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ABSTRACT In this paper, an automated and visually explainable system is proposed for a scoliosis
assessment from spinal radiographs, which deals with the drawback of manual measurements, which are
known to be time-consuming, cumbersome, and operator dependent. Deep learning techniques have been
successfully applied in the accurate extraction of Cobb angle measurements, which is the gold standard for a
scoliosis assessment. Such deep learning methods directly estimate the Cobb angle without providing struc-
tural information of the spine which can be used for diagnosis. Although conventional segmentation-based
methods can provide the spine structure, they still have limitations in the accurate measurement of the Cobb
angle. It would be desirable to build a clinician-friendly diagnostic system for scoliosis that provides not
only an automated Cobb angle assessment but also local and global structural information of the spine. This
paper addresses this need through the development of a hierarchical method which consisting of three major
parts. (1) A confidence map is used to selectively localize and identify all vertebrae in an accurate and robust
manner, (2) vertebral-tilt field is used to estimate the slope of an individual vertebra, and (3) the Cobb angle
is determined by combining the vertebral centroids with the previously obtained vertebral-tilt field. The
performance of the proposed method was validated, resulting in circular mean absolute error of 3.51◦ and
symmetric mean absolute percentage error of 7.84% for the Cobb angle.

INDEX TERMS Frontal radiographs, spine, scoliosis, Cobb angle, deep learning.

I. INTRODUCTION
Adolescent idiopathic scoliosis is a structural spinal defor-
mity mainly in the coronal plane [7]. Because radiography
is fast, inexpensive, and simple compared with computed
tomography and magnetic resonance imaging, frontal radio-
graphy is commonly used in diagnosis of scoliosis and for
monitoring the progression. Radiography takes advantage of
the ability to generate an entire spine image of a standing
patient while reflecting the 3D rotatory nature of the scoliotic
deformity [18].

The Cobb angle is commonly used to measure the lateral
curvature of the spine in the coronal plane from a frontal
radiograph, and is defined by the angle between two lines
parallel to the upper plate of the superior end vertebra and
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the lower plate of the inferior end vertebra [12] as shown
in Fig. 1. If the endplates are not well visualized, the boundary
of pedicles are used to compute Cobb angle [12], [18], [19].
Amanual measurement of the Cobb angle is time-consuming,
cumbersome, and operator-dependent, resulting in high inter-
and intra-observer variations. Even the intra-observer vari-
ability of the Cobb angle, which is known to be less than the
interobserver variability, was reported to range as much as 5◦

to 10◦ [20], [24].
The human measurement of Cobb angle is known to be

variable; a spine curve is practically considered progressed
on radiographs when the Cobb angle increases by 5◦ or
more, per consecutive clinic visit [29]. This could be an
arbitrary criterion that can potentially mislead the patient
care. Hence, there is a significant need to improve the repro-
ducibility of the Cobb angle measurement through automatic
estimation.
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Numerous computer-aided methods for an automatic esti-
mation of the Cobb angle have been developed by many
investigators. These can be divided roughly into two cat-
egories: segmentation-based methods and direct estimation
methods. Segmentation-based methods use an active con-
tour model [1], customized filter [2], and charged-particle
models [26] for vertebral segmentation to calculate the Cobb
angle. Unfortunately, these methods are not robust because an
accurate segmentation of the vertebra is extremely difficult
owing to an unclear vertebral boundary in the radiographs.
Direct estimation methods [30], [33] attempt to extract the
correlation between spine features (e.g., landmarks) from
radiographs and the Cobb angle estimation without segmen-
tation. However, these landmark-based methods suffer from
an accurate and robust estimation because small errors in the
landmarks can cause serious errors in the Cobb angle.

Recently, Wu et al. [34] proposed an Multi-View Correc-
tion Network to achieve a fully automated comprehensive
scoliosis assessment by leveraging the correlation between
the frontal and lateral radiograph. Wang et al. [35] proposed
an Multi-View Extrapolation Network for an accurate Cobb
angle measurement in both frontal and lateral view by taking
advantage of multiple views [34] and high-precision calcula-
tion [6]. Chen et al. [6] developed Adaptive Error Correction
Net combined with a high-precision calculation for directly
calculating the Cobb angle in a single frontal radiograph.

Despite their highly accurate results, these methods still
suffer from lack of visual interpretability because they pro-
vide only the Cobb angle as output, without providing the
most tilted vertebra. The designation of the most tilted verte-
bra is important for the decision of the curve progression and
surgery planning. Therefore, it would be desired to build a
clinician-friendly diagnosis system that provides highly accu-
rate and reproducible Cobb angle measurement in a visually
interpretable manner.

This paper proposes a hierarchical deep learning method
designed to build a clinician-friendly system that provides
intermediate decision process. The advantage of the proposed
method is that it can directly visualize the end vertebrae by
calculating a tilted angle of an individual vertebra, which
could be hardly provided by the previously proposedmethods
[6], [34], [35]. The proposed method consists of three main
steps, considering both the local and global information of
vertebrae, which mimic the decision-making process of a
clinician:

1) Localization and identification of the individual tho-
racic and lumbar vertebrae using a confidence map.

2) Estimation of the slope of the vertebrae using the
vertebral-tilt field.

3) Cobb angle measurement using a confidence map and
vertebral-tilt field.

To develop a visually interpretable and highly accurate sys-
tem, we combined the segmentation-based method and direct
estimation method. Similar to the segmentation method,
which can visualize the results, the vertebral-tilt field pro-
vides a prediction at each pixel inside the vertebral region.

FIGURE 1. The Cobb angle is commonly used to measure the lateral
curvature of the spine in the coronal plane. It is defined by the angle
between two lines parallel to the upper plate of the superior end vertebra
and the lower plate of the inferior end vertebra. Three Cobb angles,
namely, the proximal-thoracic (PT), main thoracic (MT), and
thoracic-lumbar (TL) anlges, are needed for scoliosis assessment.

Here, it predicts a vector that provides the slope of a vertebra
in direct manner. Thereafter, this vertebral-tilt field, com-
bined with the localization and identification of the vertebrae
from a confidence map, provides an accurate slope on an
individual vertebra in a visually interpretable manner.

The proposed method has three major contributions.
(1) A highly accurate and robust Cobb angle measurement
is achieved by the confidence map and vertebral-tilt field.
(2) A visually explainable system is developed to improve
the clinician’s workflow. (3) A vertebral-tilt field is proposed
for accurate estimation of slope of vertebrae.

The performance of our method is evaluated on
128 anterior-posterior (AP) radiographs with 481 labeled
training data confirmed by radiologists. The experiment
results show that the proposed method provides an accurate
and robust performance for an identification of the vertebrae
and Cobb angle measurement.

We achieved a 3.51◦ circular mean absolute error (CMAE)
and 7.84% symmetric mean absolute percentage error
(SMAPE) for the Cobb angle.

II. METHODS
Let I (x) represent the intensity of the grayscale AP X-ray
image at pixel position x = (x1, x2) ∈ � where � =
{(x1, x2) : x1 = 1, · · · , h, x2 = 1, · · · ,w} represents a pixel
grid in an image. Then, image I can be viewed as a matrix
I ∈ Rh×w. The goal is to develop a fully automated method
for a Cobb angle measurement from AP radiographs I . An
automated measurement of the Cobb angle from radiographs
requires dealing with the overlapping shadows of other tho-
racoabdominal bone and soft tissue structures. In addition,
it is necessary to distinguish between the cervical and thoracic
vertebrae which are adjacent and have a similar shape in
frontal radiographs.

VOLUME 8, 2020 84619



K. C. Kim et al.: Automation of Spine Curve Assessment in Frontal Radiographs

FIGURE 2. An overview of the proposed method. During the training phase, we train the different two neural networks to find proper
parameters of the Centroid-net and the M-net. In the test phase, the Centroid-net is used to localize and identify all thoracic and lumbar
vertebrae. The vertebral-tilt field is given by the M-net. Then, the 17 vertebral-tilt vectors which represent slope of 17 vertebrae are
computed by combining centroids and vertebral-tilt field. Finally, we calculate the three Cobb angles using 17 vertebral-tilt vectors.

Our method consists of the three parts: localization and
identification of the thoracic and lumbar vertebrae, an esti-
mation of the slope of the vertebrae, and a Cobb angle
measurement.

The schematic overview is shown in Fig. 2. A confidence
map is used to localize and identify the 17 vertebrae. For an
accurate and robust estimation of the Cobb angle, we take
advantage of the vertebral-tilt field to describe the slope
of individual vertebrae. The Cobb angle can be accurately
determined by 17 vertebral-tilt vectors, which are given by
the vertebral centroids and vertebral-tilt field.

A. LOCALIZATION AND IDENTIFICATION
OF THE VERTEBRAE
In our method, we first predict the centroids of the 12 thoracic
and 5 lumbar vertebrae in image I , where the output are
expressed by the vector P = (p1,p2, · · · ,p17) ∈ R2×17,
where pj = (pj,1, pj,2) represents the centroid of the j-th
vertebra.

For an estimation of the 17 centroids, we employ a con-
fidence map [5], [23], [31], [32] representing the belief of
the centroids at each pixel position x = (x1, x2) in image I
(see Fig. 2). To obtain the confidence map, we generate an
individual confidence map ψj : x 7→ R for j = 1, · · · , 17
that is defined by

ψj(x) = exp

(
−
||x− pj||22

2σ 2
j

)
, (1)

where σ 2
j is given by 1/8 of the height of j-th vertebra in

image I . Next, these 17 confidence maps are integrated into
the confidence map 9 : x 7→ R obtained by the following:

9(x) = max{ψ1(x), · · · , ψ17(x)}. (2)

Here, 9(x) represents the maximum among all values of
ψj(x) with j = 1, · · · , 17 at pixel position x.
A confidence map regression function: fc : I 7→ 9rfn

will be learned using a deep learning technique with a labeled
training dataset D c := {I (n),P(n), 9(n)

}
N
n=1.

The proposed network, called a Centroid-net, consists of
three neural network functions: (i) a feature extraction net-
work fext : I 7→ I∗ shown in Fig. 3(a), (ii) an initial prediction
network finit : I∗ 7→ 9̃init in Fig. 3(b), and (iii) a refinement
network frfn : (I∗, 9̃init) 7→ 9rfn shown in Fig. 3(c).

Here, fext initially produces a set of feature maps I∗ =
fext(I ) ∈ R

h
4×

w
4×512 which is an input of the network finit.

The next two networks sequentially predict the coarse initial
confidence map 9̃init = finit(I∗) ∈ R

h
8×

w
8 and the final

confidence map 9rfn = frfn(9̃init, I∗) ∈ Rh×w by taking
advantage of the refinement of the initial prediction 9̃init
where the initial confidence map finit(I∗) is concatenated
with the intermediate feature map I∗ as an input of frfn.

The Centroid-net is designed to achieve a large receptive
field size at a pixel of the output layer with a sequential
prediction structure to capture the long range dependency
between the 17 vertebrae. We adopt a convolutional neural
network to learn three functions fext, finit, and frfn. Fig. 3
shows the architecture of the Centroid-net. These networks
fext, finit, and frfn are learned simultaneously, using the
training data D c := {I (n),P(n), 9(n)

}
N
n=1.

In the Centroid-net, we use the weighted loss function
to improve the prediction accuracy for T1 (the first tho-
racic vertebrae), because it is difficult to distinguish between
T1 and C7 (the last cervical vertebra), as shown in Fig. 4. The
proposed weighted loss function is:

Lc =
1
N

N∑
n=1

(L(n)
c,1 + L(n)

c,2), (3)
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FIGURE 3. Architecture of the proposed Centroid-net for localizing the 17 thoracic and lumbar vertebrae. The function finit returns the
initial confidence map providing the belief of the centroids of the 17 vertebrae. The output of frfn is a confidence map providing the belief
of all centroids of 17 the vertebrae. Here, white blocks and green blocks denote the input and output of each network, respectively.

FIGURE 4. (a) shows the region of cervical and thoracic vertebra.
(b) shows the region in the red box in (a). As shown in (b), the C7 and
T1 vertebrae have a similar shape. (c) shows the ground-truth confidence
map. During the training, the loss is computed in the region below black
line (x2 < p1,2) while ignoring the loss occurred in the region of cervical
vertebrae (x2 ≥ p1,2).

where L(n)
c,1 represents the intermediate loss given by
L(n)
c,1 =

∑
x∈�

ω(n)(x)
∣∣∣g(n)1 (x)−9(n)(x)

∣∣∣2
with g(n)1 = U

(
finit(fext(I

(n)))
)
,

(4)

and L(n)
c,2 represents the final loss given by
L(n)
c,2 =

∑
x∈�

ω(n)(x)
∣∣∣g(n)2 (x)−9(n)(x)

∣∣∣2
with g(n)2 = frfn(fext(I

(n)), finit(fext(I
(n)))).

(5)

Here, U is an 8× upsampling operator using bicubic interpo-
lation and ω(n) is the weight given by

ω(n)(x) =

{
0 if x2 > p(n)1,2

1 otherwise.
(6)

The above weight ω(n) is designed to calculate the loss only
in the region containing the thoracic and lumbar vertebrae,

FIGURE 5. Localization of the 17 vertebrae. (a) Test image I . (b) The
confidence map 9rfn = frfn(I∗, finit(I)). (c) Local maxima denoted by red
dots. (d) Determination of the centroids of the 12 thoracic and 5 lumbar
vertebrae. In (d), the wrong candidates denoted by red box (whose scores
are less than half of the mean score) are removed. Finally,
the 17 candidates starting from the bottom candidate are selected as
shown in (d).

whereas ω(n)
= 0 is within the region containing the cer-

vical vertebra. This weight ω(n) is used to focus on predict-
ing 12 thoracic vertebrae (T1-12) and 5 lumbar vertebrae
(L1-5) locations, while ignoring the prediction in the region
containing cervical vertebrae. This weighted loss approach
can accurately and robustly predict T1, while avoiding the dif-
ficulty of distinguishing between T1 andC7 (see Section III-F
for further details).

The proposed Centroid-net involving three networks fext,
finit, and frfn is determined by minimizing the loss function
in (3) using the training data D c = {I (n),P(n), 9(n)

}
N
n=1.

The Centroid-net maps from I (frontal radiograph) to9rfn
(confidence map), as shown in Fig. 5(a) and (b). From the
confidence map 9rfn, it is easy to determine the centroids
P = (p1, · · · , p17) ∈ R2×17 of the 17 vertebrae.
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FIGURE 6. M-net architecture for learning of vertebral-tilt field. This M-net is designed to learn local and global structure at the same time.

First, the Otsu’s thresholding [21] is applied to the con-
fidence map 9rfn in Fig. 5(b) to eliminate small local per-
turbations which are local maxima distant from vertebrae.
The local maxima after thresholding are shown in Fig. 5(c).
These local maxima are the candidates of the centroids. Next,
we need to select 17 centroids P = (p1,p2, · · · ,p17) ∈
R2×17 from the several candidates. To do so, we set the score
as the value of9rfn at each local maximum point.We exclude
those candidates whose scores are less than half of the mean
score. See red box in Fig. 5(c) and (d). Finally, we select the
candidates 17 starting from the bottom candidate, as shown
in Fig. 5(d).

B. LEARNING VERTEBRAL-TILT FIELD
This section describes a method for providing a vertebral-tilt
field which will be used for determining the 17 vertebral-
tilt vectors. The vertebral-tilt field, denoted by V, aims to
describe the slope of each vertebra in image I , as shown
in Fig. 7. To learn a neural network f vec : I 7→ V, we use the
M-net [8] with labeled training data D vec = {I (n),V(n)

}
N
n=1.

The architecture of the M-net is based on U-net [25], and two
major parts are added in the input and output layers. Three
parts are explained as following.

The U-Net is a convolutional neural network architecture
developed for biomedical image segmentation. The architec-
ture of the U-net consists of two parts. (1) The encoding path
performs 3 × 3 convolutions followed by a rectified linear
unit (ReLU), and max pooling. (2) The decoding path applies
upsampling using 2 × 2 transpose convolutions and 3 × 3
convolutions, followed by ReLU in which the up-sampled
output is concatenated with a high-resolution feature in the
encoding path as shown in Fig. 6.

FIGURE 7. (a) The j-th vertebral region �j (red-colored box) which is
defined by the inside region of polygon from four corner points. The two
yellow points in (a) denote the left and right middle points. (b) The unit
vector at each pixel in �j .

In the input layer, an image pyramid constructed by
multi-scale images is used to integrate a multi-level receptive
field. Here, the image is down-sampled by the average pool-
ing and convolution with ReLU applied to the down-sampled
image.

In the output layer, a side-output layer is used to learn local
and global information at the same time. A multi-label loss
function with a side output is used to deal with the vanishing
gradient problem by replenishing the back-propagated gradi-
ents [8], [32]. At the output layer, a 1 × 1 convolution and
an element-wise tangent hyperbolic activation function are
applied.

Here, the f vec is expressed as follows:

f vec(I ) =
1
4

4∑
i=1

f vec,i(I ), (7)

where f vec,i is the function producing the i-th side out-
put, and the f vec is learned by minimizing the following
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FIGURE 8. Visualization of learned vector fields and weights for two cases. In (a)-(d), the black arrows
represent visualization of the vector in the vector field and the black contours represent j-th vertebral
region �j . In (a) and (c), the vector field V in j-th vertebral region �j is overlaid with absolute value of
vector field. The red dot and the yellow circle in (a) and (c) denote the j-th centroid pj and contour of disk
Dj , respectively. In (b) and (d), the estimated j-th vertebral-tilt vector vj is denoted by red arrows. In (a),
the vector field is learned well throughout the �j while providing accurate the j-th vertebral-tilt vector.
As shown in (d), the proposed method provide reasonable j-th vertebral-tilt vector even if the vector field
is not learned well over �j , but only in the corner region.

multi-label loss:

Lvec=
1
4N

N∑
n=1

4∑
i=1

∑
x∈�

ω(n)(x)
∥∥∥f vec,i(I (n))(x)−V(n)(x)

∥∥∥2 .
(8)

Here, ω(n) is the same weight as in (6).
Now, we will describe how to generate the ground-truth

V(n). Given image I , we first take a rectangular domain �j
occupying the j-th vertebral region, as shown in Fig. 7. The
vector field V is zero outside ∪17j=1�j. In the j-th vertebral
region, V is determined by

V(x) =
mj,r −mj,l

‖mj,r −mj,l‖
, (9)

where mj,r and mj,l are the right and left midpoints, respec-
tively, as shown in Fig. 7.

C. COBB ANGLE MEASUREMENT
From the neural networks described in the previous sections,
we obtained a map from I to (P,V). Now, it remains to
determine three Cobb angles, 2 = (21,22,23). We chose
a disk Dj centered at pj with radius 5 that is contained in the
region of the j-th vertebra �j (see Fig. 8). We computed the
weighted average of V over the disk Dj:

vj =
∑
x∈Dj

‖V(x)‖∑
x∈Dj ‖V(x)‖

V(x), j = 1, · · · , 17. (10)

This vj is called j-th vertebral-tilt vector and it provides a
slope of the j-th vertebra, denoted by θj as follow:

θj = arctan
(
vj · (0, 1)
vj · (1, 0)

)
. (11)

Using these 17 vertebral slopes (θ1, · · · , θ17), we first
determined the end vertebrae in three regions: the proximal
thoracic (apex between T1 and T3), the main thoracic (apex
between T3 and T12), and the thoracolumbar/lumbar (apex
between T12 and L4). Then, the three Cobb angles 2 =
(21,22,23) are given by angle between the end vertebrae in

FIGURE 9. Cobb angle measurement. Two cases are shown in (a) and (b).
In (a), the MT is the major curve. Then, the vertebral-tilt vectors on the
four end vertebrae are determined in the order of vc2 , vc3 , vc1 , and vc4 .
In (b), the TL is the major curve. In this case, we determine the
vertebral-tilt vectors in the order of vc3 , vc4 , vc2 , and vc1 . The j-th Cobb
angle 2j is given by the angle between vcj and vcj+1 .

the three regions, respectively. Here, apex is the vertebra or
disk which is the most distant from the center of the vertebral
column [12].

Here, we provide a more detailed explanation on how to
evaluate the three Cobb angles 2 = (21,22,23). Evalu-
ation of 2 is determined by finding four end vertebrae and
using the corresponding vertebral-tilt vectors, denoted by
vc1 , vc2 , vc3 , and vc4 (see Fig. 9). Now, we explain how to
determine the four end vertebrae. Let θ j,k denote the angle
between vj and vk . Then, θ j,k satisfies

cos(θ j,k ) =
vj · vk
‖vj‖‖vk‖

. (12)
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Let c min and c max be numbers in {1, 2, · · · , 17} given
by

c min = min

{
argmax

(j,k)∈{1,··· ,17}×{1,··· ,17}
θ j,k

}
, and

c max = max

{
argmax

(j,k)∈{1,··· ,17}×{1,··· ,17}
θ j,k

}
. (13)

Here, c min- and c max-th vertebrae can be viewed as the
upper and lower end vertebrae, respectively, of the major
curve that has the largest Cobb angle, where MT or TL can
be the major curve [12]. For example, in Fig. 9(a), MT is the
major curve and therefore, c2 = c min and c3 = c max.
On the other hand, in Fig. 9(b), TL is the major curve and
therefore c3 = c min and c4 = c max.
Now it remains to determine remaining two end vertebrae.

In the case when MT is the major curve, the remaining two
vertebral-tilt vectors vc1 and vc4 are determined by

c1 = argmax
k∈{1,··· ,c2−1}

θk,c2 , and

c4 = argmax
k∈{c3+1,··· ,17}

θc3,k . (14)

On the other hand, when TL is the major curve, the remaining
two vertebral-tilt vectors vc1 and vc2 are determined by

c1 = argmax
k∈{1,··· ,c2−1}

θk,c2 , and

c2 = argmax
k∈{1,··· ,c3−1}

θk,c3 . (15)

Then, the three Cobb angles 2 = (21,22,23) are deter-
mined by

2j = θcj,cj+1 for j = 1, 2, 3. (16)

III. EXPERIMENTS AND RESULTS
In this experiments, Python 3.6 and PyTorch 1.1 [22] were
used to implement the proposed method. All training and
evaluation were conducted on a workstation equipped with
the two Intel(R) Xeon(R) E5-2630 v4 @ 2.20GHz CPUs,
128GB of DDR4 RAM, and four NVIDIA GeForce GTX
1080ti 11GB GPUs.

A. DATA
For the training and evaluation, spinal AP X-ray images and
their label were provided by the Digital Imaging Group, Lon-
don, ON, Canada [33]. All X-ray images were collected from
individual patients. The provided images include 481 AP
X-ray images for training and 128 AP X-ray images for
testing. For training, we split the training data into 431 and
50 for training and validation, respectively. The labeled data
include 3 Cobb angles and 68 landmarks representing the
four corner points of the 12 thoracic and 5 lumbar ver-
tebrae. The labeled data were manually annotated by two
experts in London Health Sciences Center, London, ON,
Canada [6], [33].

We call this dataset an internal dataset to distinguish it from
external dataset described below. For an external validation,

we also used an external dataset provided by a different
hospital. The external dataset include 20 AP X-ray images
that were collected from individual patients.

The methods for generating the training data D c :=
{I (n),P(n), 9(n)

}
N
n=1 and D vec = {I (n),V(n)

}
N
n=1 are as

follows:

1) For the given original X-ray images with a size of h(n)o ×
w(n)
o , we resized the all images to 512× w(n)

o (512/h(n)o )
to generate I (n).

2) The intensity of resized image I (n) was scaled to the
range of 0 to 1.

3) The centroids of each vertebra were given by the inter-
section of the middle of the width and the middle of the
height in each vertebral body.

4) For the training of Centroid-net, we generated a
ground-truth confidence map 9(n) using (1) and (2)
with the ground-truth centroids P(n).

5) For the training of M-net, we generated the
ground-truth vertebral direction field V(n) using (9).

6) For the data augmentation, we applied the random
brightness, random contrast adjustment, and random
rotation within an angle of −10◦ to 10◦.

B. TRAINING OF THE PROPOSED NETWORK
We trained the proposed neural network by minimizing the
loss functions in (3) and (8) using the Adam method [11].
Here, we choose a batch size of 4 by considering our
computational capability. Batch normalization [9] was also
applied. The learning rate was set to 10−4. We trained the
Centroid-net and theM-net for 1000 and 1500 epochs, respec-
tively. The training was finished when the validation loss
stopped decreasing.

C. QUANTITATIVE ANALYSIS OF COMPUTATIONAL EFFORT
We quantitatively analyze the computational effort, including
computation time and memory requirements of the proposed
neural networks.

1) COMPUTATION TIME
We provide the computation time of Centroid-net and M-net
for training and test processes. In the training process,
we measured the average time per epoch, which includes
data loading, data augmentation, forward computation, and
backward computation with optimization process. In the test
process, the average time per batch was recorded with a batch
size of 1. The test time included data loading and forward
computation. The computation time is summarized in Table 1.
Here, we used a single GeForce GTX 1080ti 11GB GPU to
measure the training and test time.

2) MEMORY REQUIREMENTS
To estimate the total memory requirements, it requires to
compute the number of all network parameters and inter-
mediate activations [28]. To obtain the total memory in
units of byte from this number, we multiply by 4 because
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FIGURE 10. The centroids detection error of the proposed method is given by box plots. Median error is represented by red lines. (a) shows
error between the output of the proposed method and ground-truth centroids and (b) shows the error between the output and closet
ground-truth centroids.

TABLE 1. Quantitative analysis of computation time. For each training
and test process, average computation time per epoch and batch are
represented.

every floating-point occupies the 4 bytes in a single-precision
system.

We computed the amount of memory occupied by the
network parameters. The Centroid-net has 1130080 train-
able parameters, which occupy 4.31MB in single-precision
floating-point format. The M-net has 10014888 trainable
parameters occupying 38.20MB.

To estimate the memory requirements in the training
process, we computed the total number of intermediate acti-
vations in forward pass and gradients in backward pass.
Therefore, the required memory can be estimated as∑

layer
N batch × N activation × 2× 4byte, (17)

whereN batch is the batch size andN activation is the number
of activations in each layer. Here, wemultiply by 2 in the con-
sideration of the backward pass, which occupies same mem-
ory as the forward pass. The Centroid-net requires 1.46GB
with a batch size of 4 and the M-net requires 3.28GB with a
batch size of 4.

D. QUANTITATIVE EVALUATION AND COMPARISON
OF THE RESULTS
In this section, we provide quantitative evaluation of the
proposed method on the internal testing dataset that includes
128 AP X-ray images.

1) IDENTIFICATION AND DETECTION OF VERTEBRAE
For a quantitative evaluation of the Centroid-net, we used the
distance error between the output of the proposed method
and ground-truth centroids in the pixel space. Fig. 10(a)
shows the boxplot of the center position detection error.

We achieved a median error of 1.11 for the 17 vertebrae.
A higher error occurred when the Centroid-net failed to pre-
dict the L5 vertebra. The identification of 17 vertebrae was
deemed correct when the model predicted the 17 vertebrae
with a distance error of less than 20 pixels. We achieved an
identification rate of 90.6%. We also computed the distance
error between the output and closest ground-truth centroids,
as shown in Fig. 10(b). This error shows how close the
predicted centroids are to the centroids of the vertebrae,
regardless of the vertebral level.

2) COBB ANGLE MEASUREMENT
For an evaluation of the three Cobb angles given by the
proposed method, we used circular mean absolute error
(CMAE) [4] and symmetric mean absolute percentage error
(SMAPE) [13], [17].

The CMAE between 2(n) and 2(n)
GT is defined using the

mean of circular mean (CMEAN) as follows:

CMAE =
1
N

N∑
n=1

CMEAN
(∣∣∣2(n)

−2
(n)
GT

∣∣∣) , (18)

where

CMEAN
(∣∣∣2(n)

−2
(n)
GT

∣∣∣)

= arctan


3∑
i=1

sin
(∣∣∣2(n)

i −2
(n)
GT,i

∣∣∣)
3∑
i=1

cos
(∣∣∣2(n)

i −2
(n)
GT,i

∣∣∣)
 . (19)

Here, 2 = (21,22,23) indicates the three Cobb
angles given by the proposed method and 2GT =

(2GT,1,2GT,2,2GT,3) is the ground-truth of the three
Cobb angles labeled by experts. The CMEAN was used
to evaluate the angular quantity correctly. For example,
the absolute error between the two angles 358◦ and 2◦ is 356◦,
whereas the difference in the actual angle is only 4◦. To be
precise, we first convert the three angles2 from degrees into
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TABLE 2. Comparison of the results for several different methods are
reported. Evaluations of the Cobb angle measurement using multiple
metrics are reported. The CMAE is represented with mean and standard
deviation and the value of SMAPE is represented.

FIGURE 11. Box plots of circular mean error for several methods. The box
plots represent interquartile ranges of circular mean error. Red lines
denote the median value and black squares denote the mean value
reported in Table 2.

radians to compute the sine and cosine in the CMEAN. Next,
we convert the value of CMEAN from radians to degrees.

The SMAPE is defined as follows:

SMAPE =
1
N

N∑
n=1

∑3
i=1

∣∣∣2(n)
i −2

(n)
GT,i

∣∣∣∑3
i=1

(
2

(n)
i +2

(n)
GT,i

) × 100%. (20)

Here, the SMAPE is a prediction accuracy represented by
relative error and it has advantage of scale-independency and
robustness to outliers.

We compare the proposed method with other existing
methods: Angle-net in [6], Boost Net in [33], and Landmark
Net in [6]. Additionally, we also used the U-net [25] based
proposed method instead of using M-net. The quantitative
evaluation results for several methods are reported in Table 2.
As shown in Table 2, the M-net based proposed method
achieves better performance in terms of CMAE and SMAPE.
Box plots are represented to show the distribution of circular
mean error (19) for several methods, as shown in Fig. 11.
To show the robustness of the proposed method against

noise in a radiograph, we provide the performance evaluation
of CMAE and SMAPE by adding different levels of Gaussian
noise to the radiograph. The value of a noisy radiograph at
pixel position x is defined by (1+ rε)I (x) with ε ∼ N (0, 1),
where r is a noise level (e.g., r = 0.05 for 5% noise).

TABLE 3. Comparison of the results for different levels of Gaussian noise.
The CMAE and SMAPE are represented with different noise levels.

TABLE 4. Quantitative evaluation of Cobb angle measurements on the
external testing dataset. The CMAE is represented with mean and
standard deviation and the value of SMAPE is represented.

As shown in Table. 3, the proposed method still provides
better performance than the existing methods in [6], [33] even
though we added the Gaussian noise to the input radiograph.
The experimental result also shows that the proposed method
has robustness against noise in radiographs. Note that when
we trained our model, we did not use the addition of random
Gaussian noise as data augmentation.

E. QUANTITATIVE EVALUATION ON THE
EXTERNAL DATASET
In the previous section, we demonstrated that the proposed
method provides accurate and robust Cobb angle estimation
on the internal testing dataset. Furthermore, to test gen-
eralization ability and robustness of the proposed method,
we additionally assessed the Cobb anglemeasurement perfor-
mance using 20 frontal radiographs from a different hospital.
The end vertebrae designation and Cobb angle measure-
ments of these radiographs were performed by two experi-
enced radiologists in consensus. The quantitative evaluation
of Cobb angle measurements on external dataset is reported
in Table. 4. The proposed method achieved small error for
this external dataset, showing that the proposed method has
robustness and generalization ability.

F. COMPARISON BETWEEN CONFIDENCE MAP RESULTS
WITH AND WITHOUT USING WEIGHTED LOSS
We next compare the localization performance with and
without using a weighted loss function. Fig. 12 shows
that a Centroid-net using a weighted loss function outper-
forms the result without a weighted loss function. As shown
in Fig. 12(b) and (e), the Centroid-net without a weighted
loss function fails to predict the T1 vertebra. We analyzed
the results as follows: The model trained using a conventional
loss function has to predict the T1 vertebra but not the C7 ver-
tebra, which is adjacent to T1 and has similar a pattern as T1.
This sometimes causes the model to fail in predicting the
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FIGURE 12. Comparison between confidence map results without ((b) and (e)) and with ((c) and (f)) using weighted loss function. (a) and
(d) show the X-ray images. The yellow boxes show the thoracic vertebra region. In (b) and (e), the Centroid-net fails to predict the thoracic
vertebra. In (c) and (f), the Centroid-net predicts the thoracic vertebra correctly. As shown in the red box in (c), the model predicts the cervical
vertebra region owing to the weighted loss function.

FIGURE 13. Comparison between the proposed method and segmentation-based method. (a) and (c) show the segmentation
results. The black line in (a) and (c) denote the boundary of ground-truth segmentation. (b) and (d) show the vertebral-tilt field
(black arrows) and predicted vertebral-tilt vector (red arrows). As shown in yellow box in (d), the proposed method provides slope
of vertebra accurately even though vertebral-tilt field is not learned well over corresponding vertebral region.

T1 vertebra (Fig. 12(e)), or to predict T1 with low confidence
(Fig. 12(b)). This problem arises from the fact that one of
the two vertebrae with a similar shape has to be predicted
and the other does not. On the other hand, when using the
weighted loss function, we do not calculate the loss in the
cervical vertebral region, resulting in predicting the thoracic
and lumbar vertebrae accurately. In this case, the Centroid-
net predicts the cervical vertebra with high probability owing
to its similar shape.

G. COMPARISON BETWEEN THE PROPOSED METHOD
AND SEGMENTATION-BASED METHOD
We qualitatively compared the results between the proposed
method and the segmentation-based method to show the
advantage of the proposed method through a vector field
approach. The M-net was used to segment the 17 vertebrae
from frontal radiographs. As shown in Fig. 13(a) and (c),

the segmentation method fail to describe a vertebral region
accurately. In this case, the segmentation-based method can-
not provide the slope of the vertebra since it requires highly
accurate boundary segmentation. The segmentation-based
methods require additional edge detection method such as
hough transform [2], [3] to identify the vertebral end-
plates. On the other hand, the proposed method shown
in Fig. 13(b) and (d) provides the accurate estimation slope
of vertebra denoted by the red arrows even though the
vertebral-tilt field did not encode the vector at each pixel in
the region of vertebrae as shown in yellow box in Fig. 13(d).

H. QUALITATIVE EVALUATION OF THE
PROPOSED METHOD
For a qualitative evaluation of the proposed method, we visu-
alized the results on internal testing dataset with six selected
subjects, as shown in Fig. 14.
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FIGURE 14. Qualitative evaluation of the results for six subjects. (a) AP X-ray images, (b) confidence map with estimated centroids,
(c) vertebral-tilt vectors with vertebral-tilt field, and (d) the results of Cobb angle measurements. In (D), the yellow lines denote the
ground-truth, and the red lines denote the results of the proposed method.
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The results show that the proposed method properly pro-
vides 17 centroids (Fig. 14(b)) and 17 vertebral-tilt vectors
(Fig. 14(c)), which are used for Cobb angle measurement.
In Fig. 14(d), four end vertebrae given by the proposed
method are presented with ground truth.

IV. DISCUSSION AND CONCLUSION
In this paper, we proposed a visually explainable Cobb
angle measurement method using deep learning by consid-
ering clinician’s decision process. The accurate and visually
explainable Cobb angle measurement is important because
of the following reasons: (1) Inaccurate measurement may
lead clinicians to misinterpret scoliosis curve progression.
(2) A visually explainable scoliosis assessment algorithm
that not only calculates Cobb angle, and also identifies the
most tilted vertebrae of the curve can improve the clinicians’
workflow in the real clinical practice.

However, no existing method has achieved both accurate
and visually explainable measurement of the Cobb angle in
terms of clinical performance. The direct estimation methods
suffers from lack of interpretability, even though it achieved
highly accurate results. The indirect estimation methods face
inherently inaccurate measurements owing to the dependency
on the quality of landmark estimation or boundary segmenta-
tion of vertebrae, even though they visualize the intermediate
decision process using the anatomical structure of spine.

To overcome the above-mentioned difficulties, we inte-
grated the advantages of direct estimation method into the
proposed indirect method. First, we used the confidence map
regression method to localize and identify all vertebrae by
taking a fully convolutional structure [27], while conventional
coordinate regression methods require deep layers with a
large number of network parameters and only take a fixed
size of image as an input [23]. Next, the vertebral-tilt field
was used to describe the slope of vertebrae by assigning a
vector at each pixel inside region of vertebrae. This vec-
tor provides the slope of vertebra in a direct manner. An
advantage of the vertebral-tilt field is that it can estimate
the slope of the vertebrae even if the vectors were not well
learned over the region of vertebra, as shown in Fig. 13(d).
Finally, the Cobb angle was provided by combining the
confidence map and vertebral-tilt field results. In this study,
the vertebral-tilt field was implemented by the M-net which
has shown improved performance in medical image segmen-
tation because vertebral-tilt field provide pixel-wise dense
prediction like image segmentation [27].

We demonstrated that the proposed method achieved
a highly accurate Cobb angle estimation through a visu-
ally explainable system based on the confidence map and
vertebral-tilt field. The performance evaluation on both the
internal and the external testing dataset shows that the pro-
posed method has robustness over frontal radiographs from
different hospitals.

The proposed method has room for improvement.
We believe that uncertainty quantification of the proposed
Cobb angle measurement will be an important in our future

study, where Bayesian deep learning method in [10], [14] or
Gaussian process regression in [15], [16] could be adopted.
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