 = LSTM-DstIPEntropy(x4)
5: y5 = LSTM-SrcPortEntropy(x5)
6: y6 = LSTM-DstPortEntropy(x6)

7: y = (y1, y2, y3, y4, y5, y6)
8: return y
=0

thresholds between the predicted traffic and the real traf-
fic. Bienaymé-Chebyshev’s inequality is used to define this
threshold between the predicted and the real one. Bienaymé-
Chebyshev’s inequality determines a limit of data percentage
that lies in number k of standard deviations interval around
the mean. The inequality can be applied to detect outliers [53]
when the data distribution is unknown.

The equation for the Bienaymé-Chebyshev’s inequality is
represented in the Equation (8):

P(| X − µ |≥ kσ ) ≤
1
k2
, (8)

where X is a random variable, µ is the mean, k > 0 is
the parameter of deviation and σ is the standard deviation.
Defining the parameter k = 4.47 in Equation (8), the resulting
probability will be equal to 0.05, which is the usual cut-off
point for statistical significance to verify the discrepancy of a
hypothesis in relation to the observed data [54].

B. FUZZY LOGIC FOR ANOMALY DETECTION
1) FUZZY LOGIC THEORY
In Classical logic, a proposition can only take values as true
or false. On the other hand, the Fuzzy sets theory introduced a
new concept, which means prepositions can take values from
0 to 1. This concept is called degrees of membership. Intro-
duced by Zadeh in 1965 [55], the Fuzzy sets theory provides a
mathematical tool capable of helping with decision taking in
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an environment with imprecision variables, uncertainty and
incomplete information.

A Fuzzy set can be defined as (S,f ) where S is any set and
f represents membership function. Every x element belongs
to S, the f (x) value defines the membership degree of x in the
set(S,f ). The x element is considered not included if f (x) =
0, totally included if f (x) = 0 and fuzzy member if f (x) = 1.
An example of membership function is the Gaussiana, which
is defined as:

f (x) = e
−(x−−m)2

2σ2 (9)

where m is the mean and σ is the standard deviation of
the S set.

According toWu and Banzhaf [56], the Fuzzy logic is used
to detect the anomalies in networks for twomain reasons. The
first one, the anomaly detection problems involve countless
numeric attributes that are collected and derived statistically,
which could cause a detection error. The second, the models
that generate a normal profile of network behavior need
to determine thresholds between the normal and anomalous
behaviors. However, this interval is not well-defined and
small changes (e.g., adversarial examples) on traffic behavior
can cause false alarms. Considering these factors, the Fuzzy
logic was used in this work to help with decision taking for
anomaly detection.

2) ANOMALY DETECTION PHASE
The proposed model for anomaly detection in this work uses
past traffic, the one predicted by LSTM and the Fuzzy logic.
The first step is the ‘‘fuzzification’’ of sources for each one of
the flow attributes being analyzed, applying the membership
function. The membership function applied in this work is a
modification of the Gaussian membership function, defined
as:

f (yt )j = e
−(xt−−yt )2

2σ̂2t (10)

where xt is the real traffic, yt is the predicted traffic by
LSTM and σ̂t is the threshold generated by the Bienaymé-
Chebyshev’s inequality from the flow attribute j.
The Eq. 10 determines the membership degree of the nor-

mal traffic set. Therefore, to detect an anomaly we will apply
its complement, defined as:

f ′j = 1− fj (11)

The f ′i result represents the anomaly score of the flow
attribute j. The anomaly scores are used to classify the
traffic behavior to an instant data analysis. The process of
‘‘defuzzification’’ determines rather the traffic is ‘‘normal’’,
‘‘Portscan’’ or ‘‘DDoS’’, which are described in the following
rules:

Rule 1 : IF
6∑
j=1

f ′j < γ THEN ‘‘normal’’ (12)

Rule 2 : IF
6∑
j=1

f ′j ≥ γ AND
6∑
j=1

f ′j < ζ

THEN ‘‘Portscan’’ (13)

Rule 3 : IF
6∑
j=1

f ′j ≥ ζ THEN ‘‘DDoS’’ (14)

The values for γ and ζ scores were defined as 1.2362 and
3.3821, respectively. These values were rated by accuracy and
are detailed on Section IV-C. Fig. 4 illustrates the anomaly
score of all flow attributes during a day of network traffic
analysis, which contains a DDoS and Portscan attack period.
On the other hand, Fig. 5 illustrates the anomaly score sum
of all six flow attributes. With the anomaly score calculated,
the system can detect an attack based on the rules defined
in (12), (13), and (14).

C. MITIGATION PHASE
The detection and identification of anomalies are essential
stages that guaranty the operation and the services available
throughout the network systems. After detecting an anoma-
lous event, a mechanismmust be used to minimize the effects
caused by that event. The usual process to determine the
effects caused by attacks is by mitigating, applying auto-
nomic policies without the need for human interference, and
aiming to ensure the network’s resilience and operation. Thus,
the proposed system consists of a module responsible for
identifying the anomalous flows and mitigation policies are
taken.

Mitigation policies are structured by using the Event-
Condition-Action (ECA) model, which is considered ade-
quate for the dynamic managing of policies. In this model,
the Event refers to a specific anomaly and is associated with
a set of rules. These rules are described as a set of Condi-
tions that correspond to the context in which the anomaly
took place. Finally, the Action is a countermeasure taken in
relation to flows identified as malicious [57].

The main method used in applications for attack mitigation
on SDN environments is to modify the flow table entry of
the switch or to add a new flow entry. After detecting an
attack, some characteristics must be identified, for example,
source IP, IP destination, source port number, destination port
number, and the kind of protocol. These characteristics help
to identify the attacker and are fundamental for taking the
countermeasures to minimize the damage an attack causes.
A new entry on the flow table can be installed based on one
or more of these characteristics, signaling that the packages
that belong to the flow are from an attacker. Also, the actions
taken can be the discard of these packets, anomalous traffic
blockage and/or a honeypot redirection [58]

Based on the presented concepts, the mitigation module of
the system is made by two policies to mitigate the detected
anomalies. After the detection module’s alarm goes off,
the mitigationmodule takes action. The first step is to identify
the suspect flows of the analysis interval. The identification
of the suspected floes is made based on IP addresses analysis
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FIGURE 4. Anomaly score per flow attribute.

FIGURE 5. Anomaly score sum by six flows attributes.

and ports that make the anomalous interval. The ones that
move toward the IP address that most receives flows are
considered suspects.

By identifying the suspect flows, in case of an Event
being launched by the detection module is a DDoS attack,
a discard of the flows will be made based on the source IP
addresses which appear more often on the suspected flows
and which simultaneously have the same destination port.
When launched Event is a Portscan attack, the process of
identification of the attack is made by the origin IP address
that presents the most variety of destination ports. This IP is

considered an attacking one, and all its flows will be dropped.
The process of mitigation is shown in the Algorithm 2.

There are anomalies that are not caused by malicious
agents, but possess the same behavior of an attack. For exam-
ple, a Flash crowd anomaly has the same characteristics of a
DDoS attack, however, they are user performing legit requi-
sitions. In the works of Giotis et al. [58] and Assis et al. [46],
the authors suggest the implementation of a mechanism that
maintains a list of IP flow attributes of legit users for a
determined time of 5minutes. This way, we also implemented
a mechanism called Safe List that keeps a list of IP addresses
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Algorithm 2 Mitigation Process
Require: Suspect flows
Ensure: Anomalous Packets Discard

1: if DDoS attack then
2: Identify the destination IP address which receives the

most flows
3: Identify in those flows the attacker’s IP address which

have the same destination port
4: if IPs and ports are on the Safe List then
5: Forward packets
6: else
7: Drop packets
8: if Portscan attack then
9: Identify the IP address that has received the most flows
10: Identify in those flows the origin IP which presents the

most variety of destination ports
11: if IPs e ports are on the Safe List then
12: Forward packets
13: else
14: Drop packets

and ports. So, this list is verified before starting the mitigation
process.

IV. RESULTS AND DISCUSSION
The system was implemented by using the Python language
andwith development libraries for application of Deep Learn-
ing Keras and TensorFlow. The experiments were made in
an environment with the following figures: Intel Core i5
2.21 GHz, 8 GB RAM and the operational system Win-
dows 10. Default parameters as set, dropout = 0.2, loss
function is MSE (Mean-Square Error), learning rate= 0.001,
and optimizer was set as Adam proposed in [59], which is
an adaptive learning rate optimization algorithm for training
deep neural networks.

To demonstrate the effectiveness and efficiency of the
system proposed, we applied tests applying from distinct
scenarios. The test environment used in scenario 1 was a
network topology with 120 hosts and the attacks were carried
out in the periods of the day. In scenario 2 we used IP flows
emulated from a public data called CICDDoS 2019 [60]
from the Canadian Institute for Cybersecurity. This database
contains different kinds of DDoS attacks and realistic traffic
profiles.

A. SCENARIOS
The system performs a traffic behavior analysis each sec-
ond. Therefore, the network flows must be collected in this
time-lapse. Considering this analysis, in scenario 1, it was
necessary to emulate the network behavior using the SDN
Mininet network emulator [61], which allows the creation
of realistic virtual networks consisting of controllers, hosts,
links e switches on one single virtual machine. The Mininet
uses light virtualization in the creation of personalized open

TABLE 1. Information about the parameters of attacks in scenario 1.

code topologies and, it is broadly applied in this field to
carry out researches and development of solutions for SDN
environments. The experiments used a tool called Scapy [62]
to inject traffic in the emulated network to make sure the
emulated scenario is the closest it can get to a real SDN
environment, with high rates of traffic going through the
network.

Furthermore, to implement the anomaly detection and mit-
igation mechanism, we used the SDN controller Floodlight.
A controller based on Java developed by BigSwich offers
support to a wide variety of OpenFlow switches, virtual or
physical, and it can copewithmixed networks, OpenFlow and
no OpenFlow. The flows attributes used were: bit/s, packet/s,
source IP entropy, destination IP entropy, source Port entropy
and destination Port entropy.

Fig. 6 illustrates a topology emulated on scenario 1. The
first scenario is formed by a topology in which its elements
are distributed in the format of stars. This topology is made of
central switches, in which six switches are connected. Each
sub-network contains 20 hosts, totalizing 120 hosts. Two
24 hours day were emulated, that contains 86400 samples
each day. The first day of emulation only contains samples
of normal behavior of the network. This day was used in the
LSTM training phase, as a semi-supervised training approach
was used in its training. The second day of emulation was
used to evaluate the system’s operating performance in the
detection andmitigation of attacks. Alongwith the emulation,
two attacks were carried out with different intensities and
duration time. There a DDoS attack and a Portscan attack.
The information related to the parameters used in the attacks
are shown in detail on TABLE 1. This dataset is available
online.1

In scenario 2 we used the public dateset CICDDoS
2019 [60]. This set of data is distributed in two days,
one for training and another for testing. The training set
is made of 12 different kinds of DDoS attacks, being,
NTP, DNS, LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP,
UDP-Lag, WebDDoS (ARME), SYN e TFTP. The second
day, the testing day, contains 6 kinds of DDoS attacks, being
NetBios, LDAP, MSSQL, UDP, UDP-Lag and SYN. The
flows attributes used were the same as scenario 1.

1http://www.uel.br/grupos/orion/datasets.html
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FIGURE 6. Network topology scenario 1 emulated on Mininet.

B. MÉTRICS AND TESTS
The tests applied aim to verify the efficiency of the suggested
system, related to the modules that make it, detection and
mitigation. The suggestedmodule’s performance results were
analyzed using the following statistics metric [63]: precision,
recall, false-positive rate.

1) precision: presents the percentage of intervals classi-
fied as anomalies, which are anomalies;

2) recall: measures how effective the model is in identify-
ing the anomalous intervals about all the intervals;

3) false-positive rate: expresses a classification error,
the traffic is identified as anomalous, but in fact,
the traffic is normal.

These metrics can be easily calculated by the following
equations:

precision =
TP

(TP+ FP)
(15)

recall =
TP

(TP+ FN )
(16)

FPR =
FP

(FP+ FN )
(17)

where, TP, TN, FP, FNmean true positive, true negative, false
positive and false negative, respectively. Accuracy is a metric
widely applied to anomaly detection works. However, it can
lead to tendentious results where the dataset is unbalanced,
which is the case of the data applied in this work. The
dataset contains more normal samples than anomalous, and
the system can classify all the samples correctly as normal
and misclassify the anomalous samples, giving a tendentious
result. The Precision metric can be used to solve this ten-
dentious result and to emphasize the classification of correct
anomalous samples.

The Receiver Operating Characteristics (ROC) [63] may
be the combination of rates TP and FP, which gives a visual
analysis of the system’s capacity in detecting anomalous
behaviors. However, to better quantify the efficiency between
many classifiers, we analyze the area under the curve (AUC)

TABLE 2. Contingency table (2 × 2).

of the ROC curve. The one with the highest value has the best
ability to classify the samples. Therefore, AUC was applied
to evaluate the proposed method with other models available
in the literature.

The efficiency of the module of mitigation was rated
through the application of a statistic test called McNemar’s
Test, also through the dropped packet rate. The MacNemar
Test a non-parametric test and its application is carried out
through paired samples and nominal data. It is applied to
contingency tables 2 × 2 with a dichotomous trace, which
means, two behaviors (e.g., anomalous and normal) with the
aim to verify if the marginal frequencies are equal or not [64]
On TABLE 2 a generic example is illustrated of a contingency
table 2× 2 that presents the results of two tests in an sample
of n individuals.

The null hypothesis indicates that the probabilities for each
results are equal, that means, there was no change in the
marginal frequencies and pa+pb = pa+pc e pc+pd = pb+
pd , where pa, pb, pc, pd indicate the theoretical probabilities
of occurrences on the cells with the corresponding label. The
null hypothesis and the alternative hypothesis are presented,
respectively, as:

H0 : pb = pc
H1 : pb 6= pc

The MacNemar’s test formula originated from the
chi-square equation:

χ2
=

(b−c)2

b+ c
(18)

χ2 has a chi-squared distribution with a degree of freedom.
If the result χ2 is relevant, that means, that pb 6= pc which
means that the marginal frequencies are significantly differ-
ent from one another the null hypothesis is rejected.

C. PARAMETERS EVALUATION
This section evaluates the results of the parameters used in
the development of the proposed system. The first parameter
to be looked into was the time step size used by the LSTM
network in the traffic prediction phase. The values used for
the test comprehend between 2 and 30 past samples of the
traffic collected. The RMSE metric was used to determine
the best time step size. The graphic present in Fig. 7 illustrates
the values of RMSE obtained for each of the values evaluated.
The time step size that presented the best result was equal to 5,
with an RMSE value of 0.0445.
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FIGURE 7. Time step size used for the LSTM traffic forecasting.

FIGURE 8. Number of units used for the LSTM traffic forecasting.

The next step was to define the number of hidden units. The
evaluation of this parameter used the range of 5 to 100 units,
and for each value the RMSE was evaluated. The number of
units which presented the best result was 50 units, after which
there was no significant improvement. In Fig. 8, we have a
graphic with results obtained for each value of unit and its
respective RMSE value.

The graphics present in Fig. 9 and Fig. 10 illustrate the
evaluation of γ and ζ values to find the most adequate sum
of anomaly score. The values were defined by varying γ and
ζ and calculating its respective accuracies. The final value γ
was defined with argmaxγ (accuracyγ ) and the ζ value was
defined as argmaxζ (accuracyζ ). The score values for γ and
ζ were defined as 1.2362 and 3.3821, respectively.

D. EVALUATION SCENARIO 1
To further validate our system, we compared our system with
four other anomaly detection methods, which were applied
to detect anomalies in SDN networks. The first method is
the k-Nearest Neighbor (kNN) [65], a supervised classifier
with a low computing cost, used to detect malicious events in
a datacenter. The second method is the Multi-layer Percep-
tron (MLP) [66], an artificial neural network applied in the

FIGURE 9. Accuracy evaluation for Gamma.

FIGURE 10. Accuracy evaluation for Zeta.

TABLE 3. Information about the samples for each class.

detection of DDoS attacks. Another method is based on Sup-
port Vector Machine (SVM) [67] to detect flooding attacks.
We also compared it with LSTM-2 [68], which applied DL
to detect DDoS attacks in the SDN environment. Finally,
the recent method present in literature called Particle Swarm
Optimization Digital Signature (PSO-DS) [46]. The heuris-
tic method that used an unsupervised learning technique to
detect DDoS and Portscan attacks on SDN networks.

To improve the comparison between the methods,
on supervised approaches (kNN, SVM, MLP, and LSTM-2),
we used a dataset for training that represents a day of network
traffic data collection. This day is composed of normal traffic
and by DDoS and Portscan attacks. The information for the
number of samples to the classes are illustrated in Table 3.
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FIGURE 11. Detection results in the first scenario among LSTM-FUZZY and
another methods.

A detailed analysis is illustrated in Fig. 11, where
we present the metric results of compared methods. The
LSTM-FUZZY presented a low false-positive rate, obtain-
ing a value of 0.25%. The compared method LSTM-2 pre-
sented the highest false-positive rate, reaching 1.53%. On the
other hand, the SVM and kNN methods didn’t present
false-positive rates. Regarding the recall and precision met-
rics, all the methods presented values superior to 98%. None
of the methods reached better performance in all the metrics
evaluated.

Fig. 12 presents the ROC curves, a visual compari-
son between the compared methods. Through the ROC
curve, it is possible to determine which of the meth-
ods present the most adequate aptitude to detect anoma-
lies. By analyzing the obtained results, it is clear that the
LSTM-FUZZY approach obtained the best results among the
other compared methods. The LSTM-FUZZY presented an
AUC value of 99.87%, implying that the method presented
the higher true positive rate with the lowest false-positive
rate.

TABLE 4. Contingency table to evaluate the mitigation process on
scenario 1.

1) MITIGATION
From the alarms generated by the classification process of
LSTM-FUZZY, mitigation policies were applied. Fig. 13
presents the traffic attributes in green without the application
of mitigation and in blue is the traffic after the mitigation
process. In the period between 9:45:00 and 10:35:00, we have
a DDoS attack report, in this period we can see the increase
of the packet and bits rate when the mitigation module is dis-
abled, but by activating themodule the traffic tends to go back
to its normality due to discards of anomalous packets. The
period of the Portscan attack between 14:30 and 15:30 causes
minor changes in the traffic behavior, with the application of
mitigation the affected attributes also go back to its normality.

In this scenario, the mitigation analysis through the
McNemar’s test and dropped packet rates were also applied.
The significance level for the McNemar’s test was α = 5%.
The TABLE 4 offers information on the traffic classification
between anomalous and normal before and after the mitiga-
tion process. By applying the test to the information on the
table, the p-value results were lower than 2.2 × e−16 that is
smaller than the α value. Therefore, the null hypothesis in
this scenario was also rejected. It indicates that there was
indeed a difference in the frequencies. Thus, the mitigation
was efficient in minimizing the threat effects. Also, the rate
of anomalous packages dropped by the system was 99.88%.
This result shows that almost all the anomalous packets were
dropped.

E. EVALUATION SCENARIO 2
This scenario aims to evaluate the module of system detec-
tion, applying different kinds of DDoS attacks. As mentioned

FIGURE 12. ROC curves of the methods compared scenario 1.
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FIGURE 13. Graph showing non-mitigated traffic and mitigated traffic for intervals with anomaly on scenario 1.

FIGURE 14. ROC curves of the methods compared scenario 2.

previously, the CICDDoS 2019 dataset [60], developed by
the Canadian Institute for Cybersecurity, is made of two days
(train and test). The training day is made of 12 kinds of DDoS
attacks, and the test day contains six kinds of DDoS attacks.

As mentioned, the system suggested in this work does the
analysis of traffic every 1 second. Thus, it was necessary to
run a pre-process of the CICDDoS 2019 dataset to summarize
the flows into groups of one-second intervals based on their
timestamp feature. After grouping, we noted that all the
intervals weremade by only anomalous samples. To solve this
problem, we separated the flows by anomalous and normal
before the process of grouping in 1 second intervals.

However, the size of the flows samples containing DDoS
attacks is superior to the normal data due to the characteristics

of the attacks. It is not a problem to the LSTM-FUZZY,
because on the training stage, the method only uses the
normal samples to characterize the traffic, but it can generate
overfitting for the methods SVM, kNN, MLP, and LSTM-2
that during the training a supervised approach is applied.
To retain the characteristics and the representative of the
applied data in the training, the solution applied to solve this
problem was to sample the flows randomly for each kind
of attack. Through empiric tests, for each kind of attack we
selected a proportion of 5 times the normal flows. The set
of training was reduced but it maintained enough sample
quantity for the training process.

As executed in the first scenario, the efficiency of
LSTM-FUZZY was compared to classic methods, kNN,
SVM, MLP, LSTM-2, and PSO-DS. Fig. 15 illustrates the
results of metrics obtained for each one of them. About the
recall metric, it is clear that the LSTM-FUZZY obtained a
performance superior to the other compared methods, obtain-
ing a value of 93.13% for this metric, followed by LSTM-2,
PSO-DS, kNN, MLP and SVM, which reached the
rates of 90.53%, 89.66%, 89.27%, 87.92%, and 87.92%,
respectively.

The next evaluated metric was the precision one,
the LSTM-FUZZY again reached the best result, with a
rate of 97.89%, the remaining ones were SVM, LSTM-2,
MLP, kNN, and PSO-DS, reaching rates of 97.74%, 96.61%,
94.98%, 89.27%, and 81.19%, respectively. On the other
hand, in comparison to the false-positive rate, the LSTM-
FUZZY and the SVM reached the same rate of 2.2%, which
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FIGURE 15. Detection results in the second scenario among LSTM-FUZZY
and others methods.

could be considered a good result. After it was the MLP,
LSTM-2, kNN and the PSO-DS, with retrospective values
of 5.52%, 9.98%, 11.53%, and 20.76%. The proposed sys-
tem showed superior results to the other compared methods,
except for the SVM that obtained similar results. However,
when using the ROC curve it was possible to observe the
improvement between the compared methods more clearly.
Despite the similar results, the performance applied by the
proposed system is a significant improvement, as current
computer networks operate with links with high transmission

rates. Over a day of network operation, a small percentage of
undetected attacks could cause damage to its operation. For
instance, in October 2016, a DDoS attack with 100 thousand
malicious endpoints surpassed a bandwidth of 1.2 Tbps [69].
As the outcomes presented in the first scenario, the
LSTM-FUZZY method also fared better on the average than
the other compared methods on the second scenario, achiev-
ing promising test outcomes that make it an efficient tech-
nique on detecting different kinds of DDoS attacks.

Just as in the previous scenario, the ROC curve was
used to determine which method presented the best per-
formance in detecting attacks. Fig. 14 presents the visual
analysis of the ROC curve. Through AUC, we can see that
the LSTM-FUZZY was the one that reached the best bal-
ance between the true-positive rates and the false-positive
rates, reaching a value of 96.22%. Followed by the SVM,
MLP, kNN, LSTM-2, and PSO-DS with the following values
94.93%, 91.28%, 86.53%, 82.01%, and 80.63.

1) MITIGATION
In this scenario, we evaluated the efficiency to mitigate the
DDoS attacks from CICDDoS 2019 dataset. Fig. 16 presents
the traffic behavior from the test day where there is the
DDoS attack report with the mitigation module deactivated
and compares its behavior when the mitigation is activated.
The traffic generated without the application of mitigation
policy is represented in the green area, and the blue line shows
the traffic after the application ofmitigation against the DDoS
attacks. Visually it is possible to see when the attacks are

FIGURE 16. Traffic analysis with mitigation module disable and enable on test day from CICDDoS 2019 dataset.
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TABLE 5. Contingency table applied for evaluation of mitigation on
scenario 2.

mitigated, the attribute values being analyzed return to its
expected behavior.

The MacNemar’s test was applied with a level of signifi-
cance of α = 5% and the null hypothesis that the marginal
frequencies are equal. After applying the test on the contin-
gency TABLE5, the p-value result was 2.2×e−16 that is lower
than the value α. Thus, the null hypothesis is rejected, which
indicates that there was a difference in the marginal frequen-
cies, and the mitigation was effective. Moreover, the anoma-
lous packets rates discarded was 99.20%, which implies that
the majority of the anomalous packages were mitigated.

V. CONCLUSION
In this work, we presented a modular system for detection
and mitigation of anomalies in SDN networks. The system
is made of three modules where its activities are carried out
in an automatized way to make monitoring, detection, and
mitigation of attacks easier. In the first module, responsi-
ble for the characterization of traffic, we developed a new
approach to predict the normal behavior of the network
operation, applying an approach of Long Short-Term Mem-
ory (LSTM) semi-supervised using IP flows. In the second
module, we proposed a mechanism to recognize attacks,
through the application of Bienaymé-Chebyshev’s inequality
along with the Fuzzy logic. Finally, in the third module,
we applied automatized mitigation policies to minimize the
damage caused by attacks and to maintain the requirement of
network operation.

To validate the development system, we employed two
scenarios with distinct characteristics. In the first scenario,
we used emulated SDN data, using the Mininet emulator
and the Floodlight controller, containing periods of DDoS
and Portscan attacks. In the second scenario, we used a
public dataset called CICDDoS 2019. This dataset is made
of 12 kinds of different DDoS attacks. To test the detection
module, we compared the LSTM-FUZZY with the other
methods present in the literature, SVM, kNN,MLP, LSTM-2,
and PSO-DS. In both scenarios we compared the performance
between the suggested method and the others. According to
the results presented, the LSTM-FUZZY presented a supe-
rior performance compared to the others, reaching a low
false-positive rate and high precision, recall, and AUC rates.

In the first scenario, we applied mitigation policies based
on the kind of attack identified by the detection module.
In this module, we identified the suspect flows, based on
the analysis of IP addresses and ports that make the anoma-
lous interval. The flows identified as suspects were dropped.
Through theMcNemar’s test and dropped anomalous packets

rate, it was shown that the module obtained a satisfactory
performance, minimizing the effects of the attacks.

The LSTM power to learn to extract short and long-term
patterns allowed the application to predict the normal behav-
ior of the network traffic. The module produced adequate
predictions close to real traffic behavior, and it was possi-
ble to apply them in the detection stage. The Fuzzy Logic
characteristics allowed anomaly detection in an unsupervised
way, implying that the system does not need labeled data.
The advantage of using this technique makes the system
operation easier and discards the need to use a labeled dataset,
which demandsmuchwork and could be full of human errors.
Moreover, the Fuzzy Logic acts on the detection of different
DDoS attacks with a low false-positive rate, allowing the
system to act on the present SDN environment with high
accuracy to detect and low false alarms.

The results obtained show that the modules that made the
proposed systemwere efficient, meeting the goals assigned to
each one of them. The execution of the activities carried out
by the system is automatic, which means the process of mon-
itoring, identification of adverse events, and the countermea-
sures are carried out without the need for human interference.
The monitoring and managing of the network is a complex
activity. The application of an autonomous system helps the
assigned tasks to the administrator to maintain and guaranty
the network’s operation to its fullest. Hence, the system devel-
oped in this work can be applied to collaborate and facilitate
management procedures and to guaranty the availability of
the services offered.

The modular architecture of the system allows the mainte-
nance and adaptation of other techniques to characterize traf-
fic, detection, and mitigation of anomalies in SDN environ-
ments. This characteristic allows the adaptation of the system
as the network dynamics change, and new security demands
emerge. Thus, future works can explore other vulnerabilities
and incorporate mitigation policies to meet new demands that
might emerge in SDN network environments. Another point
that could be extended is the exploration of more tests in other
scenarios with different types of topology and attacks.
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