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ABSTRACT As a biometric modality, palmprints have been largely under-utilized, but they offer some
advantages over fingerprints and facial biometrics. Recent improvements in imaging capabilities on handheld
and wearable consumer devices have re-awakened interest in the use of palmprints. The aim of this paper is
to provide a comprehensive review of state-of-the-art methods for palmprint recognition including Region of
Interest extraction methods, feature extraction approaches and matching algorithms along with an overview
of available palmprint datasets in order to understand the latest trends and research dynamics in the palmprint
recognition field.

INDEX TERMS Palmprint acquisition, feature extraction, matching, datasets, region of interest, template
detection, deep learning, neural network, machine learning.

I. INTRODUCTION
The last decade has seen the migration of biometric recogni-
tion approaches onto mobile devices by using fingerprint [1],
face [2] or iris [3] as an alternative to conventional authenti-
cation using PIN numbers or patterns.

Two-factor authentication, multi-modal and multi-
biometrics are all considered to be viable options improving
the security of a system, as they considerably increase the
spoofing effort for an attacker [4].

Jain et al. [5] evaluate several biometric features and reach
the conclusion that there is no ideal biometric. Alongside the
previously mentioned features is another biometric which has
not received as much attention: the palmprint. However, there
are several advantages which palmprint recognition can offer
regarding their deployment on consumer devices:
• The features contained in a palmprint are similar to
fingerprints, but cover a much larger surface. For this
reason they are generally considered to be more robust
than fingerprints [5].

• Palmprints are more difficult to spoof than faces, which
are public feature, or fingerprints, which leave traces on
many smooth surfaces.
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• There is no extra cost required for acquisition, as long as
the device is fitted with a camera (optical sensor) and a
flash source (LED or screen).

• It has potential for multi-biometric recognition, as it can
be used with other hand-based features (fingerprints [6],
finger knuckles [7], wrist [8])

• It can be seamlessly integrated into the use case of many
consumer devices, such as AR/VR headsets [9], smart-
phones [10], gesture control systems, driver monitorin
systems, etc.

A. CONTRIBUTIONS OF THIS PAPER
The aim of this paper is to provide a comprehensive review
focusing on the pipeline of palmprint recognition in order
to clarify the current trends and research dynamics in the
palmprint recognition based biometric systems. The paper
discusses in detail the available datasets of palmprint images
in visible range and reviews the state-of-the-art methods for
feature extraction.

B. DIFFERENCES FROM PREVIOUS WORKS
Compared to other recent reviews on palmprint recogni-
tion [11], [12] this review differs in the following way:
• the main focus is placed on visible-range datasets,
as opposed to [11], [12], which also consider multi-
spectral, 3D and latent datasets
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FIGURE 1. Timeline overview of palmprint datasets, based on how
constrained their environment of acquisition is.

• the available palmprint datasets are categorized based on
the level of unconstrainedness, and the device used for
acquisition

• it does not focus on only one stage of the palmprint
recognition pipeline. It includes an extensive overview
of recent developments regarding datasets, Region of
Interest (ROI) and feature extraction approaches. The
only other review investigating ROI extraction tech-
niques was made by Zhong et al. [12], which primarily
focused on the conventional approaches (for constrained
acquisition).

To the best of our knowledge this is the first review of
palmprint recognition to focus on unconstrained acquisition
and the challenges it brings.

C. ORGANIZATION OF THE PAPER
The rest of the paper is organized as follows. Section II
describes existing datasets of palmprint images. Section III
provides an overview of approaches developed for the
palmprint ROI extraction from various palmprint datasets.
Section IV presents an overview of approaches of feature
extraction and matching algorithms. Section V discusses the
previous sections and provides concluding remarks regarding
research directions.

II. PALMPRINT DATASETS
This section presents an overview of palmprint datasets used
for the recognition of palmprints in the visible spectrum
(hyperspectral imaging at various wavelengths is not consid-
ered, nor 3D acquisition).

The currently available palmprint datasets can be split into
three categories, based on the restrictions imposed to the user
during the acquisition process (as represented in Fig. 1 and
summarized in Table 1):
1) Constrained acquisition: This category includes the

most popular palmprint datasets, which place the main
focus on the feature extraction and matching stages,
simplifying the acquisition as much as possible (for the

recognition system). Images tend to display hands with
a specific hand pose (fingers straight and separated)
against a uniform background with no texture, usually
black.

2) Partly unconstrained acquisition:
• Unconstrained environment: The background is
unconstrained, which corresponds to the use case
of consumer devices. The hand pose is required
to follow a specific protocol, generally consisting
of presenting the fingers spread out in front of the
sensor (preferably the center of the image).

• Unconstrained hand pose: Allows the user to
choose the pose of the hand during acquisition.
This corresponds to the general expectations for
consumer devices, which require a simplified (and
intuitive) protocol of interaction.

• Multiple devices used for acquisition: Matching
biometric templates across several devices. Gen-
erally the other aspects of the acquisition process
(hand pose and background) are constrained.

3) Unconstrained acquisition: Unconstrained environ-
ment and hand pose, this represents the most uncon-
strained scenario, where all conditions of acquisition
are left to the choice of the user. A further step
is closer to forensic recognition, where the acquisi-
tion is performed regardless of the user’s cooperation
(uncooperative).

A. CONSTRAINED PALMPRINT DATASETS
The Hong Kong Polytechnic University Palmprint dataset
(HKPU) [13] was the first to provide a large-scale constrained
palmprint dataset to compare recognition performance. The
images were acquired using a scanner (A1 in Table 1) having
a cropped guide around the palm, reducing the impact of
fingers’ position. A similar approach for acquiring palmprints
but including the entire hand can be found in the Bosphorus
Hand dataset [14]. The earliest touch-less palmprint datasets
(A2 in Table 1) were the ones released by the Chinese
Academy of Sciences (CASIA) [15] and by the Indian Insti-
tute of Technology in Dehli (IIT-D) [16]. Both used a digital
camera for acquisition in an environment with uniform light-
ing. The main differences are the scale and color information
contained in IIT-D. The hand images in CASIA are gray
scale and have cropped fingers. The College of Engineering
Pune (COEP) [17] released a touch-less dataset of palmprints,
but the acquisition relied on pegs to direct the position of
fingers relative to the camera. Another touch-less dataset was
released by Las Palmas de Gran Canaria University under
the name GPDS [18]. They used two webcams to acquire
palmprint images in two sessions. One of the webcams was
adapted to acquire NIR images by removing its IR filter
and replacing it with an RGB filter. The dataset is split into
images acquired in visible range (GPDS-CL1) and in NIR
range (GPDS-CL2). HKPU Contact-free (HKPU-CF) [19]
was released in 2011. Although it was acquired with
a 3D scanner, it also provides 2D RGB images of hands
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TABLE 1. Constrained palmprint datasets: (A1) touch-based and (A2) touch-less acquisition, having one hand pose (spread fingers). Partly unconstrained
palmprint datasets: (B1) unconstrained environment/background, (B2) multiple devices used during acquisition and (B3) unconstrained hand pose.
Unconstrained palmprint datasets (C1), as close as possible to the realistic deployment of a palmprint recognition system on smartphones (or similar
consumer devices) and (C2) reflecting recognition in an uncooperative environment, closer to forensic recognition.

acquired in a constrained environment, with black back-
ground and uniform lighting. In 2017, Zhang et al. [20]
released a large-scale dataset (12,000 images) of palmprints
acquired with a dedicated device containing a digital camera
(Tongji). The acquisition environment was dark with a con-
trolled light source illuminating the palm area.

Recently, Kumar [21] released a large-scale dataset
of palmprints entitled PolyU-IITD Contactless Palmprint
Database v3, introducing a variety of challenges. Firstly,
it contains hand images from two ethnicities (Chinese and
Indian). Secondly, the palmprints were acquired from both
rural and urban areas. The physical appearance of the hands
varies significantly, there being instances of birth defects, cuts
and bruises, callouses from manual labour, ink stains and
writing, jewelry and henna designs. The dataset also contains
a 2nd acquisition session after 15 years, for 35 subjects.

B. PARTLY UNCONSTRAINED PALMPRINT DATASETS
Moving away from constrained scenarios, several datasets
introduced at least one challenging factor in the context of
palmprint recognition systems.

Considering an unconstrained environment for acquisition
(B1 in Table 1) leads to both variable background and lighting

conditions. An initial step was made for palmprint match-
ing in the context of smartphones by Aoyama et al. [23]
in 2013 with a small dataset of images (called
DevPhone). Unfortunately, the conditions of acquisition are
not clear (how many backgrounds considered, if flashlight
was enabled), besides the fact that users were required to use a
square guide to align the palm with the center of the acquired
image. A much larger dataset was acquired by Kim et al. [24]
both in-doors and out-doors (BERC DB1 and DB2). Both
DB1 and DB2 included a scenario where the smartphone’s
flashlight was enabled. As in the case of DevPhone,
the images in BERCDB1/DB2 contained hands with specific
hand pose (open palm with spread fingers.

A different approach to acquisition was provided by
Tiwari et al. [25] who recorded videos of palmprints with a
smartphone, with the video centered on the user’s palmprint.

Recently, Izadpanahkakhk et al. [26] introduced two palm-
print datasets acquired with a smartphone camera - Bir-
jand University Mobile Palmprint Database (BMPD) and
Sapienza University Mobnile Palmprint Database (SMPD).
The variation considered for investigation was the rotation of
the hands (in both datasets), both in-plane and out-of-plane
rotation.
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The first dataset of palmprints acquired with multiple
devices (B2 in Table 1), albeit of reduced size, was developed
by Choras and Kozik [27] using three smartphones.

Jia et al. [28] developed a large dataset of images entitled
Palmprint Recognition Across Different Devices (PRADD)
using two smartphones and one digital camera. The back-
ground used was a black cloth. The hand’s posture was
restricted. From the images provided in [28], it appears
that the acquisition was performed by someone other than
the participants. Unfortunately, the datasets developed by
Choras and Kozik [27] and Wei et al. [34] are currently not
available to the research community.

The first palmprint dataset to consider the hand pose
variation (B3 in Table 1), understood as open palms with
spread fingers versus closed fingers, was collected by
Afifi [29] and released under the name 11K Hands. It con-
tains over 11,000 images of hand images - both palmar
and dorsal (each has about 5,500 images). The images were
acquired against a white background, using a digital camera.
Matkowski et al. [30] also released a dataset of more conven-
tional hand images where the hand pose varies significantly,
with acquisition against white background. This dataset, enti-
tled ’NTU-Contactless Palmprint Database’ (NTU-CP-v1)
contains a large number of hand classes (655), with
2,478 hand images in total. An auxiliary palmprint dataset
exploring various hand poses was released in 2019 by
the authors under the name NUIG_Palm2 (NUIGP2) [31].
NUIGP2 was designed to support the development of
ROI extraction algorithms.

C. UNCONSTRAINED PALMPRINT DATASETS
This category of palmprint datasets attempts to bring to
researchers conditions as close as possible to a realistic
deployment of a palmprint recognition system on consumer
devices. An overview is presented in Table 1 for categoriesC1
and C2.
The first dataset to provide such palmprint images was

released in 2017 by Ungureanu et al. [10] under the name
NUIG_Palm1 (NUIGP1). It contains images from several
devices in unconstrained scenarios (both background and
hand pose, as presented in Fig. 2a).

Recently a large-scale dataset of palmprint images
acquired in similar conditions to NUIGP1 was released by
Shao et al., entitled Xian Jiaotong University Unconstrained
Palmprint database (XJTU-UP) [32]. The dataset contains
30,000+ images (200 hands) using five smartphones, making
it the largest currently available palmprint dataset acquired
with smartphone cameras. Several samples are provided for
reference in Fig. 2b.

Another large-scale palmprint dataset acquired with smart-
phones was released recently by Zhang et al. [33]. They used
two smartphones to collect 16,000 hand images in uncon-
strained conditions.

Representing the next step of this trend, the
NTU-Palmprints from Internet (NTU-PI-v1) [30] was
released in late 2019, where severe distortions in the hand

FIGURE 2. Hand image samples from Unconstrained datasets (C1 and C2)
listed in Table 1.

pose represent the main challenge to palmprint recognition,
together with heterogeneous lighting and acquisition devices.
The dataset is especially large in terms of the number of hand
classes (2,035), with a total of 7,781 images.

III. ROI TEMPLATE DETECTION/EXTRACTION
This section presents a general overview of existing
approaches for palmprint ROI extraction. This is an essential
part of the palmprint recognition system, as any inconsisten-
cies in ROI templates will affect the recognition task.

The detection/extraction are generally considered to be
the same (as in [35]–[37]) whereas the alternative is to
have two stages: one in which hand detection is performed,
followed by key-point regression for palmprint extraction
(as in [30], [32]). However, since palmprint recognition can
benefit from a constrained acquisition protocol (where the
hand/palm occupy most of the input image), a hand detection
stage is not generally required (as in [33], [38]). Therefore the
two terms are used interchangeably in this paper.

The existing ROI extraction techniques can be grouped
in four categories, based on the cues contained in the hand
images as shown in Fig. 3:
• Standard palmprint ROI extraction: algorithms based on
separating the hand from the background (segmentation)
and performing measurements to determine the land-
marks (or palm region) required for ROI extraction [12].
This family of techniques relies on accurate segmenta-
tion, as well as a specific hand pose (open palm with
spread fingers).
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FIGURE 3. Overview of approaches for palmprint ROI extraction, with
four categories based on how constrained the datasets are.

• ROI extraction based on conventional Machine Learn-
ing (ML) algorithms: ML approaches are used for the
detection of palmprints or used for key-point regres-
sion. The key-point regression is a method that takes as
input a hand image and returns a set of points used for
ROI extraction.

• ROI extraction based on Deep Neural Networks
(DNNs): Approaches relying on DNN soutions to per-
form detection or key-point regression task.

• Avoiding ROI detection altogether: based on specific
acquisition protocols.

A. STANDARD PALMPRINT ROI EXTRACTION
Standard palmprint ROI extraction algorithms rely on accu-
rate segmentation of the hand region from the background.
The most used approaches include using Otsu’s threshold-
ing method [39] applied to grayscale images, or using a
skin-color model [40]. The segmentation is a pre-processing
stage that characterizes the shape of the hand and determines
the key-points required for ROI extraction.

The most popular ROI extraction approach was introduced
by Zhang et al. [41] in 2003, which relies on the constrained
environment from images in databases (A1, A2) in Table 1,
either touch-based or touch-less. Zhang et al. ROI extraction
approach relies on determining the tangent line between the
two side finger valleys in order to normalize the palmprint’s
rotation and provide a reference point from which to extract
a square region. This step is made possible thanks to the
constrained environment of acquisition (black background,
constant lighting), characteristic of palmprint datasets
(A1, A2) in Table 1.
Recently, Xiao et al. [22] proposed an approach based on

the intersection of the binarized hand with lines of specific
orientations, resulting in several candidate points for the

finger valleys. They then used K-means clustering to obtain
the center of each cluster.

A second category of approaches defines the contour of
the extracted hand, and the distance from a point of reference
(the geometric center [21], [42] or the wrist [43], etc) to
the pixels found on the contour [23], [44]–[50]. Considering
this distribution of distances, the peaks generally correspond
to the tips of the fingers, while the local minimas corre-
spond to the finger valleys. These type of approaches are
extremely sensitive to segmentation artifacts and generally
apply smoothing to the distribution of distances.

A third category traverses all the contour pixels and counts
the pixels belonging to the hand region (a circle was consid-
ered for sampling). Balwant et al. [58] introduced specific
rules to determine the finger valleys and finger tips, followed
by the correct selection of finger valley points that form
an isosceles triangle. Goh Kah Ong et al. [59] considered
sampling with fewer points using 3 stages corresponding
to circles with greater radius. The outliers resulting from
segmentation artifacts were removed with specific rules.
Franzgrote et al. [60] further developed the approach pro-
posed by Goh Kah Ong et al. by classifying the angles of
remaining lines in order to provide a rough rotation normal-
ization step. The finger valley points were then determined
with a horizontal/vertical line (depending on the orientation
of the hand), having 8 points of transition from non-hand
region to hand region. Zhou et al. [61] similarly filtered the
hand contour points using intersecting circles. By evaluating
the intersection of these circles with the other hand contour
points and the angles they made, the finger valley points
were determined. Their approach proved to be more robust to
cases where the background was similar to skin color when
compared to other methods [40], [59].

Morales et al. [62] fitted a circle inside the binarized hand,
with its center found equidistantly from the finger valleys
(previously determined with the center-to-contour distances).

A fourth category uses the convex hull to describe
the concavity of the binarized hand map and finger
valleys [63], [64].

The following are methods that are hard to classify into
one category or another, as they either employ very different
or combine several of the previously mentioned approaches
together.

Khan et al. [65] determined the finger tips and the start
of the palm by counting the hand-region pixels along the
columns. After determining the pixels corresponding to fin-
ger valleys, several 2nd order polynomials were used to
extrapolate the middle of the finger valleys. The palm’s width
was used to determine the size of the ROI (70% of palm size).
This approach requires specific hand pose, with hands always
rotated towards the left with spread fingers.

Han et al. [66] successively cropped the binarized hand
image regions corresponding to fingers (after rotation nor-
malization with PCA) by determining the number of transi-
tions from background to hand area. Leng et al. [40] deter-
mined the finger valleys by computing differential maps
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upward, to the right and the left. The AND operator was
applied on these maps, resulting in 4 regions corresponding
to all finger valleys. Ito et al. [47] considered an approach
based on line detection after determining the binarized hand
region, and subtracting the major lines corresponding to
finger edges. Then a distance was computed from center
of the palm, allowing the detection of finger valleys even
with closed fingers (not relying on spread fingers). Ito et al.
compared the effectiveness of their approach with three other
algorithms [40], [41], [66].

Liang et al. [67] used an ROI extraction approach loosely
based on [41] and [68], where the tip of the middle finger
was determined and then extended to the center of the palm
1.2 times. This point was then used as a reference to determine
the distance to all contour points, allowing the detection of
both finger valleys and tips.

Jia et al. [28] exploited the constrained nature of acquisi-
tion (hand position pose, scale and rotation) to base the ROI
extraction on the accurate detection of the heart line’s inter-
section with the edge of the hand (using the MFRAT defined
in [69]), performing specific pixel operations to decide on the
ROI’s center and size.

Kim et al. [24] combined several elements for ROI extrac-
tion, such as the use of a distance based on a YCbCr model,
a specific hand pose (fingers spread) indicated by a guide
displayed during acquisition, as well as validating finger
valley points by sampling 10 pixels from the determined hand
region.

Shang et al. [70] modified the original Harris corner
detection algorithm [71] in order to locate the points at the
middle of finger valleys. However, this approach relied on
constrained acquisition, as the background was not overly
complex. Another approach using Harris corners was pro-
posed by Javidnia et al. [72]. After obtaining an initial candi-
date for the hand region based on skin segmentation, the palm
region was located using an iterative process based on the
strength of the Harris corners.

However, none of the standard approaches for palmprint
ROI extraction can be used in circumstances where the
background’s color remotely resembles skin color or the
hand’s pose is not constrained (such as the C1, C2 datasets
in Table 1). Furthermore, one can point out the limitation of
skin color segmentation regardless of the chosen color space,
based on the inherent inability of classifying a pixel into skin
or non-skin [73].

B. PALMPRINT ROI EXTRACTION BASED ON
CONVENTIONAL ML ALGORITHMS
There are few approaches using ML algorithms for
ROI extraction regressing either a predefined shape or a set
of points.

Initially, Doublet et al. [51] considered to fit an Active
Shape Model (ASM) to a number of points describing the
shape of a hand (with spread fingers). The model regressed
the output of a skin segmentation step, after which the centers
of the two finger valleys were used to normalize the hand’s

TABLE 2. Overview of ROI extraction approaches that are (II) ML-based,
(III) DNN-based and (IV) Bypassing automatic extraction.

rotation. Ferrer et al. [18] used a similar ASM to extract the
hand from the background in the GPDS-CL1 dataset.

Aykut et al. [53] considered an Active Appearance Model
(AAM), which also considered the texture information from
the hand’s surface. They also provided the first evaluation
of predicted key-points. Because the acquisition of images
was performed in a considerably constrained environment,
no normalization was required relative to the palmprint’s
scale. Aykut et al. preferred to report the error in terms of
pixels (from the ground truth points).

Recently, Shao et al. [32] employed a complex pipeline
for ROI extraction for unconstrained palmprint recognition.
The approach included an initial stage of hand detection
using Histogram of Oriented Gradients (HOG) and a sliding
window providing candidate regions at several scales to a
pre-trained SVMclassifier. An Ensemble of Regression Trees
(ERT) [74] (initially developed for face key-point detection)
was then used for the landmark regression task applied to all
14 key-points placed around the palm and base of fingers.
Unfortunately, Shao et al. did not provide details regarding
the performance of their ROI extraction, how its accuracy
influences the recognition task, or any comparison with prior
algorithms. An overview of these methods (II) is presented
in Table 2.

C. PALMPRINT ROI EXTRACTION BASED ON NEURAL
NETWORKS
There have been only a handful of attempts to use Con-
volutional Neural Networks (CNNs) for the ROI extrac-
tion, and most have consisted solely on experimenting on
gray-level images. Bao et al. [38] used the CASIA palmprint
database [15] to determine the positions of a hand’s fin-
ger valley points. They used a shallow network composed
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of 4 Convolutional and 2 Fully-Connected layers (FC),
including several Dropout and MaxPooling layers. The CNN
architecture achieved results comparable to Zhang et al. [41]
in stable conditions, but surpassed it when noise was added.
Since, a CNN can adapt to noisy or blurred images, the pixel-
based approach used by Zhang et al. is vulnerable to any kind
of image quality degradation.

Izadpanahkakhk et al. [36] trained a similar shal-
low network based on an existing model proposed by
Chatfield et al. [75]. The network determined a point in the
hand image and the corresponding width/height of the palm-
print ROI. The network was composed of 5 Convolutional
and 2 FCs, including several MaxPooling layers and one
Local Response Normalization Layer (LRN). The reported
results are good for constrained images from HKPU [13], but
the case of in-plane rotated hands was not considered.

Jaswal et al. [35] trained a Faster R-CNN [76] model based
on Resnet-50 (87 layers) on three palmprint datasets (HKPU,
CASIA and GPDS-CL1). They reported lower Accuracy and
Recall rates for CASIA (up to 5% less) than for HKPU
and GPDS-CL1. This can be explained by slightly larger
variation in rotation. Similar to [36], the predicted bound-
ing boxes (considered as ROIs) do not include measures
for rotation normalization, which considerably affects the
recognition rate for the scenario using images from CASIA,
as they contain significant rotation variation. Comparatively,
images from HKPU and GPDS-CL1 are already normalized
rotation-wise.

Recently, Liu and Kumar [37] also considered a Fast
R-CNN [77] for palmprint ROI detection. They acquired sev-
eral videos of palmprints in 11 environments (no other details
provided) where the hand pose was varied (from spread to
closed fingers, with several hand orientations). These acqui-
sition sessions resulted in 30,000 images that were used for
training and testing. For evaluation, Liu et al. only considered
the percentage of images above a given threshold for Intersec-
tion over Union (IoU). However, several important aspects
were not covered in Liu et al. work: the number of subjects
in the training set, the ROI being aligned with the hand
(it is maintained vertical regardless of the hand’s orientation)
or how much an ROI having 60% IoU (with the ground truth)
affects the recognition task.

An especially promising approach was proposed by
Matkowski et al., which integrated a Spatial Transformer
Network (STN) into ROI-LAnet, an architecture performing
the palmprint ROI extraction. The STNwas initially proposed
by Jaderberg et al. [78] to improve the recogniton of distorted
digits. This is achieved by learning a thin plane spline trans-
form based on a collection of points, a Grid generator and
a bilinear sampler. The STN learns a transformation Tθ that
is differentiable with respect to the predicted coordinates θ̂
based on the input feature map.

ROI-LAnet uses a feature extraction network (based on the
first 3 MaxPooling stages from the VGG16 network [79])
to obtain the feature map, followed by a regression network
providing estimates for the 9 points used for describing the

FIGURE 4. Overview of palmprint feature extraction techniques.

palmprint region (trained initially using L2 loss). The output
of ROI-LAnet is a palmprint ROI of fixed size, which is
normalized w.r.t. the hand’s pose. The authors then include
ROI-LAnet into a larger architecture to train it end-to-end
using cross-entropy for loss function. An overview of these
methods is presented in Table 2 (III).

D. AVOIDING THE ROI DETECTION ALTOGETHER
Tiwari et al. [25] provided a guide on the screen of the
smartphone during acquisition, avoiding the need for an
ROI step. Tiwari then used an algorithm to determine the best
frames for feature extraction. Similar to Tiwari’s approach,
Leng et al. [56] presented a guide on the smartphone’s screen,
indicating a specific hand pose and orientation for the hand.
Gao et al. [57] used two guide-points of reference to normal-
ize the hand’s rotation during acquisition.

Afifi et al. [29] considered a different approach, having the
entire image as the input to a CNN, thus removing any need
for an ROI extraction phase. This approach is only feasible
because all other parameters in the acquisition environment
(background, lighting and hand orientation/scale) are not
constant. An overview of these methods (IV) is presented
in Table 2.

IV. PALMPRINT FEATURE EXTRACTION AND MATCHING
This section presents a general overview of approaches used
for palmprint feature extraction, with emphasis being placed
on the more recent advancements. In this section, the algo-
rithms are split into two categories, based on how the ker-
nels used for feature extraction were obtained (as visualized
in Fig. 4):

1) Conventional approaches:
a) Encoding the line orientation at pixel-level with:

i) Generic texture descriptors
ii) Palmprint-specific descriptors.

b) Encoding the line orientation at region-level,
with:
i) Generic texture descriptors, a special category

including descriptors such as SIFT, SURF and
ORB, which are treated separately

ii) Palmprint-specific descriptors.
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2) Neural Networks approaches:
a) Having fixed kernels, such as ScatNet [80]
b) Kernels learned based on a training distribution:

i) With no non-linearities, such as PCANet [81]
ii) Deep Learning approaches:

A) Classifying with Softmax
B) Using Siamese network architectures.

An overview of the more conventional approaches to palm-
print feature extraction is presented in Table 3, whereas an
overview of the more recent approaches based on Neural
Networks is presented in Table 4.

A. PALMPRINT FEATURE EXTRACTION - CONVENTIONAL
APPROACHES
Conventional palmprint recognition approaches are mainly
focused on line-like feature detection, subspace learning
or texture-based coding. Of these, the best performing
approaches have been the texture-based ones [82], which
will represent the main focus of this overview. For a broader
description of the other groups, please refer to the work of
Zhang et al. [82], Kong et al. [83] and Dewangan et al. [84].

Jia et al. [85] defined a framework that generalized
the palmprint recognition approaches. The stages of fea-
ture encoding are broken down and populated with vari-
ous approaches. The following sub-sections describe these
approaches and provide results in the form of either Equal
Error Rate (EER) or Recognition Rate (RR) corresponding to
popular palmprint datasets such as HKPU [13], CASIA [15]
or IITD [16].

1) EXTRACTING PALMPRINT FEATURES WITH TEXTURE
DESCRIPTORS
Chen et al. [86] used a 2D Symbolic Aggregate approxima-
tion (SAX) for palmprint recognition. The SAX represents a
real valued data sequence using a string of discrete symbols or
characters. Applied to grayscale images, it encodes the pixel
values, essentially performing a form of compression. The
low complexity and high efficiency of SAX make it suitable
for resource-constrained devices.

Leng et al. [87] extract Double Discrimination Power
Analysis (DPA), representing the fusion of the 2D-Discrete
Cosine Transform from both palms to encode the features
present.

Ramachandra et al. [88] employed a series of BSIF filters
that were trained for texture description on a large dataset of
images. TheROI is convolvedwith the bank of filters and then
binarized (using a specific threshold value), allowing for an
8-bit encoding.

Jia et al. [89] investigated the potential use of HOG [90],
which were successfully used in the past for robust object
detection, especially pedestrians and faces. Furthermore,
the Local Directional Pattern (LDP) [91] was evaluated in the
context of palmprint feature extraction.

Zheng et al. [92] described the 2D palmprint ROI with
a descriptor recovering 3D information, a feature entitled

Difference of Vertex Normal Vectors(DoN). The DoN rep-
resents the filter response of the palmprint ROI to a specific
filter containing several sub-regions (of 1 or -1) intersecting
in the center of the filter (borders are made up of 0s), with
various orientations. In order to match two DoN templates,
a weighted sum of AND, OR and XOR operators was used.

Li et al. [93] extracted the Local Tetra Pattern (LTrP)
[94] from a palmprint image that was initially filtered with a
Gabor [95] or MFRAT [69] filter. Only the real component
from the Gabor convolution was taken into consideration,
after the winner-take-all rule of argmin was applied at pixel
level between all filter orientations. Then, block-wise his-
tograms of the LTrP values were concatenated in order to
determine the final vector describing a palmprint image.

Wang et al. [96] used the Local Binary Pattern (LBP),
which encodes the value of a pixel based on a neighborhood
around it [97]. Generally, the 3 × 3 kernel is used, allowing
codes that range in value from 0 to 255.

An overview of these approaches is detailed in Table 3
under category (A0).

2) ENCODING PALMPRINT LINE ORIENTATION AT PIXEL
LEVEL
One of the first approaches to extract the palmprint fea-
tures from an ROI relied on only one Gabor filter oriented
at π

4 , entitled PalmCode [41]. Three values were used in
the matching stage of PalmCode, namely the real, imagi-
nary, as well as a segmentation mask to reduce the influence
of poor ROI segmentation. Several approaches following a
similar rationale were proposed in the following years after
PalmCode, with the introduction of Competitive Code (Com-
pCode) [95] and Robust Line Orientation Code (RLOC) [69].
Both CompCode and RLOC used a competitive rule (argmin)
between a bank of filters having 6 orientations. Every pixel
from the palmprint ROI was considered to be part of a line,
and as the lines in the palmprint correspond to black pixels,
the minimum response was chosen. Whereas CompCode
used the filter response from Gabor filters, RLOC used the
filter response from a modified filter Jia et al. called MFRAT
because it was inspired from the RADON transform. In the
case of CompCode only the real component was used.

Gaussian filters were also used, either the derivative of two
2D Gaussian distributions (DoG [101]) or as the difference
between two 2D orthogonal Gaussian filters (OLOF [100]).

Guo et al. [102] introduced Binary Orientation Co-
occurrence Vector (BOCV), obtained the filter response of
a Gabor filterbank and encoded every pixel relative to a
specific threshold (0 or another threshold, chosen based on
the distribution of values after convolution with a specific
filter). Every filter response was L1 normalized prior to the
encoding, after which the thresholded values from each ori-
entation were used to encode an 8-bit number corresponding
to every pixel. An extension of this approach was introduced
by Zhang et al. [104] with EBOCV, which included masking
the ’fragile’ bits obtained after convolution with the Gabor
filter-bank (as performed previously on IrisCode [119] in the
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TABLE 3. Overview of (A1) approaches encoding the orientation at pixel level, (A2) approaches encoding the orientation at region level, and
(B) approaches based on rotation/scale invariant image descriptors.
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TABLE 4. Pre-trained networks (C1), or linear Neural Networks (C2). Training CNNs for palmprint feature extraction (C3A). Siamese approaches (C3B) to
training CNNs for palmprint feature extraction.

context of iris recognition). In this context, a ’fragile’ bit is
interpreted as being the pixels close to 0 (after convolution).

Leng et al. [105] introduced PalmHash code and Palm-
Phasor code (phasor domain), obtained with hash functions
after the convolution of a palmprint template with a family of
Gabor filters. Several orientations were used for score-level
fusion to improve the robustness of the feature extraction. The
use of hash functions in biometrics allows the generation of
cancelable biometric tokens.

Khan et al. [65] introduced ContourCode, obtained by
convolving the input ROI in two distinct stages. Initially,
the filter response corresponding to a Non-subsampled Con-
tourlet Transform (uniscale pyramidal filter) was obtained,
after which the ROI was convolved with a directional filter
bank. The strongest sub-band was determined (argmax) and
the resulting code was binarized into a hash table structure.

Fei et al. [106] introduced the Double-orientation
Code (DOC) which encodes the two lowest responses (to a
Gabor filter bank). In order to compute the distance between
two ROIs, a non-linear angular distance, measuring the dis-
similarity of the two responses was determined.

Zheng et al. [107] investigated the effect of number of
filter orientations on the efficiency of CompCode [95] and
RLOC [69]. A single orthogonal pair of Gabor and MFRAT
filters was found to perform better than when using
6 orientations. This encoding approach was called Fast-
Compcode/Fast-RLOC due to its increase in speed, mostly
due to a reduction in complexity.

An interesting approach was introduced by
Tabejamaat et al. [109], who described the concavity of
a 2D palmprint ROI by convolving it with several Banana
wavelet filters [120]. Three pairs of filters (positive and
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negative concavity) were convolved with the ROI and
a competitive rule (argmin) was used for encoding. The
joint representation was called Concavity Orientation Map
(COM). An angular hamming distance was then used for
matching COMs.

Recently Zhao et al. [99] determined a projection
matrix (SDD) using Least Square Regression (LSR), where
only salient and discriminative features of palmprints are
learned, removing the influence of noise. Once the SDD is
determined, it can be used to encode any palmprint image.

An overview of these approaches is detailed in Table 3
under category (A1).

3) REGION-BASED PALMPRINT LINE ORIENTATION
ENCODING
Jia et al. [89] introduced an analysis of region-based meth-
ods applied to palmprint recognition. They extended the
RLOC encoding capabilities to the region-level by using
the histogram of dominant orientations (after the argmin
rule). The histograms of orientations were then concatenated.
This approach essentially replaced the gradient information
used in HOG with the dominant MFRAT filter response.
For matching two palmprint templates, the L2 distance was
used.

Zhang et al. [20] used a similar approach to retrieve the
block-wise histograms of CompCode orientations, but a Col-
laborative Representation Classifier (CRC) was used to per-
form the classification.

Kim et al. [24] used a modified version of CompCode,
where a segmentation map was first determined by using the
real values of the filter responses. This segmentation map was
then used to compute the strongest gradients and compute the
corresponding HOG. The Chi-square distance was used for
matching palmprint templates.

Li et al. [93] extended the general approach of Local Tetra
Patterns [94] by replacing the derivative along the width and
length with the filter response to MFRAT [69] or Gabor [95]
filter banks. Furthermore, the encoding method was modified
to take into account the thickness of the palm lines. The
image was then separated into regions and histograms were
computed for each region. Finally, they were concatenated
and passed through a Kernel PCA filter to reduce the dimen-
sionality of the template.

Luo et al. [98] introduced the Local Line Directional
Pattern (LLDP), which represented an extension of general
region encoding approaches (LDP [91], ELDP [121] and
LDN [122]). The convolution stage replaced the use of Kirsch
filters with Gabor or MFRAT filter banks. This step cor-
responds to replacing the general gradient information in a
region with palmprint-specific line information. A similar
approach was employed by Fei et al. [123] to encode the
2D information in the context of a 3D palmprint recogni-
tion system. The response to the Gabor bank of filters was
encoded using the LBP [97] strategy. The system used a
feature-level fusion technique.

Fei et al. [111] introduced the Local Multiple Directional
Pattern (LMDP) as a way of representing two strong line ori-
entations when these were present, instead of choosing only
the dominant line orientation. The block-wise histograms
of LMDP codes were computed and matching was per-
formed using the Chi-square distance. In a similar manner,
Xu et al. [112] introduced SideCode as a robust form of
CompCode, representing a combination of the dominant ori-
entation with the side orientations in a weighted manner.

Fei et al. [110] used the Neighboring Direction Indica-
tor (NDI) to determine the dominant orientation for each
pixel, along with its relation to the orientations of the neigh-
boring regions in the image.

Jia et al. [85] introduced the Complete Directional Rep-
resentation (CDR) code, encoding the line orientation infor-
mation at 15 scales with 12 MFRAT filters. From these
images 6 overlapping regions were extracted, resulting
in 1080 regions. These features were then matched using
Band Limited Phase-only Correlation (BLPOC) [124]. This
approach was based on the average cross-phase spectrum
of the 2D Fast Fourier Transforms (FFT) corresponding to
two palmprint templates. The impulse centered on (x0, y0)
corresponds to the probability of the two templates belonging
to the same class (large if intra-class, low if inter-class).

Fei et al. [113] first extracted a Convolution Difference
Vector (CDV) for every pixel in a palmprint image, based
on the filter response to a family of Gabor filters with
12 orientations. Then using these CDVs, six hash functions
are determined, which learn a discriminative projection of
the CDVs such that intra-class distance is minimized and
inter-class distance is maximized. The binary output is then
split into non-overlapping blocks and histograms are used to
create the final feature vector by concatenating.

Similarly, Fei et al. [114] compute a feature called Local
Discriminant Direction Binary Pattern (LDDBP), which
encodes the dominant orientation at every pixel.

An overview of these approaches is detailed in Table 3
under category (A2).

4) IMAGE DESCRIPTORS USED FOR PALMPRINT FEATURE
EXTRACTION
Image descriptors such as the Scale Invariant Feature Trans-
form (SIFT) [125] represented a major breakthrough for
object detection in unconstrained conditions because of
the rotation and scale invariance of SIFT key-points. This
brought much interest to SIFT descriptors, which were either
applied directly to palmprint images, such as in [25], [117],
[126] or with certain modifications brought to one of its
stages.

Morales et al. [116] replaced the DoG with the Ordi-
nal Line Oriented Feature (OLOF) in the stage associated
to key-point detection. Furthemore, the score determined
from matching SIFT descriptors was fused with the OLOF
matching prediction, making the prediction more robust.
Zhao et al. [117] improved the initial key-point detection
stage by filtering the palmprint image with a circular Gabor
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filter. Then the corresponding SIFT descriptors were matched
using a modified version of the RANSAC algorithm which
used several iterations.

Kang et al. [118] introduced a modified SIFT which is
more stable, called RootSIFT. Furthermore, histogram equal-
ization of the graylevel image was added as a pre-processing
stage. A mismatching removal algorithm (of SIFT descrip-
tors) based on neighborhood search and LBP histograms
further reduced the number of out-liers.

Charfi et al. [50] used a sparse representation of the SIFT
descriptors to perform the matching, as well as rank-level
fusion with an SVM. Similarly, a rank-level fusion was
performed by Chen et al. [115] matching SAX and SIFT
descriptors.

Tiwari et al. matched SIFT and ORB [127] descriptors
acquired using smartphone cameras. As with most other
approaches using SIFT descriptors, a dissimilarity func-
tion was defined, counting the number of in-lier matches
performed between two images. Srinivas et al. [128] used
Speeded Up Robust Features (SURF) [129] to match two
palmprint ROIs. They further improved the matching speed
by only matching the SURF descriptors extracted from spe-
cific subregions of the ROI, instead of the entire surface of
the ROI.

An overview of these approaches is detailed in Table 3
under category (B).

B. CNN-BASED APPROACHES
One of the great advantages of using CNNs is that the fil-
ters are learned from a specific training distribution, which
makes them relevant to the task of palmprint recognition.
As opposed to traditional (crafted) features, the learned fea-
tures are trained to describe any distribution. The main disad-
vantage of this approach lies in the requirement of abundant
and accurately labeled training data, which generally is a
problem.

The existing approaches for palmprint feature extraction
relying on CNNs, can be split into three categories:
• Using pre-trained models (on ImageNet), the network’s
output is considered to be the extracted feature. Also
relies on a classifier such as SVM.

• Networks of filters optimised using various approaches.
• Training from scratch (or using transfer-learning)
of DNNs to determine embeddings that minimize
intra-class distance and maximize inter-class distance.

1) USING PRE-TRAINED DNNs
Dian et al. [130] used AlexNet [145] pre-trained on ImageNet
to extract deep features. These were then matched using the
Hausdorff distance. In a similar fashion, Tarawneh et al. [131]
used several networks pretrained on ImageNet (AlexNet,
VGG16 [79] and VGG19). The extracted deep features
from the images in two hand datasets (COEP [17] and
MOHI [132]) were then matched using a multi-class SVM.

Ramachandra et al. [133] used transfer-learning (AlexNet)
to match palmprints acquired from infants. The class deci-
sion was obtained through a fusion rule, which took into

consideration the prediction from an SVM, as well as the
Softmax prediction of the network.

An overview of these approaches is presented in Table 4
under category (C1).

2) PCANet, ScatNet AND PalmNet
Minaee and Wang [80] employed a scattering network (Scat-
Net) that was first introduced by Bruna and Mallat [146] for
pattern recognition tasks, especially because of its invariance
to transformations such as translation and rotation. Scat-
Net uses Discrete Wavelet Transforms (DWT) as filters and
considers the output(s) at each layer as the network out-
puts (not just the last layer), providing information regard-
ing the interference of frequencies in a given image [146].
Meraoumia et al. used a filter bank of 5 scales and 6 ori-
entations, the network having an architecture composed
of 2 layers. The palmprint ROIs were split into blocks of
32 × 32 pixels and passed through the network, resulting
in 12,512 scattering features. PCA was applied to reduce
the dimensionality, reducing it to the first 200 components.
A linear SVM was then used for the classification task.

Chan et al. [147] initially introduced PCANet for general
pattern recognition applications. Unlike DNNs which make
use of the Rectified Linear Unit (ReLU), the PCANet does not
contain any non-linearity. Instead, the filters are determined
from a distribution of training images. Specifically, a series
of overlapping blocks are extracted from every input image,
after which themean is removed. Based on the derived covari-
ance matrix a number of Eigen vectors are extracted (after
being sorted, the top 8) and considered as filters belonging to
the first layer. The input to the second layer is the distribution
of input images to the 1st layer, but convolved with the com-
puted filters in layer 1. This process is repeated for any given
number of layers, but generally architectures with 2 layers are
commonplace.

PCANet was used for palmprint feature extraction by
Meraoumia et al. [81] on two datasets - CASIA Multispec-
tral [43] and HKPU-MS [103]. For classification, both SVM
and KNN reported 0% EER across all spectral bands for
HKPU-MS and 0.12% EER for CASIA-MS. However, after
applying a score-fusion scheme where the first 3 bands are
used, the EER drops to 0%.

Recently, Genovese et al. [134] expanded the PCANet
approach to include convolutions with fixed-size and
variable-sized Gabor filters in the 2nd layer. The described
architecture entitled ’PalmNet’ determines the Gabor filters
with the strongest response, followed by a binarization layer.
An alternative architecture is considered, entitled ’PalmNet-
GaborPCA’, where the filters of the first layer are configured
using the PCA-based tuning procedure used in PCANet,
whereas the kernels in the 2nd layer are configured using the
Gabor-based tuning procedure. For classification, a simple
KNN classifier is used.

PalmNet represents an interesting approach for quickly
training on large datasets of palmprints, at the same time
requiring fewer resources than DNNs.
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An overview of these approaches is presented in Table 4
under category (C2).

3) TRAINING DNNs
The main distinction separating approaches in this category
is the training strategy being used.

If the classification task is borrowed from the standard
pattern recognition problem (like the ImageNet challenge),
then the CNN is required to predict the class to which an
input palm print belongs to. The network’s last layer is FC
with a number of units corresponding to the number of classes
(in the form of a one-hot vector, depending on the size
of the dataset), with the activation function being Softmax
(expressing the probability of that input image to belong
to either class). In this case, the loss function is the cross-
entropy. Example implementations include [11], [26], [29],
[36], [136], [138].

Fei et al. [11] compared the performance of several net-
works like AlexNet, VGG16, InceptionV3 and ResNet50.
Izadpanahkakhk et al. [26] trained and evaluated four net-
works (GoogLeNet, VGG16, VGG19 and a CNN developed
by Chatfield et al. [75] for the ImageNet challenge) on two
novel palmprint datasets.

Alternatively, after training with cross-entropy loss,
the output from the log-its layer (the layer preceding the
Softmax layer) can be considered as the extracted fea-
ture, which is then used to train a classifier such as SVM
[29], CRC [138] or Random Forest Classifier (RFC) [36].
Zhang et al. [137] used a combination of cross-entropy and
center-loss functions during training for multi-spectral palm-
print matching. After learning a representation of palmprints,
they then fed the embeddings (output of log-its layer) to
an SVM.

Afifi et al. also take into consideration separating the input
image’s information into either high-frequency and low-
frequency, thus having a two-stream CNN. The two branches
later concatenate, to allow the training based on classification.
Several of these layers’ outputs are then concatenated, and
then classified using an SVM which employs a SUM rule for
fusion.

Matkowski et al. [30] provided the first CNN-based solu-
tion for palmprint recognition which was trained End-to-End
(EE-PRnet) for palmprint feature extraction. This architec-
ture was composed of the previously mentioned ROI-LAnet
and FERnet, which was also based on a pre-trained VGG16
(pruned after the 3rd Maxpool) architecture. This was fol-
lowed by two FC layers benefiting from Droput regulariza-
tion. The network is trained using Cross-entropy (a 3rd FC
layer was added to the network, corresponding to palmprint
classes), but the authors explore several training scenarios
regarding the Dropout layers, or fine-tune specific blocks in
FERnet. Furthermore, a color augmentation protocol consist-
ing of randomly shifting the saturation and contrast of images,
was performed on-the-fly during training.

After obtaining the palmprint embeddings (from the 2nd
FC layer), they are matched using Partial Least Squares

regression (PLS) [139], linear SVM, KNN-1 and Softmax.
The best results were obtained using PLS.

Overall, the EE-PRnet provides the best results, show-
ing that training both networks (ROI-LAnet and FERnet)
together allows the architecture to reach a better understand-
ing of the features contained in the palmprint, as well as
the distortions brought by the hand’s pose. Furthermore,
this setup provides a considerable advantage, as the input to
the network is the full image, not a cropped image of the
hand.

An overview of these approaches is presented in Table 4
under category (C3-A).

Another training approach is to use the Siamese archi-
tecture (overview presented in Table 4), characterized by
two inputs (or several) resulting in two embeddings (usually
128 units corresponding to the last FC) that are then compared
with a loss function to determine how similar they are versus
how similar they should be. This architecture, where the same
network outputs the two embeddings, relies on a similar-
ity estimation function, such as the Contrastive loss [148],
or the Center loss [149], where the distance between inputs is
minimized (intra-class) or increased (inter-class). When the
three inputs (triplets) are considered, the distance between
the anchor and the positive sample is reduced while increas-
ing the distance between the anchor and the negative
sample [150].

Svoboda et al. [140] introduced a loss function called
’discriminative index’, aimed at separating genuine-impostor
distributions. Zhong et al. [141] used transfer-learning based
on VGG16 (initially trained on ImageNet) and Contrastive
loss.

Zhang et al. [33] used a Siamese architecture of two
MobileNets [151] outputting feature vectors that are then
fed to a sub-network tasked with the intra-class probability
(0 for inter-class and 1 for intra-class, with 0.5 as a deci-
sion threshold). It is not clear, however, what loss function
they used (most likely contrastive loss). Du et al. [144]
used a similar architecture trained using the few-shot strat-
egy. Shao et al. [152] used the output of a 3-layer Siamese
network, and matched the palmprints from two datasets
(HKPU-Multispectral and a dataset collected with a smart-
phone camera) with a Graph Neural Network (GNN). Unfor-
tunately, the training details of the Siamese network are not
clear.

Liu et al. [37] introduced the soft-shifted triplet loss as a
2D embedding specifically developed for palmprint recogni-
tion (instead of a 1D embedding). Furthermore, translations
on x and y axes were used to determine the best candidates
for triplet pairs (at batch level). Recently, Shao et al. [32]
introduced an approach based on hashing coding, where the
embeddings used to encode the palmprint classes are either
0 or 1. Furthermore, similar matching performances were
obtained using a much smaller network, obtained via Knowl-
edge Distillation [142]. These are worthwhile directions for
development, as they represent solutions to the limitations of
resource-constrained devices.
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A promising strategy for cross-device palmprint match-
ing was recently proposed by Shao et al. [143] with
PalmGAN, where a cycle Generative Adversarial Network
(cycle GAN) [153] was used to perform cross-domain trans-
formation between palmprint ROIs. A proof of concept was
evaluated on the HKPU-Multispectral (HKPU-MS) palm-
print dataset containing palm images acquired at several
wavelengths, as well a semi-unconstrained dataset acquired
with several devices.

An overview of these approaches is presented in Table 4
under category (C3-B).

C. RUN-TIME EVALUATION ON CONSUMER DEVICES
Despite of the interest in smartphone-based palmprint recog-
nition, the number of papers evaluating ROI and feature
extraction pipelines on consumer devices is limited. To the
best of our knowledge, only Kim et al. [24] reported the
run-time required for their proposed system, as implemented
on a 1.40 GHz smartphone. They have determined the acqui-
sition and ROI extraction to require 218.76 ms, whereas the
feature extraction was timed at 466.65 ms.

Over the years considerable effort has been invested into
migrating deep architectures that show high performance
onto devices found ‘at the edge’ of computing [154]–[156].

At the time of writing this review there were no papers in
the field of palmprint recognition that evaluate the inference
time required byCNNswhen done on smartphones. However,
Ignatov et al. [156], [157] considered the problem of face
recognition (with feature embedding, based on Inception-
Resnet-v1) and evaluated on a large collection of smart-
phones/Systems on a Chip (SoC). When running on the CPU,
the average run-time for one image was around 400 ms,
whereas enabling the use of the GPU reduced the run-time
by up to 10 times. Therefore, the recently launched
smartphones/SoCs support the integration of CNNs
(as demonstrated with Inception-ResNet-V1) into real-time
applications of biometric recognition systems, such as palm-
print templates.

V. DISCUSSION AND CONCLUSIONS
A. PALMPRINT DATASETS
The advancement of palmprint recognition relies on the
release of relevant datasets which reflect specific sets of
requirements. Initially the main focus was placed on recog-
nition, allowing little to no flexibility in terms of interaction
with the system (e.g. HKPU [13]).

As the sensor technology progressed (and new consumer
devices appeared on the market), there was more room
for various aspects, i.e. contactless systems (IITD [16],
CASIA [15]). Then invariance to various factors of the
acquisition encouraged the introduction of datasets like
BERC [24] (background), or 11K Hands [29] (hand pose)
and PRADD [28] (devices used for acquisition). Unfortu-
nately there are several datasets that are no longer avail-
able to researchers, such as PRADD [28] or DevPhone [23].

Some recently introduced datasets are yet to be released
to the research community (e.g. HFUT [22], MPD [33] or
XJTU-UP [32]).

Following the general trend of biometric recognition
migrating to consumer devices, the last years have seen
the introduction of several large-scale palmprint datasets
(e.g. XJTU-UP [32]) reflecting the challenging operating
conditions brought by a mobile environment.

A new category of unconstrained palmprint datasets was
recently introduced with NTU-PI-v1 [30], including the
palmprint acquired with conventional cameras to the list of
forensic applications. This collection of palmprints gathered
from the Internet proved to be especially challenging, given
the low resolution of images, the high degree of distortion,
as well as the large number of hand classes.

It is our opinion that these will be the most meaningful
palmprint datasets for the upcoming 5-10 years, anticipating
the adoption of palmprint recognition on smartphones and
other devices. An overview of this transition was presented,
the culmination of which is represented by the unconstrained
datasets class (C in Table 1), initiated with the introduction of
NUIG_Palm1 [10] in 2017.

B. PALMPRINT ROI EXTRACTION
The approaches used for palmprint region of interest extrac-
tion are linked directly with the operating conditions of
devices used for acquisition. In palmprint datasets where the
background is fixed (e.g. HKPU, CASIA, IITD, COEP) the
task of segmentation is a straightforward procedure. How-
ever, when the background is unconstrained such as is the
case with images from BERC, skin color thresholding pro-
vides limited results, even when the skin model is computed
for every image based on a distribution of pixels [24].

With themigration of palmprint recognition onto consumer
devices, the general pipeline for ROI extraction needs to take
into consideration more challenging factors such as lighting
conditions, hand pose and camera sensor variation. It is in
this context that more powerful approaches based on machine
learning or deep learning can provide robust solutionswithout
imposing strict protocols for acquisition onto the user of
consumer devices.

A complete evaluation of these approaches is yet to be
made in terms of:

1) The prediction error of the key-points used for
ROI extraction/alignment. This seems to have been a
commonly overlooked step in most research papers,
with some exceptions (e.g. [65]).

2) Recognition rate and the main sources of error (from
the ROI extraction) affecting recognition.

3) Running time and resource requirements, especially
for CNN-based approaches. Low inference time is
expected from all solutions running on consumer
devices.

Furthermore, at the time of writing of this literature review,
there are currently no CNN-based solutions to detect the
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palmprint in unconstrained environments, besides the Fast
R-CNN approach demonstrated by Liu et al. [37], which is
a Fast-RCNN.

The recent use of a CNN for the normalization of palm-
print ROIs regarding hand pose by Matkowski et al. [30]
has opened up exciting new possibilities for unconstrained
palmprint ROI extraction (they do not address the task of
palmprint detection). The Spatial Transform Network learns
a non-affine transform applied to the ROI, defined by the
palmprint’s labeled key-points. Alternatively, pose correction
could be made using 3D information, similar the work of
Kanhangad et al. [158]. Although a special 3D sensor is
used in [158], the hand’s 3D structure can be recovered from
the 2D image with hand pose estimation algorithms (as was
developed by Mueller et al. [159]).

C. PALMPRINT FEATURE EXTRACTION
Although palmprint recognition took off in early 2000’s with
the introduction of HKPU [13] dataset, the pipeline stage that
received the most attention from the research community has
been the palmprint feature extraction.

As was the case for iris and face recognition, CNNs have
become the current state of the art in palmprint recognition
(Section IV-B). The general trend is to either train a network
using Cross-entropy or Center-loss (e.g. [11], [26], [29], [30],
[137]), Siamese networks (e.g. [33], [37], [140], [143]), but
there are or also entirely linear networks (PCANet [81] and
PalmNet [134]).

It is important to note that most of these works use in their
training/evaluation scenarios images acquired with smart-
phones (on datasets such as XJTU-UP [32] and MPD [33]).
The cross-device training and matching will become a main
focus especially for device-independent palmprint recogni-
tion solutions, as demonstrated by [30]. This is first investi-
gated in [10], with impressive results being obtained in [37]
and [30]. The cross-domain conversion of a palmprint ROI
using a generative approach [143] also represents a promising
direction of research. A GAN-based architecture might ben-
efit from the ROI pose-normalization approach introduced
by Matkowski et al. [30], where the ROI extraction network
contains a Spatial Transform Network [78].

D. ON-DEVICE RUN-TIME OPTIMIZATION
Based on recent work [155], [156], it is possible to esti-
mate the inference time for neural networks (used for feature
embedding) to be done in real-time on the newer smart-
phones, released in 2019/2020.

The complexity of architectures becomes an important
factor to optimize, as in [32], where the network is distilled
(number of layers is reduced) and the network’s output is a
discrete hash code (binary values). This not only reduces the
processing requirements (including matching), but also the
storage space necessary when dealing with a large number
of classes. An alternative approach would be to consider the
ternarization of networks [160].

As in the case of ROI extraction algorithms, the feature
extraction approaches (especially the CNN-based solutions)
require an evaluation in terms of processing time, as this
aspect is only touched in few papers (e.g. [24] and [37], [55]).
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